Refine
Year of publication
Document Type
- Doctoral Thesis (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- C. elegans (4)
- optogenetics (2)
- AVA (1)
- Aufreinigung (1)
- Biochemistry (1)
- Biophysics (1)
- Caenorhabditis elegans (1)
- Calcium (1)
- Compliance (1)
- Compliance-Beobachtung (1)
Institute
- Biochemie, Chemie und Pharmazie (11)
- Biochemie und Chemie (7)
- Biowissenschaften (2)
- MPI für Biophysik (1)
- Medizin (1)
Um die Bedeutung bestimmter Neurone oder Klassen von Neuronen innerhalb von Nervensystemen zu untersuchen, sind Methoden, die eine Manipulation der Aktivität der Neurone in vivo erlauben, besonders nützlich. Die bisher zur Verfügung stehenden Methoden haben jedoch Einschränkungen in beispielsweise der Zelltypspezifität, der zeitlichen Präzision, der Reversibilität oder der Anwendbarkeit in frei beweglichen Tieren. Im Rahmen dieser Arbeit wurden optogenetische, d.h. auf der Expression lichtempfindlicher Proteine basierende Methoden entwickelt, um eine präzise Manipulation des Membranpotentials definierter Neurone durch Licht zu ermöglichen. Die Techniken wurden daraufhin zur Untersuchung z.B. der Neurotransmission sowie der Funktion kleiner Netzwerke im Nervensystem des Nematoden Caenorhabditis elegans verwendet. Die zelltypspezifische heterologe Expression des lichtgesteuerten Kationenkanals Channelrhodopsin-2 (ChR2) aus der Grünalge Chlamydomonas reinhardtii ermöglichte es, Muskel- oder Nervenzellen der Nematoden durch blaue Beleuchtung innerhalb weniger Millisekunden zu depolarisieren. Dadurch ließen sich spezifische Verhaltensweisen in frei beweglichen Tieren auslösen. Dieser Ansatz wird in Zukunft die Untersuchung der Bedeutung einzelner Neurone innerhalb ihrer Schaltkreise deutlich erleichtern. So konnte hier gezeigt werden, dass die Photostimulation des propriorezeptiven Neurons DVA eine signifikante Erhöhung der mittleren Körperbiegungswinkel während der sinusförmigen Fortbewegung der Tiere zur Folge hatte. Außerdem wurde versucht, die Anwendbarkeit von ChR2 durch die gezielte Manipulation der subzellulären Lokalisation mittels Fusion mit speziellen Peptiden oder Proteinen zu erhöhen. Des Weiteren wurde eine zur Verwendung von ChR2 analoge Methode zur Hemmung von Neuronen durch Licht entwickelt. Hierfür wurde die lichtgetriebene Cl--Pumpe Halorhodopsin aus Natronomonas pharaonis (NpHR) zelltypspezifisch in C. elegans exprimiert. Durch Photoaktivierung von NpHR mit gelbem Licht war es möglich, Muskelzellen und cholinerge Neurone zu hyperpolarisieren und somit in ihrer Aktivität zu hemmen. Dies führte in frei beweglichen Tieren zu einer augenblicklichen Paralyse verbunden mit einer drastischen Reduktion der Schwimmfrequenz und einer Erhöhung der Körperlänge. Die Aktionsspektren von ChR2 und NpHR sind unterschiedlich genug, um eine unabhängige Photoaktivierung der beiden Proteine mit blauem und gelbem Licht zu ermöglichen. Dadurch konnte die Aktivität von Muskelzellen und cholinergen Neuronen nach Koexpression der beiden Proteine bidirektional kontrolliert werden. Es wurden somit Methoden entwickelt, die in vivo eine zeitlich äußerst präzise Manipulation des Membranpotentials definierter Neurone mit Licht verschiedener Wellenlängen ermöglichen. Die Beobachtung der dadurch induzierten Verhaltensänderungen erlaubt es, zuverlässige Aussagen über die Bedeutung einer Nervenzelle für die Ausprägung eines Verhaltens zu treffen und wird die Erforschung der Nervensysteme von C. elegans und anderen Modellorganismen deutlich vereinfachen. Schließlich wurden in dieser Arbeit optogenetische Methoden zur Untersuchung der synaptischen Übertragung an neuromuskulären Synapsen (neuromuscular junctions, NMJs) von C. elegans entwickelt. Hierfür wurde ChR2 in GABAergen oder cholinergen Neuronen exprimiert, um eine lichtgesteuerte Freisetzung des inhibitorischen Neurotransmitters GABA bzw. des exzitatorischen Neurotransmitters Acetylcholin (ACh) an NMJs zu erreichen. Die Methode wurde OptIoN getauft, ein Akronym für „Optogenetic Investigation of Neurotransmission“, also „optogenetische Untersuchung der Neurotransmission“. Die GABA-Freisetzung hatte ähnlich wie die NpHR-vermittelte Photoinhibition von Muskelzellen eine Reduktion der Schwimmfrequenz und Erhöhung der Körperlänge zur Folge. Die Ausschüttung von ACh verursachte hingegen starke Muskelkontraktionen verbunden mit einer Reduktion der Körperlänge. Die Änderungen der Körperlänge waren bei Mutanten mit verschiedenen Neurotransmissionsdefekten signifikant unterschiedlich im Vergleich zum Wildtyp. Außerdem kam es während längerer Beleuchtungsphasen in Mutanten mit defektem Recycling der synaptischen Vesikel (SV) zu einer verstärkten Abnahme der lichtinduzierten Effekte. OptIoN ermöglicht es dadurch erstmals, die Mechanismen des SV-Recyclings in C. elegans Verhaltensexperimenten zu untersuchen. In elektrophysiologischen Messungen ließen sich durch kurze Lichtpulse wiederholt und mit hoher Frequenz Neurotransmitter-spezifische postsynaptische Ströme evozieren. Diese Ströme waren in Mutanten mit gestörter SVExozytose reduziert und gingen bei wiederholter Stimulation in Mutanten mit defektem SVRecycling schneller zurück. Die Verwendung von OptIoN erleichtert die elektrophysiologische Untersuchung neuronaler Defekte und stellt erstmals eine Möglichkeit dar, Vorgänge der neuronalen Plastizität in dem genetischen Modellsystem C. elegans zu untersuchen. Das Potential von OptIoN zeigte sich unter anderem auch in der Identifizierung eines neuen, über metabotrope GABA-Rezeptoruntereinheiten vermittelten Mechanismus zur heterosynaptischen Hemmung cholinerger Neurone.
In Nervensystemen werden zahlreiche Informationen wahrgenommen und verarbeitet um ein adäquates Verhalten hervorzurufen. Für die Untersuchung der funktionellen Zusammenhänge hierbei wurden verschiedene Methoden entwickelt, die eine gezielte Manipulation neuronaler Prozesse ermöglichen. Durch Analyse der resultierenden Effekte können dabei synaptische Proteine, einzelne Neuronen oder neuronale Netzwerke funktionell charakterisiert werden. Bisherige Ansätze verfügen jedoch nur über eine geringe zeitliche und räumliche Auflösung oder erlauben lediglich eine eingeschränkte Anwendung im frei beweglichen Tier.
Diese Nachteile können durch die heterologe Expression von lichtgesteuerten, mikrobiellen Rhodopsinen zur gezielten Manipulation des Membranpotentials umgangen werden. So induziert die Photoaktivierung des Kationenkanals Channelrhodopsin 2 (ChR2; (Nagel et al., Curr Biol 2005)) eine Depolarisation, während die Chloridpumpe Halorhodopsin (NpHR; (Zhang et al., Nature 2007)) für die Hyperpolarisation verwendet werden kann. Dabei ermöglichen die schnellen Kinetiken der Rhodopsine eine zeitlich präzise Steuerung des Membranpotentials. Durch Auswahl geeigneter Promotoren ist zudem oftmals eine zell spezifische Expression möglich. Dieser Ansatz wird daher allgemein als Optogenetik bezeichnet.
In der vorliegenden Arbeit wurden zunächst konventionelle Techniken genutzt, um die Funktion von zwei assoziierten Proteinen eines Acetylcholin Rezeptors in C. elegans zu untersuchen. Des Weiteren wurden verschiedene Methoden für den Fadenwurm entwickelt und angewendet, die die Vorteile optogenetischer Techniken für die funktionelle Charakterisierung synaptischer Proteine und neuronaler Netzwerke nutzbar machen. Hierbei erlaubt die Transparenz von C. elegans die optogenetische Stimulation im lebenden Organismus unter nicht invasiven Bedingungen. Weitere Vorteile von C. elegans als neurobiologischem Modellorganismus liegen in seiner einfachen Handhabung (Hope, 1999) und der stereotypen Entwicklung seines Nervensystems mit bekannten anatomischen Ausprägungen (Sulston and Horvitz, Dev Biol 1977; Varshney et al., PLoS Comput Biol 2011; White et al., Philos Trans R Soc Lond B Biol Sci 1986). Durch ihre Häufigkeit und die experimentelle Zugänglichkeit wird hierbei die neuromuskuläre Synapse oftmals zur Erforschung der synaptischen Reizweiterleitung genutzt (Von Stetina et al., Int Rev Neurobiol 2006). Durch pharmakologische (Lewis et al., Neuroscience 1980; McIntire et al., Nature 1993; Miller et al., Proc Natl Acad Sci U S A 1996; Richmond and Jorgensen, Nat Neurosci 1999) und elektrische Stimulation (Richmond and Jorgensen, Nat Neurosci 1999) können dabei Defekte der Transmission hervorgehoben werden, während Verhaltensexperimente oder elektrophysiologische Messungen der post synaptischen Ströme in Muskelzellen eine quantitative Analyse ermöglichen (Richmond and Jorgensen, Nat Neurosci 1999).
Diese Methoden wurden für die funktionelle Charakterisierung von NRA 2 und NRA 4 verwendet, die beide als akzessorische Proteine zusammen mit dem Levamisol sensitiven Acetylcholin Rezeptor der Körperwandmuskelzellen aufgereinigt wurden (Gottschalk et al., EMBO J 2005). Dabei konnte gezeigt werden, dass NRA 2 und NRA 4 im Endoplasmatischen Retikulum (ER) der Muskelzellen einen Komplex bilden, der die Sensitivität von beiden nikotinischen Acetylcholin Rezeptoren gegenüber verschiedenen cholinergen Agonisten verändert. In diesem Zusammenhang wurde auch nachgewiesen, dass die Oberflächenexpression einzelner Untereinheiten der beiden Rezeptoren durch NRA 2/4 beeinflusst wird. Diese Resultate legen die Vermutung nahe, dass beide Proteine die Zusammensetzung der Rezeptoren und somit ihre pharmakologischen Eigenschaften modulieren. Denkbar ist dabei eine regulatorische Funktion bei der Assemblierung verschiedener Untereinheiten zu einem funktionellen Rezeptor oder bei der Kontrolle des ER Austritts von Rezeptoren mit bestimmter Zusammensetzung. In dieser Hinsicht konnte jedoch keine Interaktion von NRA 2/4 mit der Notch Signalkaskade nachgewiesen werden, wie sie für die homologen Proteine nicalin und NOMO in Vertebraten gezeigt wurde (Haffner et al., J Biol Chem 2007; Haffner et al., EMBO J 2004).
Für die Untersuchung synaptischer Proteine durch optogenetische Techniken wurde ChR2(H134R) selektiv in cholinergen oder GABAergen Motorneuronen exprimiert, um die akute und lichtgesteuerte Freisetzung des jeweiligen Neurotransmitters zu ermöglichen. Die resultierende Stimulation bzw. Inhibition von Muskelzellen wurde hierbei durch elektrophysiologische Messungen der post synaptischen Ströme und durch Analyse von Kontraktionen respektive Relaxationen untersucht. Dabei wurde gezeigt, dass Störungen der synaptischen Reizweiterleitung die Ausprägung und Dynamik dieser lichtinduzierten Effekte beeinflussen und dadurch charakterisiert werden können. So zeigten beispielsweise Mutanten von Synaptojanin und Endophilin nachlassende Effekte bei anhaltender oder wiederholter Stimulation, was durch die gestörte Regeneration synaptischer Vesikel erklärt werden kann (Harris et al., J Cell Biol 2000; Schuske et al., Neuron 2003; Verstreken et al., Neuron 2003).
Die hohe Sensitivität dieser Methode wurde im Nachfolgenden dazu verwendet, die Inhibition cholinerger Motorneuronen durch den metabotropen GABAB Rezeptor zu untersuchen, der in C. elegans aus den beiden Untereinheiten GBB 1 und GBB 2 gebildet wird (Dittman and Kaplan, J Neurosci 2008; Vashlishan et al., Neuron 2008). Dabei konnte zunächst gezeigt werden, dass diese heterosynaptische Inhibition verschiedene lokomotorische Verhaltensweisen der Tiere beeinflusst. Für die mechanistische Untersuchung wurden anschließend cholinerge Motorneuronen durch ChR2(H134R) photoaktiviert, während resultierende Kontraktionseffekte in Abhängigkeit von GBB 1/2 analysiert wurden. Um hierbei die Funktion von GBB 1/2 durch erhöhte GABA Konzentrationen hervorzuheben, wurden zusätzlich GABAerge Motorneuronen optogenetisch stimuliert oder die Wiederaufnahme von GABA aus dem synaptischen Spalt durch Mutation des Membran ständigen GABA Transporters blockiert. So konnte gezeigt werden, dass GBB 1/2 eine akute Inhibition der cholinergen Motorneuronen bewirken, was vermutlich für die Regulation von Bewegungsabläufen eine wichtige Rolle spielt. Die geringe Dynamik der GBB 1/2 induzierten Effekte deutet allerdings darauf hin, dass die synaptische Aktivität durch den metabotropen Rezeptor kaum nachhaltig moduliert wird.
In nachfolgenden Versuchen wurde die optogenetische Stimulation von Motorneuronen außerdem mit der elektronenmikroskopischen Analyse der präsynaptischen Feinstruktur kombiniert. Dadurch konnte die Dynamik der Exozytose und Endozytose synaptischer Vesikel (SV) in Abhängigkeit von neuronaler Aktivität untersucht werden. So wurde gezeigt, dass synaptische Vesikel nahe der aktiven Zone während einer 30 sekündigen Hyperstimulation nahezu komplett aufgebraucht waren. Die vollständige Regeneration der SV Pools benötigte anschließend etwa 12 Sekunden und erfolgte zunächst in der Peripherie der aktiven Zone, was auf eine laterale Heranführung der Vesikel schließen lässt. Nach etwa 20 Sekunden erholte sich ebenfalls die Wirksamkeit der Stimulation von Muskelzellen durch die Motorneuronen, was durch elektrophysiologische Messungen der photo induzierten post synaptischen Ströme gezeigt wurde. Während der Hyperstimulation bildeten sich außerdem große vesikuläre Strukturen, die sich anschließend nach etwa acht Sekunden wieder aufgelöst hatten. In Analogie zu vergleichbaren Experimenten in anderen Organismen liegt die Vermutung nahe, dass es sich dabei um Zwischenprodukte der so genannten Bulk Phase Endozytose handelt, die das Clathrin abhängige Recycling von synaptischen Vesikeln bei starker neuronaler Aktivität ergänzt (Heuser and Reese, J Cell Biol 1973; Miller and Heuser, J Cell Biol 1984; Richards et al., Neuron 2000). Bemerkenswerterweise war der Abbau der vesikulären Strukturen in Synaptojanin und Endophilin defizienten Tieren stark verzögert. Denkbar ist, dass beide Proteine für die Synthese von synaptischen Vesikeln aus den vesikulären Zwischenprodukten der Bulk Phase Endozytose wichtig sind, analog zur ihrer Funktion bei der Clathrin abhängigen Endozytose an der Plasmamembran.
Durch die zielgerichtete Manipulation der Zellaktivität ermöglichen optogenetische Techniken außerdem die funktionelle Charakterisierung von Neuronen und neuronalen Netzwerken. Um die zelluläre Spezifität dieses Ansatzes zu erhöhen, wurde ein Tracking System entwickelt das die Position frei beweglicher Tiere in Echtzeit bestimmt und nachverfolgt. Dadurch konnte die Photoaktivierung optogenetischer Proteine auf definierte Bereiche der Fadenwürmer und somit auf ausgewählte Neuronen innerhalb der Expressionsmuster von verwendeten Promotoren eingeschränkt werden. Des Weiteren ermöglichte hierbei die Auswertung translatorischer Parameter die Analyse verschiedener lokomotorischer Merkmale wie Geschwindigkeit, Bewegungsbahn oder Ausprägung der Körperbiegungen. Dieses System wurde beispielhaft für die konzertierte Photoaktivierung durch ChR2(H134R) bzw. Photoinhibition durch MAC von zwei verschiedenen Gruppen von Neuronen angewendet, um die Integration mechanosensorischer Informationen durch Command Interneuronen zu untersuchen. In diesem Zusammenhang wurde zudem eine Rekombinase basierte Methode für optogenetische Proteine adaptiert, die die Transkription auf die zelluläre Schnittmenge von zwei verschiedenen Promotoren einschränkt und somit die Spezifität der Expression erhöht. Idealerweise kann dieser Ansatz außerdem mit der gezielten Photoaktivierung kombiniert werden, um die zelluläre Selektivität optogenetischer Anwendungen weiter zu verbessern.
Weiterhin ist die Anwendung optogenetischer Techniken bisher durch intrinsische Eigenschaften der verwendeten Rhodopsine auf die relativ kurzzeitige Manipulation des Membranpotentials von Zellen beschränkt. So benötigt ChR2 durch die schnelle Schließung seines offenen Kanals eine kontinuierliche Photoaktivierung, um eine andauernde Depolarisation hervorzurufen. Dies ist jedoch potentiell mit phototoxischen und – besonders bei C. elegans – phototaktischen Nebeneffekten verbunden. Deswegen wurden diverse Mutanten von ChR2 mit stark verlangsamter Inaktivierung (Berndt et al., Nat Neurosci 2009) für ihren Nutzen zur Langzeit Stimulation von erregbaren Zellen im Nematode getestet. Dabei wurde gezeigt, dass ChR2(C128S) durch einen kurzen Photostimulus mit vergleichsweise niedriger Intensität eine anhaltende Depolarisation über mehrere Minuten auslösen kann. Die wiederholte Stimulation in ASJ Neuronen ermöglichte zudem eine langzeitige Depolarisation über mehrere Tage, wodurch die genetisch veranlagte Entwicklung von Tieren manipuliert werden konnte. Durch gezielte Punktmutation konnten außerdem relevante Eigenschaften von ChR2(C128S) für die Langzeit Stimulation weiter verbessert werden.
Als weiteres optogenetisches Werkzeug wurde zudem die Photoaktivierbare Adenylatzyklase alpha (PACa) aus Euglena gracilis (Iseki et al., Nature 2002; Ntefidou et al., Plant Physiol 2003; Schroder-Lang et al., Nat Methods 2007) für die akute und lichtgetriebene Synthese des sekundären Botenstoffs cAMP in C. elegans etabliert. Die Photoaktivierung von PACa in cholinergen Motorneuronen verstärkte dabei die Neurotransmitterfreisetzung und induzierte hyperlokomotorische Phänotypen, vergleichbar zu Mutanten mit erhöhten cAMP Konzentrationen.
Zusammengefasst wurden diverse optogenetische Techniken für C. elegans entwickelt und optimiert, die die zellspezifische und nicht invasive Manipulation des Membranpotentials beziehungsweise die Synthese des sekundären Botenstoffs cAMP durch Licht im frei beweglichen Tier ermöglichen. Diese Methoden können zur gezielten Störung neuronaler Aktivität angewendet werden, um dadurch neurobiologische Fragestellungen im Fadenwurm zu untersuchen. Dies wurde beispielhaft für die Erforschung der synaptischen Reizweiterleitung und die funktionelle Analyse neuronaler Netzwerke demonstriert. Denkbar ist außerdem, diese für C. elegans etablierten Methoden vergleichbar in anderen Modellorganismen anzuwenden. So sind die Fruchtfliege ebenso wie der Zebrafisch Embryo bereits für optogenetische Techniken erprobt (Arrenberg et al., Proc Natl Acad Sci U S A 2009; Schroll et al., Curr Biol 2006). Für Säugetiere wie die Maus, die Ratte und den Makaken wurden zudem bereits Ansätze entwickelt, die die gezielte Photostimulation in lebenden und frei beweglichen Tieren ermöglichen (Han et al., Neuron 2009; Wentz et al., J Neural Eng 2011; Yizhar et al., Nature 2011; Zhang et al., Nat Rev Neurosci 2007).
Nikotinische Acetylcholin Rezeptoren (nAChR) sind ligandengesteuerte Ionenkanäle der pentameren Cys-Loop Familie, welche nach Bindung des Neurotransmitters Acetylcholin exzitatorische Signale in Muskeln und Neuronen vermitteln. Während die Funktion der Rezeptoren an der synaptischen Membran relativ gut untersucht wurde, gibt es bis heute kaum Erkenntnisse über die intrazellulären Prozesse und Proteine, die der selektiven Assemblierung von homologen Untereinheiten zu funktionalen Rezeptorpentameren zugrundeliegen.
Das C. elegans Genom kodiert für mehr als 29 nAChR Untereinheiten-Gene und besitzt damit die größte Anzahl bekannter Homologe innerhalb der untersuchten Arten. An der neuromuskulären Synapse (NMJ) des Nematoden sind zwei Typen von nAChR bekannt: der heteromere Levamisolrezeptor (L-AChR) und der homomere Nikotinrezeptor (N-AChR). Innerhalb dieser Arbeit wurde der funktionale Zusammenhang zwischen den nikotinischen Rezeptoren der NMJ von C. elegans und einem neuen rezeptorassoziierten ER-Proteinkomplex der Proteine NRA-2 und NRA-4 untersucht. Ihre vertebraten Homologe Nicalin und Nomo wurden zuerst im ER vom Zebrafisch im Zusammenhang mit dem TGF-β Signalweg beschrieben. Mutation der Proteine hat einen Agonist-spezifischen Einfluss auf die Aktivität von L-AChR und N-AChR. Die subzellulären Lokalisationsstudien demonstrierten, dass die beiden Proteine im ER von Muskelzellen wirken und dort mit Rezeptoruntereinheiten co-lokalisieren. Weiterhin ließ sich nachweisen, dass die relative Menge einzelner L-AChR-Untereinheiten an der synaptischen Oberfläche reduziert bzw. erhöht ist. Da die Rezeptoraktivität in Zusammenhang mit der Untereinheiten Komposition steht, wurde die Rolle von zusätzlichen Untereinheiten wie ACR-8 untersucht. Dies zeigte, dass die zusätzliche Mutation der Untereinheit acr-8 in nra-2 Mutanten den Einfluss der nra-2 Einzelmutation auf die Aktivität des L-AChR revertiert. Basierend auf diesen Ergebnissen lässt sich die Hypothese formulieren, dass der NRA-2/NRA-4 Komplex im ER von C. elegans als Kontrollinstanz fungiert welche dafür sorgt, dass nur die jeweils „korrekten“ Untereinheiten in funktionale Rezeptoren eingebaut bzw. andere vom Einbau in das Pentamer abgehalten werden. Durch Fehlen des aktiven Komplexes in Mutanten können nicht vorgesehene -Untereinheiten (z. B. ACR-8) in funktionale Pentamere mit veränderter Funktionalität eingebaut werden.
The biogenesis and function of photosynthetically active chloroplasts relies on the import of thousands of nuclear encoded proteins via the coordinated actions of two multiprotein translocon machineries in the outer and inner envelope membrane. Trafficking of preproteins across the soluble compartment of InterMembrane Space (IMS) is currently envisioned to be facilitated by an IMS complex composed of outer envelope proteins Toc64 and Toc12, a soluble IMS component, Tic22 and an IMS-localized Hsp70. Among them, currently Tic22 is the only component that stands undisputed in terms of its existence. Having two closely related homologs in A. thaliana, their biochemical and functional characterization was still lacking. A critical analysis of Tic22 knockout mutants displayed growth phenotype reminiscent of ppi1, the mutant of Toc33. However, both the genes have similar expression patterns with no clear preference for photosynthetic or nonphotosynthetic tissues, which explained the absence of a detectable phenotype in single mutants. In addition, transgenic complementation study with either of the homolog affirmed the identical localization of both proteins in the IMS which characterizes the two homologs as functionally redundant. Based on the pale-yellow phenotype exhibited by the double mutant plants, an attempt to analyze the import capacity of a stromal substrate in the double mutant revealed threefold reduction when compared to wild-type acknowledging the essential role of Tic22 in the import mechanism. Initially, Tic22 was identified together with another protein, Tic20, which has been heavily discussed as a protein conducting channel in the inner membrane. Despite being characterized, in A. thaliana, two out of four homologs of Tic20 are differentially localized with one being additionally localized in mitochondria and the other, exclusively residing in the thylakoids.
According to in silico analysis, for all the Tic20 proteins, a four-helix transmembrane topology was predicted. Accordingly, its topology was mapped by employing the recently established selfassembling GFP-based in vivo experiments. Astonishingly, the expression of one of the inner envelope localized Tic20 homolog enforces inner membrane proliferation affecting the shape and organization of the membrane. Therefore this study focuses on analyzing the effects of high envelope protein concentrations on membrane structures, which together with the existing results, an imbalance in the lipid to protein ratio and a possible role of signaling pathway regulating membrane biogenesis is discussed.
Habituation ist eine der einfachsten Formen des Gedächtnisses. Hierbei handelt es sich um die erlerne Gewöhnung an einen harmlosen Reiz. Dies bedeutet, dass nach mehrfacher wiederholter Repräsentation eines harmlosen Reizes die Reaktion darauf stetig abnimmt, bis sie völlig zum erliegen kommt. Je nach Trainingsprotokoll kann diese Gewöhnung bis zu mehren Tagen andauern. Habituation ist hoch konserviert und ein Verhaltensmuster, dass auch bei sehr einfachen vielzelligen Organismen zu finden ist und untersucht werden kann. Zur Untersuchung des Zusammenspiels innerhalb eines neuronalen Netzwerkes, welches für die Habituation des Rückzugsreflexes (Ausweichreaktion nach Berührung) verantwortlich ist wurde hier der Fadenwurm Caenohabditis elegans (C. elegans) als Modell Organismus verwendet. Aufgrund seines einfachen, nur 302 Zellen umfassenden, Nervensystems eignet sich C. elegans sehr gut für Grundlagenforschung in diesem Bereich. Das neuronale Netzwerk, das verantwortlich ist für den Rückzugsreflex ist in drei Ebenen organisiert. Wahrgenommen wird der Reiz von sensorischen Neuronen (ASH, ALM, AVM, PLM, PVM). Die Weiterleitung erfolgt über verschiedene Interneuronen (AVA, AVB, AD, AVE, PVC) hin zu den Motorneuronen, welche die Muskeln enervieren und somit die Reaktion auf den in erster Ebenen wahrgenommen Reiz auslösen.
Mit Hilfe von optogenetischen Werkzeugen wurde hier Untersucht welche Rolle einzelne Zellen innerhalb dieses Netzwerkes innehaben und an welcher Stelle innerhalb des Netzwerkes die kurzzeitige Habituation des Reizes, nach einem Einfachen Lernprotokoll stattfindet. Zuerst musste eine Möglichkeit gefunden werden die zur Verfügung stehenden optogenetischen Werkzeuge zellspezifisch zu exprimieren. In dieser Arbeit wurden hierfür Rekombinasesysteme verwendet, die es ermöglichten zur Expression eine Kombination aus 2 verschiedenen Promotoren zu verwenden. Beide Promotoren dürfen hierbei nur in einer Zelle, der Zielzelle, überlappen. Es konnte zellspezifische Expression des Kationenkanals Chanelrhodopsin 2 (ChR2) in den beiden Zellparen AVAL/R und ASHL/R (nimmt aversive Reize wahr) erreicht werden.
Zur Untersuchung der Habituation wurde zusätzlich noch ein Wurmstamm verwendet, welcher ChR2 unter dem mec-4 Promotor exprimiert. ChR2 ist hier in den Mechanorezeptorneuronen (MRN) ALM, AVM, PLM und PVM exprimiert. Die hier durchgeführten Experimente deuten darauf hin das den MRNs die Größte Rolle bei der Ausbildung einer Habituation zukommt. Es gibt jedoch auch Hinweise darauf, dass AVA zusätzlich eine Rolle spielt.
Im weiteren Verlauf der Arbeit wurde die Rolle von AVA genauer untersucht. AVA gilt als der Hauptsignalgeber für eine Rückwärtsbewegung (spontan und nach Reizempfang). Es konnte gezeigt werden dass eine Unterbrechung der ’Gap Junktionen’ zwischen AVA und PVC eine stärkere Reaktion zur Folge haben. AVA scheint also durch PVC inhibiert zu werden. Ebenfalls mit AVA direkt interagierende Neuronen sind AVD und AVE. Mit den hier zur Verfügung stehenden Mitteln konnte die genaue Modulation von AVA durch diese Zellen jedoch nicht gezeigt werden.
In dieser Arbeit konnte der Grundstein für eine funktionale Aufklärung des Nervensystems von C. elegans gelegt werden. Vor allem durch die Möglichkeit der zellspezifischen Expression kann es zukünftig gelingen das Zusammenspiel der einzelnen Nervenzellen und ihren Anteil an einem bestimmtem Verhalten zu Untersuchen.
The centerpiece of all neuronal processes is the synaptic transmission. It consists of a complex series of events. Two key elements are the binding of synaptic vesicles (SV) to the presynaptic membrane and the subsequent fusion of the two membranes. SV are neurotransmitter-filled membranous spheres with many integral and peripheral proteins. The synaptic SNARE complex consists of three interacting proteins, which energize and regulate the fusion of the SV membrane with the presynaptic membrane. Both processes are closely orchestrated to ensure a specific release of neurotransmitter. Already many experiments have been performed, such as genetic screens and proteome analysis of SV, to determine the functions of the various proteins involved. Nevertheless, the functions of the identified proteins are still not fully elucidated. The aim of this thesis was initially applying a tandem affinity purification (TAP) of SV to identify unknown interaction partner of SV and to determine their role. This was supposed to be performed in the model organism Caenorhabditis elegans (C. elegans). The underlying mechanisms are conserved throughout the phylogentic tree and identified interaction partners will help to understand the processes in the mammalian brain. Although there is no neuron-rich tissue in C. elegans as in other model organisms, the diverse genetic methods allows a rapid creation of modified organisms and a prompt determination of the function of identified proteins. The integral SV protein synaptogyrin has been fused to a TAP-tag. The TAP-tag consists of a ProteinA, a TEV protease cleavage site and a calmodulin binding peptide (CBP). Both affinity purification steps are performed sequentially and allow a highly specific native purification of proteins and their interaction partners. Due to technical difficulties the purification strategy was modified several times during the course of this thesis and then finally abandoned for a more promising project, the SNARE complex purification. In conclusion, one of the reasons was the necessary lack of detergent.
The amended aim of this thesis has been the TAP of solubilized SNARE complex to identify unknown interaction partner and to determine their role. In order to increase the specificity of the purification, in terms of formed complexes, the two SNARE subunits, synaptobrevin (SNB-1 in C. elegans) and syntaxin (UNC-64 in C. elegans), were separately fused to the different affinity tags. As the modifications of the proteins could impair their function and lead to false interaction partners, their functionality was tested. For this purpose, the corresponding fusion constructs were expressed in strains with mutated snb¬1 and unc-64. Non-functional synaptic proteins display an altered course of paralysis in an aldicarb assay. The fusion proteins which were expressed in their respective mutant strains displayed a near to wild-type (WT) behavior in contrast to the naive mutant strains. Multiple TAP demonstrated SNB-1 signals in Western blot analysis and complex sets of proteins in the final elution step in a silver staining of SDS-PAGEs. These samples were sent with negative control (WT purification) for MS analysis to various cooperation partners. 119 proteins were identified which appeared only in data sets with SNARE proteins and not in WT samples. If proteins were detected in ≥ 2 SNARE positive MS analysis and had known neural functions or homologies to neuronal proteins in other species, they were selected for further analysis. These candidates were knocked down by RNAi and tested for synaptic function in a following aldicarb assay. The treatment with their specific RNAi resulted for mca-3 in a strong resistance, while frm-2, snap-29, ekl-6, klb-8, mdh-2, pfk-2, piki-1 and vamp-8 resulted in hypersensitivity. The most responsive genes frm-2, snap-29 and mca-3 were examined, whether they displayed a co-localization together with synaptobrevin in promoter fusion constructs or functional fusion constructs. In fluorescence microscopy images only MCA-3::YFP demonstrated neuronal expression.
In order to substantiate the synaptic nature and functionality of the MCA-3::YFP a swimming assay was performed. Here, fusion construct expressing strains, which contained mutated mca-3, were compared with untreated mutant strains and WT strains according to their behavior. In this swimming assay a partial restoration of WT behavior was shown in the MCA-3::YFP expressing mutant strains. Based on these data, we discovered with MCA 3 a new interaction partner of the SNARE complex. MCA-3 is a plasma membrane Ca2+-ATPase and was initially seen only in their role in the endocytosis. Its new putative role is the reduction of Ca2+ concentration at the bound SNARE complex. Since an interaction of syntaxin with Ca2+ channels has been demonstrated, it would be comprehensible to reduce the local concentration of Ca2+ to a minimum by tethering Ca2+ transporters to the SNARE complex.
Diese Arbeit etabliert eine nicht-invasive, volloptische Methode zur in-vivo Beobachtung des Membranpotentials in erregbaren Zellen des Fadenwurms C. elegans, die als Ersatz oder komplementär zu invasiven, elektrophysiologischen Methoden verwendet werden kann.
An essential part of the animal survival strategy comprises the ability to control body movement and coordinate long-term navigational strategies, in order to maintain locomotion towards a nutrition source and stay in its vicinity. In the nematode Caenorhabditis elegans (C. elegans) this function is carried out by neuronal circuits, that vary their activity in response to diverse environmental condition.
This comprises different classes of neurons, acting together in a sensory, signaling and modulatory system to control body posture and induce behavioral responses. For this reason, one particular goal in the field of neuroscience research is to elucidate the mechanisms of how neuronal circuits integrate multiple sensory cues to navigate the environment. Aim of this study was to analyze the function of a neuronal network comprising the interneurons AVK, as well as the identification of signaling molecules, controlling body posture during food related locomotory behavior. This should be achieved by establishing optogenetic approaches, which provide a non inversive and temporally precise control of neuronal activity and drives the activation or silencing of individual neurons, to alter the neuronal basis of behavior. Animals exposed to food perform a dwelling-like behavior, characterized by a slowing of locomotion with a reduced crawling distance and an irregular movement, accompanied by a high frequency of pauses, reversals and directional changes. Upon food-removal, they initiate a local-search behavior with the same behavioral characteristics, but with a more pronounced sinusoidal movement. After a prolonged period of unsuccessful food finding, animals exhibited long runs with reduced pauses, reversals and turnings, increasing their maximal covered distance, indicated as dispersal behavior. Acute photoinhibition of AVK neurons, mediated by cell-specific expression of halorhodopsin (NpHR) caused the animals to perform a dwelling-like locomotory state with increased bending angles, as seen during local-search behavior. Thus, food-induced behavioral effects are mimicked by the optogenetic manipulation of AVK interneurons.
In this study, signaling molecules were ascertained by cell specific mRNA profiling of AVK neurons, mediating these behavioral responses. It was able to demonstrate, that flp-1, coding for a FMRFamidelike neuropeptide, is one of the genes with the highest distribution in AVK. In the absence of food, AVK neurons continuously release the FMRFamide-like neuropeptide FLP-1 to inhibit a subset of target motoneurons, leading the animals to maintain a low body curvature to promote dispersing behavior.
Conversely, if AVK was inhibited by NpHR or the presence of food, less FLP-1 was secreted to the body fluid, indicated by reduced intracellular fluorescence levels of mCherry-tagged FLP-1 proteins in the scavenger cells. The search of a FLP-1 receptor was successful by in vitro investigation on G protein-coupled receptors (GPCRs) and neuropeptide ligands, revealing NPR-6 to be activated by FLP-1 neuropeptides, but with a low potency. Expression pattern of the NPR-6 receptor indicated receptor localization in in the VC ventral cord and SMB head motoneurons, as well as in a subset of other neurons required for chemosensation and feeding. AVK interneurons are highly coupled to SMB head motoneurons, forming electrical synapses composed of the gap junction protein subunits UNC-7 and UNC-9. Elimination of SMB or gap junction genes using cell ablation and RNA interference, respectively, phenocopied effects of AVK inhibition on bending angles. Furthermore, this study was able to demonstrate that these neurons get inhibited during FLP-1 transmission to the NPR-6 receptor, which was required to mediate AVK effects on crawling behavior. Consequently, photoinhibition of AVK caused disinhibition of VC and SMB neurons, in order to enhance sinusoidal movement and to induce a local-search related locomotory behavior.
Thereby, FLP-1 neuropeptide transmission is the preferred used signaling pathway over direct gap junction coupling. Additional neuropeptides and receptors were identified to be essential downstream to AVK neurons to mediate effects on body curvature and locomotory behavior as well. The high-potency FRPR-7 receptor was shown to mediate FLP-1 peptide effects on undulatory motion during swimming in a liquid environment, rather than crawling locomotion on a solid surface. This result suggests that the receptor NPR-6 is required for FLP-1 peptide effects on bending and crawling locomotion, whereas conversely the receptor FRPR-7 is addressed by FLP-1 peptides to exclusively regulate swimming behavior. The FRPR-7 receptor is expressed in the AIM and NSM motoneurons, which are suggested to be the primary neuronal candidates mediating swimming behavior. Furthermore, this study provides evidence, that FRPR-7 acts in the DVC interneuron to control spontaneous reversal behavior, most probably by inhibitory FLP-1 signaling from the AVK neurons. Among other neuropeptides, the FMRFamide-like peptide FLP-26 binds with higher affinity to NPR-6 receptors than FLP-1 peptides. FLP-26 peptides are expressed in the SMB motoneurons, where they are able to further potentiate FLP-1 inhibitory effects by simultaneous binding to NPR-6.
...
Development and implementation of novel optogenetic tools in the nematode Caenorhabditis elegans
(2016)
Optogenetics, though still only a decade old field, has revolutionized research in neurobiology. It comprises of methods that allow control of neural activity by light in a minimally-invasive, spatio-temporally precise and genetically targeted manner. The optogenetic actuators or the genetically encoded light sensitive elements mediate light driven manipulation of membrane potential, intracellular signalling, neuronal network activity and behaviour (Fenno et al. 2011; Dugué et al. 2012). These techniques have been particularly useful for dissecting neural circuits and behaviour in the transparent and genetically amenable nematode model system Caenorhabditis elegans (Husson et al. 2013; Fang-yen et al. 2015).
In fact, C. elegans was the first living organism in which microbial rhodopsin based optogenetic tools (Channelrhodopsin-2 or ChR2, and Halorhodopsin or NpHR) were successfully implemented and bimodal 'remote' control of behaviour was achieved (Nagel et al. 2005; Zhang et al. 2007). Since then it has been a prominent model for the development and application of novel optogenetic tools and techniques, especially in the nervous system which comprises of 302 neurons and is organised in a hierarchical organization. The environmental stimuli are sensed by the sensory neurons, leading to the processing of information by the downstream interneurons, that relay to motor neurons which in-turn synapse onto muscles that drive the movement-based responses.
The microbial rhodopsins like ChR2 and NpHR mediate light driven depolarization and hyperpolarization, respectively and thereby activate or inhibit neural activity. However, they do not allow local control of membrane potential as they are expressed all over the plasma membrane of the cell rather than being restricted to specific domains, for example synaptic sites. Moreover, they completely over-ride the intrinsic activity of the cell, completely bypassing the signal transduction processes inside the cell. Thus, in order to study intracellular signalling and to answer questions pertaining to the endogenous role of receptors and channels in an in-vivo context, the optogenetic tool-kit needs to be expanded.
This thesis aimed at developing and implementing novel optogenetic tools in C. elegans that allow for sub-cellular signalling control as well as endogenous receptor control. These are: two light activated guanylyl cyclases (bPGC and BeCyclOp) to modify cyclic guanosine monophosphate (cGMP) mediated signalling in the sensory neurons, as well as attempts towards rendering endogenous C. elegans receptors - glutamate receptor (GLR-3/-6), acetylcholine receptor (ACR-16), glutamate gated chloride channel (GLC-1) light switchable and to understand their biological function in-vivo.
Organisms respond to sensory cues by activation of a primary receptor followed by relay of information downstream to effector targets by secondary signalling molecules. cGMP is a widely used 2nd messenger in cellular signaling, acting via protein kinase G or cyclic nucleotide gated (CNG) channels. In sensory neurons, cGMP allows for signal modulation and amplification, before depolarization. Chemo-, thermo-, and oxygen-sensation in C. elegans involve sensory neurons that use cGMP as the main 2nd messenger. For example, ASJ is the pheromone sensing neuron regulating larval development, AWC is the chemosensory neuron responding to volatile odours and BAG senses oxygen and carbon dioxide in the environment. In these neurons, cGMP acts downstream of the GPCRs and functions by activating cationic TAX-2/-4 CNG channels, thereby depolarising the sensory neuron. Manipulating cGMP levels is required to access signalling between sensation and sensory neuron depolarization, thereby provide insights into signal encoding. We achieve this by implementing two photo-activatable guanylyl cyclases - 1) a mutated version of Beggiatoa sp. bacterial light-activated adenylyl cyclase, with specificity for GTP (Ryu et al. 2010), termed BlgC or bPGC (Beggiatoa photoactivated guanylyl cyclase) and 2) guanylyl cyclase rhodopsin (Avelar et al. 2014) from Blastocladiella emersonii (BeCyclOp).
bPGC is a BLUF (blue light sensing using flavin) domain containing cyclase which uses FAD as the co-factor and catalyses the synthesis of cGMP from GTP upon activation by blue light. Prior to implementation in sensory neurons, a simpler heterologous system with co-expression of the TAX-2/-4 CNG channel in C. elegans body wall muscle (BWM) was used. The cGMP generated by the light activated cyclases activates the CNG channel leading to the muscle depolarization, thereby causing changes in body length which can be easily scored.
Molecular signaling networks, organized in discrete subsets of proteins in space and time, represent the major principle by which the cell achieves its functional specificity and homeostasis. Complex network organization is preserved by numerous mechanisms, including sequestration of proteins into specific subcellular compartments (eg. organelles), post-translational modifications and most importantly by balanced timing of their biosynthesis and turnover. Two routes of protein degradation, which are fundamentally quite different, are proteasomal and lysosomal-mediated destruction. The latter not only governs degradation of molecules that passed through endocytic or secretory process (trafficking from plasma membrane or Golgi compartment), but also the degradation of cytoplasmic molecules that have been sequestered by a process called macroautophagy (henceforth autophagy). Recently our understanding of autophagic regulatory mechanisms has increased significantly, as molecular details of how autophagy contributes to the degradation of proteins (old, misfolded or aggregated), damaged organelles or pathogens have been deciphered. Initially described as bulk, nonspecific membrane sequestration process induced primarily by nutrient deprivation, autophagy is now known to be selective in terms of cargo recognition and integration into dynamic cellular membrane trafficking system.
My work has addressed the fundamental question of how small ubiquitin-like modifiers LC3/GABARAP, that are conjugated to the autophagic membranes, function within the process of cargo selection and crosstalk between autophagic and endocytic membrane trafficking events. We have employed an initial yeast twohybrid screen to identify LC3/GABARAP interacting partners. Using this technique, we have identified several novel autophagy receptor proteins, mitochondrial protein Nix (BNIP3L), and adaptor proteins, including Rab GTPase activating proteins (TBC family of proteins). Through a conserved LC3 interacting region (LIR), Nix, Rab GAPs and other autophagy adaptor/receptor molecules share a common mode of binding to LC3/GABARAP. However, in contrast to Nix, which specifically facilitates removal of mitochondria in maturing erythrocytes, Rab GAP proteins preferably regulate the dynamics of autophagosome formation and maturation as well as sorting of cargo. Fourteen out of 36 screened Rab GAPs interacted with LC3/GABARAPs. Importantly, identified Rab GAPs are clustered in different regulatory nodes according to the conservation of their GAP domain hence they impact various cellular membrane compartments and organelles, marked by specific subsets of small Rab GTPases. Identification of Rab GAPs that are directly involved in autophagy via binding to LC3 was the first report that clearly pointed to a broader implication of autophagy in all aspects of cellular membrane trafficking. Currently, only few of Rab GAPs are studied in context of autophagy regulation, while large number of them requires further functional characterization.
I have identified two LIR motifs in TBC1D5, Rab7 GAP. LIR1 has also the ability to interact with retromer complex subunit, Vps29. Using several functional assays I have shown that this motif, as well as catalytic Arg within GAP domain are particularly important for function of TBC1D5 in retrograde transport of CI-M6PR from endosomes to the trans-Golgi network (TGN). I have also shown that TBC1D5 binds to LC3 and Vps29 in mutually exclusive way and that Thr at the position 1 and Phe at position 5 of LIR1 motif are both required for TBC1D5 interaction with Vps29. Upon autophagy induction TBC1D5 dissociates from retromer, and associates with autophagic vesicles, while silencing of TBC1D5 significantly impairs autophagic flux. These findings led to the hypothesis that LIR interacting surface on TBC1D5 acts as molecular switch for dual function of TBC1D5. This also indicated that similar surfaces for LIR interaction (similarly to ubiquitin-like domains) are present on proteins other than LC3, and pointed to a dual functionality of the LIR sequence within both endocytic and autophagic pathways.
Following these initial studies, I have also shown that TBC1D5 interacts with AP2 complex subunit AP2M1, and that this interaction plays critical role in TBC1D5-dependent trafficking of Atg9. It is known that Atg9, the only trans-membrane autophagic protein, plays essential role in initiation of autophagy and growth of nascent phagophore membranes. However, machinery that specifically recruits Atg9 traffic carriers to the site of autophagosomes was not known. I subsequently demonstrated that TBC1D5 associates not only with LC3, but also with Atg9 traffic carriers and major initiatory kinase ULK1 during autophagy, while retromer failed to do so. Association of TBC1D5 with Atg9 was dependent on presence of AP2 complex, and on functional clathrin-mediated endocytosis (CME). Based on these and previous findings, model was proposed, that upon induction of autophagy TBC1D5 re-routes Atg9-containing clathrin vesicles from plasma membrane to the site of autophagosome. This led us to the better understanding of TBC1D5 function, but also to the first molecular cue that Atg9 traffics within clathrin-coated vesicles (CCVs). In fact, mutation of Leu-Leu motif within N terminus of Atg9, that potentially mediates interaction with adaptor protein complexes, led to enrichment of Atg9 on plasma membrane and in TGN. This suggested that the sorting motif could be important for interaction of Atg9 with AP2 and AP1 complex, as well. More importantly, TBC1D5 and Atg9 could be directly involved in dynamic regulation of growth factor receptor sorting during autophagy, thus explaining vital role of autophagy in organism development and pathogenesis.
In summary, the work contained within my thesis provides data on the mechanism by which autophagy adaptor proteins participate in cargo selection and regulation of trafficking during autophagy. Firstly, the LIR motif can target proteins or organelles for autophagic degradation (eg. Nix). Secondly, specific LIR motifs can play essential function in recruiting membrane trafficking regulatory proteins that subsequently facilitate phagophore expansion (eg. TBC1D5). Thirdly, by means of reorganization of different protein assemblies (eg. TBC1D5-VPS29 vs. TBC1D5-LC3-Atg9), dynamics of membrane remodeling mediated by Rab GTPases is kept in control during autophagy, thus keeping the organelle integrity and balance within cellular lipid sources unaffected.