Refine
Document Type
- Doctoral Thesis (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Schmerz (2)
- 9-HODE (1)
- CNP (1)
- Ceramide Synthase (1)
- Colitis assoziate colorectal cancer (1)
- G2A receptor (1)
- GPCR (1)
- Guanylatzyklasen (1)
- Inflammatory Bowel Disease (1)
- Juckreiz (1)
Institute
- Biochemie, Chemie und Pharmazie (12)
- Pharmazie (3)
Viele Studien konnten in den letzten Jahren aufzeigen, dass Stickstoffmonoxid (NO)/cGMP-Signaling eine wichtige Rolle in der Verarbeitung chronischer Schmerzprozesse einnimmt. Bei Verletzung peripherer Nerven oder Entzündung im Gewebe wird NO gebildet, das durch Stimulation der NO-sensitiven Guanylatzyklase (NO-GC) die cGMP-Bildung katalysiert. Seit einigen Jahren ist bekannt, dass zwei Isoformen dieses Enzyms existieren, NO-GC1 und NO-GC2. Das Expressionsmuster der beiden Isoformen im nozizeptiven System und der jeweilige Einfluss auf die Schmerzverarbeitung ist jedoch bisher völlig unbekannt. In dieser Arbeit wurde die Expression der NO-GC1 und NO-GC2 in den Spinalganglien (DRGs) und im Rückenmark von Mäusen charakterisiert und das Verhalten von NO-GC1 und NO-GC2 Knockout (KO)-Mäusen in verschiedenen Schmerzmodellen untersucht. Mit Immunfluoreszenzfärbungen und In-situ-Hybridisierungen wurde in dieser Arbeit dargestellt, dass die zwei Isoformen in Interneuronen des Rückenmarks lokalisiert sind, wobei die NO-GC1 vorwiegend in inhibitorischen Interneuronen exprimiert wird. In den DRGs konnte die Expression in nicht-neuronalen Zellen nachgewiesen werden, wobei nur die NO-GC2 in Satellitenzellen detektiert werden konnte. Die NO-GC1 KO-Mäuse zeigten eine verringerte mechanische Hypersensitivität in neuropathischen Schmerzmodellen, aber ein normales Verhalten in Modellen inflammatorischer Schmerzen. Im Gegensatz zu diesen Ergebnissen zeigten die NO-GC2 KO-Mäuse ein erhöhtes Schmerzverhalten in Entzündungsmodellen, aber kein verändertes Verhalten in Modellen neuropathischer Schmerzen. Die gezielte Deletion der NO-GC1 und NO-GC2 in Interneuronen des Rückenmarks führte in den entsprechenden Tieren zu Verhaltensänderungen in der Schmerzwahrnehmung, die den Phänotypen der globalen NO-GC KO-Tieren in Schmerzmodellen ähnelte. Zusammengefasst zeigen die Daten dieser Arbeit, dass die NO-GC1- oder NO-GC2-vermittelte cGMP-Produktion in Interneuronen des Rückenmarks sehr wichtige, und teilweise gegensätzliche Funktionen bei der Verarbeitung chronischer Schmerzsignale einnimmt.
Alzheimer’s disease (AD) is the major cause of dementia. It is characterized by the accumulation of abnormal proteins (amyloid-β plaque and neurofibrillary tangles) leading to loss of synapses, dendrites, neurons, memory and cognition. Sporadic late-onset AD is the major type of AD characterized by unclear etiology and a lack of disease-modifying therapy. To understand this disease, an alternative AD hypothesis has been proposed: AD may resemble diabetes in the brain or “diabetes type 3”. This hypothesis is supported by the fact that (1) brain glucose hypometabolism precedes AD clinical symptoms and (2) diabetes increases the risk of AD. To test this hypothesis, wild-type rats receiving intracerebroventricular administration of streptozotocin (icv-STZ) were used as a model. Streptozotocin (STZ) is a glucosamine-nitrosourea compound commonly used to induce experimental diabetes by peripheral administration. A similar pathological mechanism to peripheral STZ is then proposed to explain icv-STZ toxicity: insulin receptor signaling impairment results in glucose hypometabolism leading to cognitive deficits.
Objective: Icv-STZ model seems promising as a toxin-induced, non-transgenic AD model with the possibility to connect AD and diabetes mellitus (DM), one of the risk factors for AD. However, the mechanisms of how icv-STZ induced AD-like symptoms are unclear. Therefore, using microdialysis as the main technique, we tested 2 AD hypotheses in this model: (1) the glucose hypometabolism as an alternative AD hypothesis and (2) the cholinergic deficit as an important characteristic of AD pathology. Hippocampus was chosen because cholinergic function in this region is severely affected in AD. In comparison, the striatum was chosen because it contains cholinergic interneurons and is less affected in AD.
Methods: In this study, we used male Wistar rats of 190-220 g body weight (5 weeks of age). The rats were injected intracerebrally with STZ at a dose of 3 mg/kg (2x1.5 mg/kg; „high dose“) and 0.6 mg/kg („low dose“) with saline as control. After 21 days, samples were collected to investigate cholinergic and metabolic changes using histology, biochemistry, and neurochemistry. Brain injury was confirmed using GFAP staining and Fluoro jade staining in the hippocampus. Mitochondrial toxicity was investigated by measurement of mitochondrial
respiratory function in both hippocampus and striatum. Cholinergic markers such as acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) activity, and choline transporter (CHT-1) activity, commonly known as high-affinity choline uptake (HACU), were measured in both hippocampus and striatum using a spectrophotometer and a scintillator.
Microdialysis is the main technique in our study. It was done in awake animals under behavioral or pharmacological stimulation. We used a self-built probe with a semi-permeable membrane (pore size of 30 kDa) that was implanted in either hippocampus or striatum. The probes were then perfused with artificial cerebrospinal fluid (aCSF) supplemented with 0.1 μM neostigmine for extracellular acetylcholine level measurement. During the perfusion, small hydrophilic compounds from brain extracellular space diffuse into the dialysates. Dialysates of 15 minutes intervals were collected for 90 minutes and used for analysis. After collection of dialysates for the first 90 minutes (basal data), rats were moved to an open field box (35x32x20 cm) for behavioral stimulation. After collection of the second 90 minute dialysates, the rats were transferred back to the microdialysis cage and dialysates were collected for another 90 minutes. On day 2, after collection of dialysates under basal conditions, 1 μM scopolamine was added to the perfusion solution for stimulation of acetylcholine release. The dialysates were also collected for 90 min followed by another 90 min of dialysis without scopolamine. The microdialysate samples were then analyzed as follows. ACh level was measured by HPLC-ECD. Glucose metabolites (glucose, lactate, pyruvate) were measured by a CMA-600 microanalyzer. An alternative energy metabolite (beta-hydroxybutyrate/BHB) was measured by GC-MS. Choline and glycerol as membrane breakdown markers were also measured by HPLC-ECD and CMA-600 microanalyzer, respectively. Markers of oxidative stress (isoprostanes) were measured using a commercially available ELISA kit.
...
Die Superfamilie der nukleären Rezeptoren umfasst 48 ligandenabhänige Transkriptionsfaktoren, die durch Veränderungen in der Genexpression unterschiedlichste (patho-)physiologische Vorgänge wie Metabolismus, Entzündungen und Zelldifferenzierung beeinflussen.
Für die Vertreter der Retinoid X Rezeptoren (RXRs) und Peroxisomen Proliferator-aktivierten Rezeptoren (PPARs) wurden in den letzten Jahren vielversprechende Effekte auf neurodegenerative Erkrankungen berichtet. Beide Rezeptorklassen beeinflussen u.a. Bildung, Transport und Abbau des neurotoxischen Amyloid-β, das als eine der Ursachen für die Entstehung einer Alzheimer Demenz (AD) vermutet wird. Außerdem gibt es Hinweise darauf, dass durch gezielte Modulation der RXRs (besonders RXRγ) eine Remyelinisierung auto-immun demyelinisierter Neurone und damit eine regenerative Therapie für die Multiple Sklerose (MS) möglich sein könnte. Die aktuell zur Verfügung stehenden Liganden der RXRs besitzen unzureichende Subtypenselektivität und meist unvorteilhafte physikochemische Eigenschaften, die der weiteren Erforschung im Wege stehen. Um diese Hindernisse zu überwinden, sollten im Rahmen dieser Arbeit neuartige RXR-Agonisten synthetisiert und umfassend charakterisiert werden.
Ein kürzlich publizierter RXR-Agonist besitzt eine ungewöhnlich lineare Biphenylgrundstruktur und offenbart ein attraktives Aktivitätsprofil: Während alle drei RXR-Subtypen mit einem ähnlichen EC50-Wert (RXRα/β/γ = 12/12/14 µM) adressiert werden, führt die Bindung an RXRα nur zu einer minimalen Aktivierung (max. 5-fache Aktivierung im Vergleich zur Grundaktivität), während RXRβ und γ deutlich stärker aktiviert werden (60-70-fache Aktivierung). Da für diesen Chemotyp bislang noch keine systematischen Studien vorlagen, wurden seine Struktur-Wirkungs-Beziehungen (SAR) erforscht. Durch Synthese und in vitro Charakterisierung von 24 Derivaten konnten sowohl selektivitäts- als auch potenzfördernde Strukturmerkmale identifiziert werden, die sich auch kombinieren ließen. Es wurden ein RXRβ-selektives Derivat, mehrere RXRα/β-präferierende Analoga und ein potentes Derivat mit annähernd 100-fach gesteigerter Potenz ((EC50(RXRα/β/γ) = 0,08/0,15/0,22 µM) erhalten. Im Zuge der Charakterisierung wurden außerdem strukturelle Variationen identifiziert, die eine Umgehung des LXR/RXR-Heterodimers ermöglichen könnten. Zusätzlich gelang die Kristallisation der Ligandbindedomäne (LBD) von RXRα im Komplex mit dem potentesten Vertreter der Serie und offenbarte Potential für weitere Optimierungen, u.a. der Möglichkeit eine kovalente Bindung mit Cys432 zu etablieren und damit eine weitere Potenzsteigerung zu erreichen.
Neben der mangelnden Subtypenpräferenz behindern auch die ungünstigen physikochemischen Eigenschaften von RXR-Liganden die weitere Entwicklung von RXR-basierten Therapieoptionen. Deshalb sollte eine neue Leitstruktur mit überlegenen physikochemischen Eigenschaften identifiziert und durch systematische SAR-Untersuchungen weiterentwickelt werden. Für den experimentellen Wirkstoff Wy14,643, einem dualen Agonisten an PPARα und γ, wurden im Laufe der letzten vier Jahrzehnte wiederholt Effekte patentiert, die sich mit dem bislang bekannten Aktivitätsprofil nicht erklären ließen. Er zeigte u.a. in einem Tiermodell der MS einen immunmodulierenden Effekt und reduzierte in vitro die Bildung von Amyloid-β.Im Rahmen dieser Arbeit konnte Wy14,643 als potenter RXR-Agonist (EC50 (PPARα/γ/δ) = 36/54/- µM¸ EC50(RXRα/β/γ) = 9,1/13/31 µM) mit überlegenen physikochemischen Eigenschaften (z.B. Löslichkeit in Wasser = 48,6 mg/L) identifiziert und dadurch dessen Wirkungen erklärt werden.
Wy14,643 wurde als Startpunkt einer systematischen Untersuchung der Ligand-Rezeptor-Interaktionen sowohl an den PPARs und den RXRs ausgewählt. Dabei wurden ein potenter selektiver PPAR-Agonist und ein potenter und ausgeglichener panRXR/panPPAR-Agonist erhalten. Der panRXR/panPPAR-Agonist konnte im Komplex mit der LBD von PPARγ kristallisiert werden, wo der Ligand gleich doppelt gebunden vorliegt. Eines der Moleküle bindet in einer alternativen Bindungstasche. Diese Erkenntnis könnte die Grundlage für die Entwicklung einer neuen Klasse von PPARγ-Modulatoren legen.
Durch Kombination des erlangten SAR-Wissens wurde ein selektiver RXR-Agonist (EC50 (PPARα/γ/δ) = -/-/- µM¸ EC50(RXRα/β/γ) = 0,09/0,14/0,36 µM) mit annähernd 100-fach gesteigerter Potenz synthetisiert, der die günstigen physikochemischen Eigenschaften der Leitstruktur erhalten konnte (Löslichkeit in Wasser = 14,3 mg/L). Mit diesem Profil ist es gelungen einen RXR-Agonisten zu kreieren, der dem bisherigen Goldstandard Bexaroten bei vergleichbarer Potenz in physikochemischen Eigenschaften überlegen ist.
Die Kristallstruktur des RXR-selektiven Derivats im Komplex mit der LBD von RXRα zeigte einen orthosterischen Bindemodus und legte weitere Optimierungen nahe: So gibt es sowohl ungenutzten Raum, der zukünftig durch strukturbasierte Substitutionen adressiert werden könnte, als auch die Möglichkeit eine kovalente Bindung zum Rezeptor (Cys432) zu initiieren. Durch diese Arbeit konnten nicht nur eine Reihe von potenten RXR-Liganden identifiziert werden, durch die Entwicklung eines Sets aus PPAR-selektiven, dual PPAR/RXR-aktiven und RXR-selektiven Derivaten gleichen Chemotyps, entstand auch ein nützliches pharmakologisches Werkzeug zur weiteren Entschlüsselung des Zusammenspiels dieser Rezeptoren.
Die systematische Entwicklung einer Leitstruktur, wie sie in den vorangegangenen Projekten praktiziert wurde, kann je nach deren Komplexität eine kostenintensive und synthetisch anspruchsvolle Aufgabe darstellen. Im Rahmen dieser Arbeit wurde eine computergestützte Optimierung einer Leitstruktur als Teil einer selektiven Optimierung von Nebenaktivitäten (SOSA) etabliert, um den präparativen Aufwand der Strukturoptimierung zu reduzieren. Als Modellsubstanz wurde das Fettsäuremimetikum Cinalukast ausgewählt, das einen potenten Cysteinylleukotrienrezeptor 1 (CysLT1R)-Antagonisten darstellt, für den eine schwache Aktivität an PPARα entdeckt wurde. Ein automatisierter Arbeitsablauf testete eine virtuelle Bibliothek von annähernd 8000 Cinalukastanaloga auf ihre PPARα-Aktivität und die Derivate mit der besten vorhergesagten PPARα-Aktivität wurden durch maschinelles Lernen nach ihrem CysLT1R-Antagonismus klassifiziert. Die Synthese und Charakterisierung eines virtuell bevorzugten Derivats zeigte selektiven PPARα-Agonismus und konnte so den computergestützten Arbeitsablauf als wertvolles Instrument zur Optimierung von Fettsäuremimetika bestätigten.
Die vorliegende Arbeit hat bedeutende Fortschritte bei der Entwicklung von zwei neuen Chemotypen als RXR-Liganden erreicht. Die Klasse der Biphenyl-Analoga kann als Ausgangspunkt für eine weitere Entwicklung von subtypenselektiven RXR-Agonisten dienen und könnte gleichzeitig die gezielte Umgehung einzelner Heterodimere ermöglichen. Das Set aus drei Derivaten von Wy14,643 mit identischem Chemotyp, aber drastisch unterschiedlichen Aktivitätsprofilen an den PPARs und RXRs ermöglicht eine intensive pharmakologische Untersuchung der beiden Rezeptorfamilien und deren Zusammenspiel. Außerdem entstand aus dieser Klasse einer der zurzeit fortschrittlichsten RXR-Agonisten. Zukünftig kann außerdem der im Zuge der Arbeit etablierte computergestützte Arbeitsablauf die Optimierung von Fettsäuremimetika deutlich beschleunigen.
Redox homeostasis must be kept in balance for an intact redox signaling, which is necessary to control neuronal pathways such as growth cone pathfinding, synaptic plasticity and transmission (Oswald, Garnham, Sweeney, & Landgraf, 2018).
Nucleoredoxin (NXN) is an oxidoreductase and thioredoxin-like protein holding two conserved cysteine residues in its structure (Funato & Miki, 2007), which are essential for its redox-regulating functionality. The function of NXN in neurons is still less well studied. But the expression of NXN in neurons, which was confirmed through analyzing adult NXN-LacZ reporter mice, suggested a dominant functional role in neuronal pathways. Initial experiments revealed calcium-calmodulin-dependent kinase 2 a (Camk2a) as a potential interaction partner through a Yeast-2-Hybrid screen (not shown) which is the major protein to induce synaptic plasticity during neuronal activity. Therefore, neuronal expression of NXN and the potential interaction with Camk2a prompted us to investigate deeper into the neuronal pathway. The goal of this work was to confirm the interaction of Camk2a and NXN with further experiments and to characterize behavior of mice carrying a neuronal NXN deletion. To achieve a pan-neuronal depletion of NXN expression in our mouse model, we used the Cre/loxP system with a NestinCre driver. We did not achieve the expected complete deletion of NXN due to unknown compensatory mechanisms. Nevertheless, the partial deletion of NXN in our transgenic mouse model prevented embryonic lethality as occurring in complete NXN knockout mice (Funato et al., 2010). The interaction of Camk2a and NXN was confirmed through proximity ligation assay (PLA) and immunofluorescence staining of primary cortical neurons.
Investigations of the functional interaction revealed a lower redox-sensitivity of Camk2a activity in NXN-deficient brain samples. Additionally, the respiratory activity was significantly reduced in mitochondria of NXN deficient mouse brain pointing to possible dysfunctional mitochondria which is also observed in various neurodegenerative diseases, e.g.: Alzheimer, Parkinson, and Huntington disease (Norat et al., 2020). Unexpectedly, behavioral studies revealed only a subtle effect of the pan-neuronal NXN-deficiency. Significant differences between genotypes were found at the reduction of exploratory behavior and a reduced motivation for the voluntary wheel running in NesNXN-/- mice, which is normally seen as a joyful and rewarding activity. The observed behavior of NesNXN-/- mice potentially results from interaction mechanisms of NXN with Camk2a, as well as decreased oxidation of
Camk2a and further unidentified target proteins of NXN.
Conclusively, function of NXN was revealed as a non-essential redox modulator of Camk2a in neurons. The behavioral phenotype of NesNXN-/- mice is probably compensated through unknown mechanisms. Redox signaling of Camk2a in neurons is regulated through various components such as TXN or GSH, which can backup each other (Branco et al., 2017; Ren et al., 2017). NXN is an additional but not essential regulator.
Neuropathic pain, a form of chronic pain, is a steadily rising health problem due to health costs and increasing numbers of patients. Neuropathic pain conditions arise upon metabolic disorders, infections, chemotherapeutic treatment, trauma or nerve injury. Especially nerve injury induced neuropathic pain is characterized by spontaneous or ongoing pain due to neuroimmune interactions. Thereby, inflammatory mediators, released by the injured nerve, recruit to and activate immune cells at the site of injury. Those mediators further activate transient receptor potential vanilloid 1 (TRPV1), a known channel involved in pain perception, or bind to G-protein coupled receptors (GPCR) in peripheral nerve endings. The following activated second messenger signaling pathways lead to sensitization of TRPV1. One of those GPCRs is G2A.
The overall aim of this thesis was to investigate the role of G2A in nerve-injury induced neuropathic pain. For this, the common mouse model of nerve-injury induced neuropathic pain, the spared-nerve injury, was used. As measurements with dynamic plantar aesthesiometer showed, G2A-deficiency leads to reduced mechanical hypersensitivity. Upon analysis with FACS, ELISA and Luminex a reduced number of macrophages and neutrophils at the injured nerve, as well as less inflammatory mediators (TNFα, IL-6, VEGF) in G2A-deficient animals was observed. In dorsal root ganglia (DRGs) there was only a reduced number of macrophages and less IL-12 observed in G2A-deficient animals. Additionally, in wild-type mice, G2A agonist 9-HODE was elevated at the injured nerve, as a LC-MS/MS analysis showed.
To investigate the underlying pathways of G2A-9-HODE signaling, a proteom screen was performed. This screen revealed upregulation of multiple proteins involved in migration in wild-type macrophages. Additionally, Ca-Imaging and transwell migration assays showed that the G2A antagonist G2A11, had desensitizing effects on DRG neurons and inhibited macrophage migration.
Overall, the results suggest that loss of G2A has dual effects. On the one hand loss of G2A is antinociceptive. On the other hand, G2A-deficiency leads to reduced inflammation, suggesting G2A as promising target in treatment of neuropathic pain. Here, an antagonist had inhibitory effects on the migration and the sensitization.
An overexpression of the E3 ubiquitin ligase TRIM25 is implicated in several human cancers and frequently correlates with a poor prognosis and occurrence of therapy resistance in patients. Previous studies of our group have identified the mRNA encoding the pro-apoptotic caspase-2 as a direct target of the ubiquitous RNA binding protein human antigen R (HuR). The constitutive HuR binding observed in colon carcinoma cells negatively interferes with the translation of caspase-2 mainly through binding to the 5' untranslated region (UTR) of caspase-2 and thereby confers an increased survival of tumor cells. The main objective of this thesis was to unravel novel regulatory proteins critically involved in the control of caspase-2 translation and their impact on therapeutic drug resistance of human colon carcinoma cells. By employing RNA affinity chromatography in combination with mass-spectrometry, among several putative caspase-2 mRNA binding proteins, we have identified the tripartite motif-containing protein 25 (TRIM25) as novel caspase-2 translation regulatory protein in colon carcinoma cells. The constitutive TRIM25 binding to caspase-2 mRNA in two different human colorectal carcinoma cell lines was validated by ribonucleoprotein (RNP)-immunoprecipitation (RIP)-RT-PCR assay and by means of biotin-labeled RNA-pull-down assay. Since caspase-2 is a caspase which is particularly involved in the DNA-damage-induced apoptosis, I tested the functional relevance of negative caspase-2 regulation by TRIM25 for chemotherapeutic drug-induced cell death of different adenocarcinoma cells by RNA interference (RNAi)- mediated loss-of-function and gain-of-function approaches. In the first part of the thesis, I could demonstrate that transient silencing of TRIM25 caused a significant increase in caspase-2 protein levels without affecting the amount of corresponding mRNAs. Mechanistically, the TRIM25 silencing-triggered increase in caspase-2 was totally impaired by cycloheximide, indicating that the stimulatory effects on caspase-2 levels depend on protein synthesis. This finding was corroborated by RNP/polysomal fractionation, which revealed that the transient knockdown of TRIM25 caused a significant redistribution of caspase-2 transcripts from the fraction of RNP particles to that from translationally active polyribosomes.
The second part of my thesis aimed at the elucidation of the functional consequences of the negative caspase-2 regulation by TRIM25 for enhanced tumor cell survival. Thereby, I found that the siRNA-mediated knockdown of TRIM25 caused a significant increase in the chemotherapeutic drug-induced cleavage of caspase-3 and to elevations in cytoplasmic cytochrome c levels implicating that TRIM25 depletion did mainly affect the intrinsic apoptotic pathway. Concordantly, the ectopic expression of TRIM25 caused a reduction in caspase-2 protein levels, concomitant with an attenuated sensitivity of tumor cells to doxorubicin.
To test the functional impact of caspase-2 in the TRIM25 depletion-dependent sensitization to drug-induced apoptosis, I employed a siRNA-mediated knockdown of caspase-2. Interestingly, the strong induction of caspase-3 and -7 cleavage after doxorubicin treatment was fully impaired after the additional knockdown of caspase-2, indicating the sensitizing effects by TRIM25 knockdown depend on caspase-2.
Data from this thesis identified the TRIM25 as a novel RNA-binding protein of caspase-2 mRNA, which negatively interferes with the translation of caspase-2 and which functionally contributes to chemotherapeutic drug resistance of colon carcinoma cells. Interfering with the negative TRIM25-caspase-2 axis may represent a promising therapeutic avenue for sensitizing colorectal cancers to conventional anti-tumor therapies.
Viele Studien konnten nachweisen, dass die Produktion von cGMP eine entscheidende Funktion im nozizeptiven System einnimmt. Hierbei wurde vor allem die cGMP-Produktion über lösliche Guanylatzyklasen untersucht. Welche Rolle die partikulären Guanlyatzyklasen bei der Entstehung von Schmerzen haben ist weitgehend ungeklärt. Die vorliegende Arbeit zeigte, dass die partikuläre Guanylatzyklase NPR2 stark in DRG-Neuronen exprimiert wird und dort mit cGKI-alpha sowie CRP4 colokalisiert ist. Aktiviert wird NPR2 über den Peptidliganden CNP. Hervorzuheben ist, dass CNP nicht in primär afferenten Neuronen, dafür jedoch vermehrt im Dorsalhorn des Rückenmarks gebildet wird. Tierexperimentelle Untersuchungen zeigten, dass SNS-Npr2-/--Mäuse ein verringertes Schmerzverhalten bei thermischer Stimulation aufwiesen. Während sie im Capsaicin-Test keinen Phänotyp zeigten, wiesen sie in Phase II des Formalin-Modells ein signifikant reduziertes Leckverhalten auf. Diese Ergebnisse liefern Hinweise für eine Beteiligung des CNP/NPR2/cGKI Signalwegs an der Detektion von Hitzeschmerz und an der TRPA1-vermittelten Schmerzantwort. Dabei scheint NPR2 eine pronozizeptive Funktion zu besitzen. CRP4 als Zielprotein scheint hingegen eine antinozizeptive Wirkung zu haben. Zudem kann die Hypothese aufgestellt werden, dass CNP über einen retrograden Transport aus dem Rückenmark die Aktivierung von NPR2 auslösen könnte. Zusammengefasst zeigen die Daten dieser Arbeit, dass eine cGMP-abhängige Aktivierung durch NPR2 primär für die Detektion thermischer Reize zuständig ist, während die Literatur Hinweise darauf gibt, dass lösliche Guanylatzyklasen vor allem an inflammatorischen und neuropathischen Prozessen beteiligt sind. Daher scheinen partikuläre und lösliche Guanylatzyklasen unterschiedliche Eigenschaften im nozizeptiven System zu besitzen.
Mast cells are long-lived tissue-resident leukocytes, located most abundantly in the skin and mucosal surfaces. They belong to the first line of defence of the body, protecting against invading pathogens, toxins and allergens. Their secretory granules are densely packed with a plethora of mediators, which can be released immediately upon activation of the cell. Next to their role in IgE-mediated allergic diseases and in promoting inflammation, potential anti-inflammatory functions have been assigned to mast cells, depending on the biological setting. The aim of this thesis was to contribute to a better understanding of the role of mast cells during the resolution of a local inflammation. Therefore, in a first of step a suitable model of a local inflammation had to be identified. Since comparison of the two Toll-like receptor (TLR)-agonists zymosan and lipopolysaccharide (LPS), which are most commonly used to locally induce inflammation, revealed a systemic response after LPS-injection and a local inflammation after zymosan-injection, the TLR2 agonist zymosan was chosen for the subsequent experiments. Multi epitope ligand cartography (MELC) combined with statistical neighbourhood analysis showed that mast cells are located in an anti-inflammatory microenvironment next to M2 macrophages during resolution of inflammation, while neutrophils and M1 macrophages are located in the zymosan-filled core of the inflammation. Furthermore, infiltrating neutrophils during peak inflammation and an increasing population of macrophages phagocytosing neutrophils during resolution of inflammation could be observed. MELC as well as flow cytometry analysis of mast cell-deficient mice revealed a decreased phagocytosing activity of macrophages in the absence of mast cells. As an untargeted approach to identify mast cell-derived mediators induced by zymosan, mRNA sequencing of bone marrow-derived mast cells (BMMCs) was performed. Gene ontology term analysis of the sequencing data revealed the induction of the type I interferon (IFN) pathway as the dominant response. Contradicting previous studies, I could validate the production of IFN-β by mast cells in response to zymosan and LPS in vitro. Furthermore IFN-β expression by mast cells was also detected in vivo. In accordance with previous studies regarding other cell types the release of IFN-β by mast cells depends on endosomal signaling. The potential of IFN-β to enhance the phagocytosing activity of macrophages has been demonstrated recently. Besides IFN-β, various other mediators with reported enhancing effects on macrophage phagocytosis were also induced by zymosan in BMMCs, including Interleukin (IL)-1β, IL-4, IL-13, and Prostaglandin (PG) E2. Thus, either one of these mediators alone or a combination of them could promote macrophage phagocytosis.
In conclusion, I herein present mast cells as a novel source for IFN-β induced by non-viral TLR ligands and demonstrate their enhancing effect on macrophage phagocytosis, thereby contributing to the resolution of inflammation.
Hintergrund: Die Komplexität einer medikamentösen Behandlung steigt mit der Anzahl der Medikamente, der Einzeldosen und der Darreichungsformen und bedroht dadurch die Adhärenz der Patienten. Patienten mit Multimorbidität benötigen oft flexible, individualisierte Behandlungsschemata. Häufige Medikationsänderungen im Verlauf der Behandlung können jedoch die Komplexität einer Therapie weiter erhöhen.
Ziel: Das Ziel der vorliegenden Arbeit war es daher, Medikationsveränderungen bei älteren Patienten mit Multimorbidität und Multimedikation in der hausärztlichen Praxis zu beschreiben und deren Abhängigkeit von soziodemographischen und weiteren Merkmalen zu untersuchen. Zudem sollten die Medikationsveränderungen in den Daten der cluster-randomisierten kontrollierten PRIMUM-Studie (Priorisierung der MUltimedication in Multimorbidity) analysiert werden, um Effekte der komplexen PRIMUM-Intervention zu untersuchen und damit einen Beitrag zur Prozessevaluation zu leisten.
Methoden: In der vorliegenden Arbeit wurden Daten der PRIMUM-Studie, die in 72 Allgemeinpraxen durchgeführt wurde, retrospektiv analysiert. Dazu wurde ein Algorithmus entwickelt, der die Wirkstoffe, die Wirkstärke, die Dosierung und die Darreichungsform zur Beurteilung von Änderungen an der von Ärzten berichteten Medikationsdaten während zweier Intervalle (Basiswert bis sechs Monate: Δ1; sechs bis neun Monate: Δ2) untersucht. Diese Veränderungen wurden auf Verordnungs- und Patientenebene deskriptiv sowie auf die Assoziation zu soziodemographischen und Versorgungsmerkmalen uni- und multivariat analysiert und auf Interventionswirkungen überprüft.
Ergebnisse: Von 502 Patienten (im Durchschnitt 72 Jahre, 52% weiblich) beendeten 464 die Studie. Medikationsveränderungen traten bei 98,6% der Patienten auf. Die maximale Anzahl an Medikationsänderungen pro Patient betrug 21 in Δ1 und 20 in Δ2. Die Gesamtzahl der Medikamente pro Patient blieb dabei weitgehend konstant und betrug im Median zu allen drei Messzeitpunkten 8 (IQR an T0 und IQR an T1: 6-9 und IQR an T2: 6-10). Änderungen bezogen auf den Wirkstoff während Δ1 und Δ2 traten bei 414 (82,5%) und 338 (67,3%) Patienten auf, Dosierungsänderungen bei 372 (74,1%) und 296 (59,2%) und in der Wirkstärke bei 158 (31,5%) bzw. 138 (27,5%). Die Darreichungsform wurde bei 79 (16%) der Patienten sowohl in Δ1 als auch in Δ2 geändert. Simvastatin, Ramipril, Metformin und Aspirin waren am häufigsten von Veränderungen betroffen. Am häufigsten verordnet waren ASS, Metoprolol und Bisoprolol sowie Simvastatin. Medikationsänderungen traten häufiger nach vorhergehenden Aufenthalten im Krankenhaus auf und Dosisreduktion war bei männlichen Patienten häufiger zu verzeichnen. In der Interventionsgruppe waren Medikationsänderungen um 19% wahrscheinlicher. Insbesondere waren Dosisreduktionen und das Ansetzen von neuen Medikamenten in der Interventionsgruppe signifikant häufiger.
Schlussfolgerungen: Bei älteren Patienten mit Multimedikation und Multimorbidität wurden die Therapiepläne häufig geändert. Auf Verordnungsebene ist dies hauptsächlich auf Absetzen und Dosisanpassungen zurückzuführen, gefolgt von Ansetzen und Wiederansetzen von Medikamenten. Dies kann die (longitudinale) Komplexität der Medikation für Patienten erhöhen und ggf. nachteilige Folgen für Therapieadhärenz und Arzneimitteltherapiesicherheit haben. Zudem wird deutlich, dass die medikamentöse Verordnungsqualität in querschnittlichen Erhebungen nicht zuverlässig beurteilt werden kann. In der PRIMUM-Studie wurden häufiger Änderungen in der Interventions- gegenüber der Kontrollgruppe vorgenommen - hauptsächlich das Ansetzen neuer Medikamente und Dosisreduktion. Damit konnten Effekte der komplexen Intervention gezeigt werden, die im Einklang mit den Zielen der Intervention zur Optimierung von Multimedikation steht.
Während hohe Spiegel von reaktiven Sauerstoffspezies (reactive oxygen species, ROS) in Form von oxidativem Stress schädliche Auswirkungen auf den Körper haben können, zeigen aktuelle Forschungsarbeiten, dass Redox-Modifikationen an Thiolresten von Proteinen reversible Signalprozesse steuern können. Dieses Prinzip der posttranslationalen Proteinmodifikation durch Redox-Signale scheint auch bei der Verarbeitung und Chronifizierung von Schmerzen von Bedeutung zu sein. Über die potenziellen Redox-modulierten Zielstrukturen im nozizeptiven System ist jedoch bisher nur wenig bekannt.
Ein potentielles Redoxtarget im nozizeptiven System ist das kleine EF-Hand Ca2+-bindende Protein S100A4. Wie die anderen Familienmitglieder der S100-Proteinfamilie enthält S100A4 Cysteinreste, die in der Lage sind, redoxabhängig modifiziert zu werden. Studien an menschlichen Biopsien nach Gehirnverletzungen und an Mäusen in Verletzungsmodellen konnten zeigen, dass S100A4 neuroprotektiv wirkt. Darüber hinaus kann S100A4 sezerniert werden und vermittelt extrazellulär insbesondere regulatorische Funktionen innerhalb der Angiogenese, bei der Zellmigration sowie bei zellulären Differenzierungsprozessen. Die Funktionen von S100A4 im nozizeptiven System sind jedoch weitgehend unbekannt. In Vorarbeiten zu diesem Projekt wurde in einem Proteom-Screen beobachtet, dass S100A4 nach einer peripheren Nervenverletzung redoxabhängig im verletzten Nervengewebe hochreguliert wird. Darauf basierend wurde im Rahmen dieser Arbeit die Lokalisation von S100A4 innerhalb des nozizeptiven Systems sowie die funktionelle Bedeutung nach peripherer Nervenverletzung genauer untersucht.
Anhand von Immunfluoreszenzaufnahmen konnte gezeigt werden, dass S100A4 basal in Subpopulationen Peripherin- und NF200-positiver sensorischer Neurone lokalisiert ist. Interessanterweise führt eine Nervenverletzung nicht nur zu einer deutlichen Steigerung der S100A4-Expression im Bereich der Verletzungsstelle, sondern auch zu einer Änderung des neuronalen Verteilungsmusters. Die funktionelle Bedeutung von S100A4 für die Verarbeitung von Schmerzen wurde anhand von Verhaltenstests an Mäusen näher charakterisiert. Dafür wurden gewebsspezifische S100A4 Knockout Mäuse (Adv-S100A4-/-) und globale S100A4 Knockout Mäuse (S100A4-/-) generiert. In Modellen der akuten Nozizeption zeigten sowohl Adv-S100A4-/- als auch S100A4-/- Mäuse eine normale Reaktion auf thermische und mechanische Stimuli. Im „Spared Nerve Injury“ (SNI) Modell für periphere Neuropathien zeigten die S100A4-/- Mäuse eine im Vergleich zu wildtypischen (WT) Mäusen signifikant reduzierte mechanische Hyperalgesie, während bei den gewebsspezifischen Adv-S100A4-/- Mäusen kein verändertes Schmerzverhalten beobachtet werden konnte. Im „Crush Injury“ Modell für periphere Neuropathien war die mechanische Hyperalgesie der S100A4-/- Mäuse im Vergleich zu WT Tieren jedoch nicht verändert. Zusätzlich zur mechanischen Hyperalgesie wurden auch weitere Methoden der Quantifizierung des Schmerzverhaltens (Sciatic Functional Index, Brush Test und Wühlverhalten) etabliert. Allerdings war auch hier das Verhalten der S100A4-/- Mäuse mit dem der WT Mäuse vergleichbar. Darüber hinaus war das durch Applikation eines ROS-Donors induzierte nozizeptive Verhalten von S100A4-/- und WT Mäusen ähnlich. Man kann daher schlussfolgern, dass nach einer peripheren Nervenverletzung die S100A4-Expression insbesondere im Bereich der Verletzungsstelle hochreguliert wird. Dem gegenüber scheint S100A4 jedoch für die Schmerzverarbeitung funktionell nur von untergeordneter Bedeutung zu sein.
Ein weiteres potentielles Redoxtarget im nozizeptiven System ist die lösliche Epoxidhydrolase (soluble epoxide hydrolase, sEH). Die funktionelle Bedeutung von sEH für die Schmerzverarbeitung wurde bereits in früheren Studien belegt, da eine Behandlung mit sEH-Inhibitoren bei Ratten zu einer reduzierten Hypersensitivität in inflammatorischen und neuropathischen Schmerzmodellen führte. Während die analgetische Wirkung von sEH-Inhibitoren bereits gut bekannt ist, wurde eine redoxabhängige Modulation der sEH-Aktivität im nozizeptiven System in bisherigen Forschungsarbeiten kaum untersucht. Bestimmte Elektrophile können die sEH inhibieren, indem sie an das redoxaktive Cystein an Position 521 der sEH binden. Forschungsarbeiten konnten in diesem Zusammenhang bereits zeigen, dass die Cys521-vermittelte Inhibition von sEH durch das Prostaglandin 15d-PGJ2 oder 9-/10-Nitrooleonsäure (NO2-OA) im kardiovaskulären System zu einer Dilatation der Koronargefäße und einer Reduktion des Blutdrucks führt. Im Rahmen dieser Arbeit wurde untersucht, ob es durch eine redoxabhängige Hemmung der sEH-Funktion auch innerhalb des nozizeptiven Systems zu einer veränderten Schmerzreaktion bei Mäusen kommt. Um diese Fragestellung beantworten zu können, wurden sEH-Knockin (sEH-KI) Mäuse verwendet, deren redox-sensitives Cystein 521 durch ein Serin ersetzt wurde. Bei diesen Knockin-Mäusen können Elektrophile wie 15d-PGJ2 oder 9-/10-NO2-OA keine Enzyminhibition erzeugen. Die Charakterisierung der sEH-KI Mäuse zeigte sowohl in akuten als auch inflammatorischen Schmerzmodellen (Formalin Test und Zymosan-Pfotenentzündungsmodell) keinen Zusammenhang der Redoxmodifikation mit dem Schmerzverhalten der Mäuse. Auch in neuropathischen und viszeralen Schmerzmodellen (SNI-Modell und Modell der Zymosan-induzierten Peritonitis) konnte kein verändertes Schmerzverhalten der sEH-KI-Mäuse im Vergleich zu Kontrolltieren beobachtet werden. Darüber hinaus war das nozizpetive Verhalten nach Applikation von 15d-PGJ2 bei sEH-KI und WT Mäusen vergleichbar. Die redoxabhängige Modulation der sEH an Cystein 521 scheint demnach, im Gegensatz zum kardiovaskulären System, im nozizeptiven System keine Rolle zu spielen.