Refine
Year of publication
Document Type
- Doctoral Thesis (37)
Has Fulltext
- yes (37)
Is part of the Bibliography
- no (37)
Keywords
- DNA (3)
- photolabile Schutzgruppe (3)
- G-Quadruplex (2)
- NMR (2)
- Photochemie (2)
- Photolabile Schutzgruppen (2)
- caging (2)
- photolabile Schutzgruppen (2)
- Aptamer (1)
- Aptamere (1)
Institute
Um Materie mit Nanometergenauigkeit anzuordnen, ist Selbstorganisation die mächtigste Strategie. DNA (Desoxyribonukleinsäure) ist hierfür ein hervorragendes Baumaterial, da sie ein billiges, programmierbares, biokompatibles und gut verstandenes Polymer ist. Aus diesen Gründen ist DNA zur Basis für ein schnell wachsendes Gebiet geworden: die DNA-Nanotechnologie. Das Ziel dieser Arbeit war es, neue Interaktionsmöglichkeiten für die DNA-Nanotechnologie zu entwickeln und neuartige Strukturen aus DNA-minicircles aufzubauen, einem bislang vernachlässigten Konstruktionselement. ...
Ein Hauptziel dieser Arbeit war die spektroskopische Charakterisierung einer neuartigen photolabilen Schutzgruppe (Photocage). Diese besteht aus dem weitverbreiteten (7-Diethylaminocumarin)methyl (DEACM), welches zusätzlich mit einer Art Antenne (ATTO 390) ausgestattet ist. Letztere soll die Zwei-Photonen-Absorption (2PA) erleichtern, was neben dem Energietransfer von der Antenne zur photolabilen Schutzgruppe sowie die Freisetzungsreaktion eines gebundenen Effektormoleküls untersucht wurde. Der Nachweis der erhöhten 2PA wurde durch Zwei-Photonen-induzierte Fluoreszenz erbracht, welche die Bestimmung des Zwei-Photonen-Einfangquerschnitts ermöglicht. Die 2PA wurde durch Messungen mit variierender Anregungsenergie an Rhodamin B und dem neuartigen Antennen-Photocage-System bestätigt, welche eine fast perfekte quadratische Abhängigkeit der Fluoreszenzintensität nach vorangegangener 2PA widerspiegelten. Die Werte des Zwei-Photonen-Einfangquerschnitts der neuartigen photolabilen Schutzgruppe sind über alle Wellenlängen hinweg größer als die von DEACM-OH. Der Beweis eines intramolekularen Energietransfers von der Antenne zu DEACM erfolgte durch transiente Absorptionsspektroskopie. Hierfür wurde der Photocage mit 365nm angeregt, was überwiegend die Antenne adressiert. Ein intramolekularer Energietransfer konnte mit einer Zeitkonstante von 20 ps beobachtet werden, welcher wahrscheinlich von einem nachgelagerten Ladungstransfer von DEACM auf ATTO 390 begleitet wurde. Die Funktionalität des neuartigen Photocages wurde durch Aufnahme von Absorptionsspektren im IR-Bereich während kontinuierlicher Belichtung bei 365 nm untersucht. Hierbei konnte die Entstehung der intensiven Absorption von Kohlendioxid aufgrund der Photodecarboxylierung detektiert werden. Absorptionsänderungen während kontinuierlicher Belichtung wurden ebenfalls im UV/Vis-Bereich detektiert, in welchen eine hypsochrome Verschiebung der langwelligen Absorptionsbande sowie ein Anstieg der Absorption festgestellt wurden. Hieraus konnte eine Quantenausbeute der Freisetzungsreaktion von 1,5% ermittelt werden. Die Ergebnisse zum Antennen-Photocage-System zeigen auf, dass durch Anbringen einer Antenne die 2PA verbessert werden kann, ohne die Funktionalität des Freisetzungsprozesses negativ zu beeinflussen. In einem nächsten Schritt zielen Verbesserungen des untersuchten Photocages darauf ab, den Ladungstransfer zu unterdrücken. Die Validierung dieses Ansatzes sollte die Einführung anderer Antennen mit erhöhten Zwei-Photonen-Einfangquerschnitten, wie z.B. Quantenpunkte, weiter motivieren. Der zweite Ergebnisteil dieser Arbeit konzentriert sich auf drei verschiedene Photosysteme, die sich durch eine sehr kurzlebige Fluoreszenz auszeichnen, welche mit einem Kerrschalter aufgenommen wurde. Das erste der drei untersuchten Systeme umfasst eine kooperative BODIPY-DTE-Dyade(Bordipyrromethen-Dithienylethen), die einen hocheffizienten photochromen Förster-Resonanzenergietransfer aufweist. Dieser wurde durch verkürzte Lebenszeiten der Differenzsignale im transienten Absorptionsspektrum der Dyade im photostationären Zustand abgeleitet. In diesem stellt BODIPY-DTE eine hochkonjugierte Einheit dar, welches durch die geschlossene Form des photochromen DTEs einen Energietransfer vom photoangeregten BODIPY zum DTE ermöglicht. Bei diesem Prozess wird die Fluoreszenz des Donors um einige Größenordnungen reduziert. Die Ergebnisse der transienten Absorptionsmessung wurde durch ein zeitaufgelöstes Fluoreszenzexperimentbestätigt. Die detektierte Fluoreszenztransiente zerfällt mit einer Zeitkonstante von etwa 15 ps und weist somit sehr hohe Ähnlichkeit mit dem Signal des Grundzustandsbleichens (GSB) aus dem transienten Absorptionsexperiment auf. Des Weiteren wurde die photochrome Ringschlussreaktion eines wasserlöslichen Indolylfulgimids spektroskopisch charakterisiert. Transiente Absorptionsmessungen geben einen direkten Einblick in den Mechanismus der Reaktion, in welcher, nach Photoanregung, die Relaxation aus dem Franck-Condon Bereich und die schnelle biphasische Relaxation des Moleküls über die konische Durchschneidung abgeleitet werden kann. Zusätzlich wurden zeitaufgelöste Fluoreszenzmessungen mit Hilfe des Kerrschalters durchgeführt, da die stimulierte Emission (SE) in transienten Absorptionsmessungen durch die Überlagerung mehrerer Signale nicht vollständig zu erkennen war. Die globale Lebensdaueranalyse der mit dem Kerrschalter aufgenommenen Breitband-Fluoreszenz lieferte drei Zeitkonstanten, welche wesentliche Übereinstimmung mit den Zeitkonstanten aus der globalen Lebensdaueranalyse der transienten Absorptionsmessungen aufweisen. Schlussendlich wurde die Deaktivierung des elektronisch angeregten Zustands des flavinbindenden Dodecins aus Mycobacterium tuberculosis mit Hilfe von unterschiedlichen spektroskopischen Methoden charakterisiert. Stationäre Fluoreszenzmessungen bei unterschiedlichen pH-Werten zeigten bei pH 5 eine im Vergleich zu nahezu physiologischen Bedingungen (pH 7,5)reduzierte Fluoreszenz auf. Auffällig ist, dass diese Beobachtungen durch transiente Absorptionsmessungen nicht bestätigt werden konnten, da diese eine große Ähnlichkeit bezüglich der Dynamik und der spektralen Signatur zueinander besaßen. Ein negatives Signal, hervorgerufen durch die SE, wurde hierbei nicht gefunden. Allerdings konnte in den zerfallsassoziierten Spektren eine spektrale Signatur beobachtet werden, die auf eine SE hindeutete, welche allerdings mit größeren positiven Signalen überlagert ist. Dieser Aspekt wurde in einer Kerrschalter-Messung untersucht, in der eine schwache Emission bei pH 7,5 festgestellt werden konnte. Zusätzlich wies die Zerfallsdynamik der Emission Übereinstimmung mit dem GSB-Signal aus den transienten Absorptionsmessungen auf.
Die Steuerung biochemischer Prozesse oder die Verbesserung von Materialien erfordert zunächst ein tiefgründiges Verständnis über die zugrundeliegenden Systeme. Zur Untersuchung eignet sich Licht als ideales Werkzeug, da hiermit nützliche Informationen über die chemische Struktur, ihre Eigenschaften sowie den zusammenhängenden, schnellen Reaktionsabläufen erhalten werden können. Um die Aufklärung zu erleichtern können kleine, chemische Verbindungen eingeführt werden, welche beispielsweise ein Fluoreszenzmarker, eine photolabile Schutzgruppe oder eine photoschaltbare Verbindung sein können. Von jeweils einem Vertreter dieser Moleküle wurden unterschiedliche Studien durchgeführt, dessen Ergebnisse in dieser Arbeit in insgesamt drei Projekten zusammengefasst werden.
Zunächst wurde die Funktionalität der Helikase RhlB untersucht, die der Familie der DEAD-Box Proteine zugeordnet wird, und RNA-Duplexe in ihre Einzelstränge entwindet. Als RNA-Modellduplex diente JM2h, an dem ein RNA-Einzelstrang fluoreszenzmarkiert war (M2AP6). Die Einführung dieses Markers ermöglichte die Durchführung von statischen Fluoreszenzmessungen sowie von Mischexperimenten, die mit Hilfe der stopped-flow-Technik durchgeführt wurden. In den einleitenden Studien wurde die Helikase weggelassen, wodurch der Fokus auf den Fluoreszenzeigenschaften der RNA gelegt wurde. Die Ergebnisse hierzu zeigten, dass die Fluoreszenzintensität des Einzelstrangs durch Zugabe des komplementären Strangs deutlich abnimmt, wobei das Minimum bei einem äquimolaren Verhältnis erreicht wird. Die dazugehörigen stopped-flow-Messungen zeigten eine Beschleunigung der Hybridisierungsreaktion, wenn höhere Konzentrationen des Gegenstrangs in der Lösung vorhanden waren. Nach anschließender Zugabe der Helikase zur Lösung wurde ein Anstieg der Fluoreszenzintensität erwartet, der vom separierten Einzelstrang M2AP6 herrühren sollte. Dieser Anstieg wurde jedoch erst nach weiterer Zugabe von ATP beobachtet, der auf eine ATP-Abhängigkeit der Entwindungsreaktion von RhlB hindeutet. Diese Abhängigkeit wurde auch bereits für andere Helikasen der DEAD-Box Familie entdeckt. Die korrekte Funktionalität sowie die ATP-Abhängigkeit wurden in stopped-flow-Messungen verfiziert, bei denen der Fluoreszenzanstieg auch zeitaufgelöst betrachtet werden konnte. Für die spektralen Korrekturen der Fluoreszenzspektren wurde ein selbstgeschriebenes MATLAB-Programm namens FluCY verwendet (engl.: Fluorescence Correction & Quantum yield), welches eine schnelle und fehlerfreie Verarbeitung des Datensatzes ermöglichte.
Die zwei im folgenden beschriebenen Projekte handeln von photoaktivierbaren Molekülen. Zum einen photolabile Verbindungen, welche die Funktion z.B. eines Biomoleküls durch eine chemische Modifikation deaktivieren können. Durch eine lichtinduzierte Reaktion kommt es zur Abspaltung der Modifikation und die Funktion ist wiederhergestellt. In dieser Arbeit wurden verschiedene photolabile Schutzgruppen untersucht, die denselben Chromophor BIST (BIsStyryl-Thiophen) tragen. Durch die Einführung dieses Chromophors absorbierten sämtliche untersuchte Verbindungen sehr effizient sichtbares Licht (epsilon(445)=55.700 M^(-1) cm^(-1)), wodurch der photoinduzierte Bindungsbruch mit Wellenlängen durchgeführt werden, die bei einer biologischen Anwendungen keinen Schaden an der Zelle anrichten würden. Hieraufhin wurden in statischen und zeitaufgelösten Absorptionsmessungen Teilschritte der Freisetzungsreaktion untersucht, indem nach Photoanregung die Absorptionsänderungen auf verschiedenen Zeitskalen analysiert wurden. Die ultraschnelle Dynamik im Piko- bis Nanosekundenbereich (10^(-12)-10^(-9) s) wird durch eine spektral breite, positive Absorptionsänderng dominiert. Diese impliziert, dass die Deaktivierung über den Triplettpfad abläuft, der die vergleichsweise niedrigen Freisetzungsausbeuten erklärt (phi(u) < 5). Aufgrund des hohen Extinktionskoeffizienten reichen dennoch bereits niedrige Strahlungsdosen aus, um eine Freisetzung zu initiieren. Der geschwindigkeitsbestimmende Schritt dieser Reaktion ist dem Zerfall des aci-nitro Intermediats zugeordnet. Für ein sekundäres Amin, welches mit BIST geschützt wurde, ist eine Lebensdauer des Intermediats von 71 µs gefunden worden.
In einigen Fällen ist es erwünscht, eine vorliegende Aktivität nicht nur ein-, sondern auch ausschalten zu können, wofür photochrome Verbindungen (oder Photoschalter) verwendet werden. Die in dieser Arbeit untersuchte Verbindung ceCAM ist ein Alken-Photoschalter und vollführt bei Bestrahlung mit Licht eine cis/trans-Isomerisierung. ceCAM ist das Cyanoester-Derivat (ce) von Cumarin-substituierten Allylidenmalonat, von denen beide Konformere sehr effizient sichtbares Licht absorbieren trans: epsilon(489)=50.300 M^(-1) cm^(-1); cis: epsilon(437)=18.600 M^(-1) cm^(-1)). Andere photophysikalische Eigenschaften umfassen u.a. hohe thermische und photochemische Stabilität. Letztere wurde über ein Experiment nachgewiesen, bei dem die lichtinduzierte Isomerisierung alternierend durchgeführt wurde und selbst bei über 250 Zyklen keine signifikate Abnahme der Absorption beobachtet werden konnte. Des Weiteren konnte die Reaktion mit Quantenausbeuten von 39% (trans) und 42% (cis) induziert werden, wobei im photostationären Gleichgewicht auch hohe Isomerenverhältnisse mit bis zu 80% (trans) und 96% (cis) akkumuliert werden konnten. Die Geschwindigkeit der Reaktion wurde mit Hilfe der Ultakurzzeit-Spektroskopie untersucht. Die Dynamik im Zeitbereich von ps-ns zeigte, dass die trans/cis-Isomerisierung unterhalb von 0,5 ns und die umgekehrte Reaktion noch viel schneller (wenige ps) abgeschlossen ist. Durch die Untersuchungen in dieser Arbeit an den BIST-Verbindungen und ceCAM sind viele vorteilhafte, photophysikalische Eigenschaften charakterisiert worden, wodurch sie als verbesserte Alternative zu den bisher bekannten photolabilen Schutzgruppen oder Photoschaltern anzusehen sind.
Riboswitches are an important class of regulatory RNA elements that respond to cellular metabolite concentrations to regulate gene expression in a highly selective manner. 2’-deoxyguanosine-sensing (2’dG) riboswitches represent a unique riboswitch subclass only found in the bacterium Mesoplasma florum and are closely related to adenine- and guanine-sensing riboswitches. The I-A type 2’dG-sensing riboswitch represses the expression of ribonucleotide reductase genes at high cellular concentrations of 2’dG as a result of premature transcription termination.
Increasing evidence within the last decade suggests that transcriptional regulation by riboswitches is controlled kinetically and emphasizes the importance of co-transcriptional folding.2–4 Addition of single nucleotides to nascent transcripts causes a continuous shift in structural equilibrium, where refolding rates are competing with the rate of transcription.5,6
For transcriptional riboswitches, both ligand binding and structural rearrangements within the expression platform are precisely coordinated in time with the rate of transcription. The current thesis investigates the mechanistic details of transcriptional riboswitch regulation using the I-A 2’dG-sensing riboswitch as an example for a riboswitch that acts under kinetic control.
Um die Funktionsweise von biologischen Prozessen zu untersuchen, werden Trigger-Signale benötigt, die die Prozesse initiieren können, ohne dabei dem Organismus zu schaden oder Nebenreaktionen hervorzurufen. Ein geeignetes Trigger-Signal stellt Licht dar, da es bei geeigneter Wellenlänge nichtinvasiv ist und nur wenige biologische Prozesse durch Licht gesteuert werden. Um einen Prozess mit Licht aktivierbar zu machen, benötigt man eine lichtsensitive Einheit, beispielsweise eine photolabile Schutzgruppe, die durch die Bestrahlung mit Licht einen zuvor blockierten Bereich freisetzt.
Hauptziel dieser Arbeit war es die Zweiphotonen-Technik für die Photolyse von photolabil geschützten Oligonukleotiden nutzbar zu machen und das Photolyseergebnis zu visualisieren.
Dazu wurden zunächst verschiedene mit Zweiphotonen-sensitiven Schutzgruppen modifizierte Phosphoramidite synthetisiert und über Festphasensynthese in Oligonukleotide eingebaut. Die Oligonukleotide mit den erstmals neu eingebauten Schutzgruppen ANBP und hNDBF wurden zunächst auf ihre Einphotonen-Eigenschaften, wie Schmelzpunkt, Absorptionsverhalten und Quantenausbeute untersucht. Weiterhin wurden erste Versuche zur wellenlängenselektiven Photolyse von hNDBF- und ANBP-geschützten Oligonukleotiden durchgeführt.
Die Existenz eines Zweiphotonen-induzierten Effekts kann durch die quadratische Abhängigkeit des erzeugten Effekts von der eingestrahlten Leistung nachgewiesen werden. Dazu wurde ein Verdrängungs-Assay entwickelt, dessen Doppelstrang-Sonde aus einem FRET-Paar besteht. Der Fluorophor-markierte Strang dient dabei als Gegenstrang zum photolabil geschützten Strang. Durch einen Thiol-Linker am photolabil geschützten Oligonukleotid konnte dieses erfolgreich in Maleimid-Hydrogele immobilisiert werden und der Verdrängungs-Assay im Gel durchgeführt werden. Die immobilisierten Stränge enthielten DEACM bzw. ANBP Schutzgruppen. Neben der quadratischen Abhängigkeit der Photolyse von der eingestrahlten Leistung konnten in diesen Hydrogelen auch 3D-aufgelöste Photolysen realisiert werden, die eindeutig die Zwei-Photonen-Photolyse belegen. Diese 3D-Experimente wurden zusammen mit Dr. Stephan Junek am MPI für Hirnforschung durchgeführt. Durch die Wahl zweier unterschiedlicher Sequenzen für die dTDEACM und dGANBP modifizierten Stränge und zwei unterschiedlicher Fluorophore für die Doppelstrang-Sonden, konnte die orthogonale Zweiphotonen-Photolyse gezeigt werden. Um zu zeigen, dass die Zweiphotonen-Photolyse von Oligonukleotiden auch in Organismen realisiert werden kann ohne das biologische System zu schädigen, wurde versucht den Verdrängungs-Assay auch in Zellen durchzuführen. Durch die Verwendung der Patch-Clamp-Technik in Zusammenarbeit mit Dr. Stephan Junek am MPI für Hirnforschung konnten die Stränge über die Elektrolyt-Lösung in Hippocampus-Neuronen eingebracht werden und durch Zweiphotonen-Bestrahlung dort photolysiert werden, was zu einem deutlichen Fluoreszenzanstieg führte. Durch die angeschlossene Patch-Clamp-Pipette konnten so zusätzlich elektrophysiologische Messungen durchgeführt werden, die zeigten, dass die durchgeführte Zweiphotonen-Bestrahlung nicht invasiv für die Zellen ist.
Die durchgeführten Experimente beweisen, dass Zweiphotonen-sensitive Schutzgruppen auf Oligonukleotiden photolysiert werden können und dass ihr Einsatz auch in biologischen Systemen möglich ist. Der entwickelte Verdrängungs-Assay ermöglicht es weiterhin neue photolabile Schutzgruppen auf Oligonukleotiden auf ihre Zweiphotonen-Sensitivität zu untersuchen.
Ein weiteres Projekt beschäftigte sich mit der Synthese der neuen Schutzgruppe DMA-NDBF-OH, die in-silico von der Arbeitsgruppe von Prof. Andreas Dreuw aus Heidelberg als effiziente Zweiphotonen-sensitive Schutzgruppe beschrieben wird. Es wurde versucht DMA-NDBF-OH über zwei Syntheserouten herzustellen. Eine Route basierte auf der Einführung der Funktionalitäten an einem unmodifizierten Dibenzofuran, die leider an der Bromierung der Seitenkette scheiterte. Die zweite Syntheseroute wurde in Anlehnung an die NDBF-Synthese von Deiters et al., bei der das Dibenzofuran durch eine Kondensation zweier modifizierter Benzolringe und einem Pd-katalysierten Ringschluss aufgebaut wird, durchgeführt. Mit dieser Syntheseroute konnte das DMA-NDBF-OH erfolgreich synthetisiert werden. Aufgrund ihrer starken bathochromen Verschiebung sollte sich diese Schutzgruppe hervorragend für die wellenlängenselektive Photolyse auf Ein- und Zweiphotonenebene eignen.
Im Rahmen der vorliegenden Arbeit wurde einerseits der Einsatz lichtaktivierbarer Oligonukleotide zur Kontrolle der Leitfähigkeit entlang von DNA untersucht sowie neue photoaktivierbare Verbindungen für die Peptidchemie und für eine neu entwickelte Variante des SELEX (Systematic Evolution of Ligands by EXponetial enrichment) Verfahrens synthetisiert.
DNA vermittelte Ladungsübertragung verläuft entlang des gestapelten π-Systems der heteroaromatischen Nukleobasen. Die Leitfähigkeit von Oligonukleotiden reagiert daher empfindlich auf Störungen in der Watson-Crick-Basenpaarung. Die in der Arbeitsgruppe Heckel etablierte Technik, Nukleobasen an für die Basenpaarung relevanten Positionen mit photolabilen Schutzgruppen zu modifizieren, sollte daher mit Systemen der Ladungsübertragung in DNA kombiniert werden. Im Verlauf dieses Projekts wurden zwei literaturbekannte Varianten, in denen Ladungstransport über einen lichtinduzierten Redoxprozess zwischen Metallkomplexen ablaufen und über eine dabei unterdrückte Fluoreszenz optisch verfolgt werden sollte, als ungeeignete Systeme identifiziert. Durch den Wechsel zu elektrodengestützter Leitfähigkeitsmessung konnte der prinzipielle Effekt von Leitfähigkeit in perfekt gepaarter DNA und deutlich reduziertem Stromfluss in Oligonukleotiden mit Fehlpaarungen gezeigt werden. Beim Einsatz photolabil geschützter Oligonukleotide konnte jedoch auch in diesem System noch nicht der gewünschte Effekt gefunden werden.
Im zweiten Projekt dieser Arbeit wurden neue photolabile Verbindungen hergestellt, die Peptide nach ihrem Einbau in das Peptidrückgrat durch Zwei-Photonen-Anregung mit IR-Licht spalten sollen. Drei entsprechende Nitrodibenzofuran-Verbindungen und ein Cumarin-Baustein konnten erfolgreich synthetisiert werden. Die neuen Moleküle zeigten im Rahmen der Peptid-Festphasensynthese Stabilitätsprobleme. Diese Schwierigkeiten konnten durch Peptid-Kopplungen in Lösung umgangen werden. Mit Hilfe eines der hergestellten Bausteine wurden zwei Tripeptide hergestellt, die jeweils mit dem Farbstoff ATTO565 markiert und hinsichtlich ihrer photochemischen Eigenschaften charakterisiert wurden. Der neue Baustein zeigte neben den Eigenschaften als photospaltbare Gruppe, dass er gleichzeitig ein Quencher für den Farbstoff ATTO565 darstellt. Nach Belichtung stieg die Fluoreszenz um den Faktor 81 an. Die Aktivierung gelang wie erwartet mit Ein- und Zwei-Photonen-Anregung. In Kollaboration mit der Arbeitsgruppe von Prof. Heilemann konnten Antiköper mit einem der Tripeptide modifiziert werden und die Kompatibilität der Verbindung mit hochaufgelöster Einzelmolekül-Fluoreszenzmikroskopie demonstriert werden.
Im letzten in dieser Arbeit thematisierten Projekt wurden neue lichtspaltbare Verbindungen für eine Variante des SELEX-Prozesses hergestellt. Diese Verbindungen erlauben die temporäre Einführung einer Indol Modifikation an Alkin-modifizierte Oligonukleotide über die sogenannte Click-Chemie. Neue chemische Modifikationen wie die hier verwendeten Indole erhöhen die chemische Vielfalt der Oligonukleotide. Eine größere Vielfalt führt zu neuen potentiellen Wechselwirkungen gegenüber Verbindungen, gegen die mit Hilfe herkömmlicher SELEX-Verfahren keine Aptamere erzeugt werden konnten. Da die chemische Modifikation über eine photolabile Gruppe an die Oligonukleotide gebunden wird, kann sie photochemisch von der DNA gespalten werden, wodurch eine Interferenz der Modifikation mit den enzymatisch katalysierten Schritten innerhalb der SELEX ausgeschlossen werden kann.
Photolabile protecting groups (PPGs, cages, photocages) are molecules which can block the activity of a functional group and be removed by irradiation of light of an appropriate wavelength. One of the goals of this work was to design new photolabile protecting groups, based on a literature known one. The far-UV absorbing diethylamino benzyl (DEAMb) photocage, developed by Wang et al., was selected as structural basis for this work. In order to trigger the uncaging reaction with longer wavelengths (≥365 nm), thus allowing also biological applications, its structure was optimized. This was done by elongating the π-orbital conjugation using biphenyl derivatives instead of a single aromatic moiety. The photocage was loaded with glutamic acid as the leaving group.
The highest bathochromic shift was shown by compounds, which had the smallest sterical hindrance imposed on the second aromatic ring. The absorption spectrum was more redshifted if the second aromatic ring contained an electron withdrawing group. However, the stronger the substituents electron withdrawing strength was, the lower the uncaging quantum yield was. It was rationalized, that this is due to a decreased excited state electron density at the benzylic carbon of the DEAMb core which is necessary to trigger bond dissociation. This has been confirmed using TDDFT (time-dependent density functional theory) computations done by Jan von Cosel, Konstantin Falahati and Carsten Hamerla (from the group of Irene Burghardt). The best uncaging quantum yield was 42% for m-phenyl substituted DEAMb, while if a strong electron withdrawing group was present (nitro group), there was no photoactivity at all.
In order to achieve a better π-orbital conjugation of the non-coplanar biphenyl derivatives, a C-C bond was introduced between the benzylic carbon and the second aromatic ring. The resulting planar compounds belong to the fluorene class. The computational data predicted the photochemical meta effect to some extent to be preserved in these molecules. A set of fluorene derivatives was synthesized and photochemically characterized. The molar absorption coefficients of all prepared fluorene derivatives were higher than for any of the biphenyl derivatives. Quantum yields of the acetate release ranged between 3-42%, thus being as good as the best glutamic acid releasing biphenyl compounds. The highest uncaging cross section of the acetate release from the prepared fluorene derivatives was above 5000 M^-1 cm^-1. This value proves the high potential of the new fluorene based photocages developed in this work. Furthermore, release of hydroxide ion from fluorenol could be shown along with generation of, presumably, fluorenyl cation. These intriguing results paves a way for further exploration of fluorene based photocages for the release of bad leaving groups.
The second part of this work describes the custom synthesis of 13C labeled compounds for the VIPER (VIbrationally Promoted Electronic Resonance) project. In the VIPER pulse sequence, a molecule is vibrationally excited by a narrow band IR-pump pulse. The following Vis-pump pulse will promote the vibrationally pre-excited molecules to an electronically excited state. This Vis-pump pulse is offresonant for the not vibrationally pre-selected species and only resonant with the molecules, which are already pre-excited by the IR-pump pulse. Since the IR absorption bands usually are well resolved, a selective excitation of one molecule in an ensemble of similar ones is possible in the IR frequency range. Isotopologues and isotopomers are an extreme case of molecules which are near identical and differ only by isotopic composition or position. As a result in solution and at room temperature they have an identical UV-Vis absorption spectrum but different IR spectrum. This allows vibrational excitation of only one isotopologue (or isotopomer).
Isotopic labels were introduced in known photocages: 7-diethylamino coumarin (DEACM) and para-hydroxy phenacyl (pHP). The position for isotopic label incorporation in these molecules was guided by computations done by Jan von Cosel and Carsten Neumann. To allow control of the photoreactions in an ultrafast timescale, an IR active leaving group was used. The uncaging behavior of the prepared molecules in steady state was tested using chromatography (HPLC) and spectroscopy (1H NMR, FTIR and UV-Vis). The VIPER experiments were performed by Daniela Kern-Michler, Carsten Neumann, Nicole Mielke and Luuk van Wilderen (from the group of Jens Bredenbeck). A selective uncaging of only the vibrationally pre-excited molecules could be achieved.
In view of the diverse functionalities of RNA, the search for tools suitable for regulating and understanding RNA grows continuously. Dysfunction of RNA controlled processes can lead to diseases, calling for external regulation mechanisms – a difficult task in view of the complexity of biological systems. One of the recently developed methods that aim to systematically control RNA relates to photoregulation. Here, the RNA functions are triggered by photochromic molecules – for example, azobenzene or spiropyran – which are bound either covalently or non-covalently to the target RNA. This is a flexible approach, which can be improved by using suitably substituted chromophores. However, many issues regarding the details of photocontrol are still open. A detailed understanding of the mechanism of photocontrol is therefore of crucial importance.
The present thesis explores theoretical approaches to the photocontrol of RNA, focussing upon azobenzene chromophores covalently bound to RNA. The aim of the thesis is to characterize, at a molecular level, the effect of trans-to-cis isomerization of the azobenzene chromophore on RNA, and thus understand the mechanism of RNA unfolding triggered by azobenzene isomerization. In particular, we attempt to answer the following questions:
How does azobenzene isomerization happen in an RNA environment, i.e., how is
the isomerization influenced by the local RNA environment?
Conversely, how is RNA dynamics, on a longer time scale, affected by azobenzene attachment and photoisomerization?
Further, can regulation be enhanced by substituted azobenzenes? And, does simulation yield a picture that is consistent with experiment?
Due to the very different times scales of azobenzene isomerization (femtoseconds to picoseconds) and the much slower RNA response (nanoseconds to milliseconds), complementary techniques have been chosen: (i) hybrid quantum-classical approaches, i.e., on-the-fly Quantum Mechanics/Molecular Mechanics (QM/MM), to characterize the isomerization and RNA response on an ultrafast time scale, and (ii) molecular dynamics with enhanced sampling techniques, in particular, Replica Exchange MD (REMD), to explore longer time scales where the effect of RNA unfolding becomes manifest. Furthermore, substituent effects on azobenzene were separately investigated, in collaboration with two experimental groups.
The first part of this thesis is focused on the conformational influence of azobenzene on a small RNA hairpin on longer time scales using REMD simulations. In accordance with experiment, it is found that both the trans and cis form of azobenzene destabilize the RNA system. Trans azobenzene stays stacked in the double strand, whereas the cis form flips out of the RNA. These stacking interactions are the main reason why a trans azobenzene-RNA-complex is more stable than a cis-azobenzene-RNA-complex. Furthermore, the loop region of the RNA hairpin is highly destabilized by the intercalation of azobenzene.
In the second part, on-the-fly QM/MM simulations of the same azobenzene substituted hairpin are undertaken. These simulations use a surface hopping (SH) algorithm in conjunction with hybrid QM/MM electronic structure calculations to give a complete picture of the isomerization process on a picosecond time scale. It is shown that, due to the constraints of the RNA environment, the isomerization time of the azobenzene chromophore is significantly increased (from 300 femtoseconds in the gas phase to around 20 picoseconds in the RNA environment), and the isomerization yield is low. To the best of our knowledge, these are the first QM/MM simulations reported for azobenzene in a nucleic acid environment.
In the third and final part of this thesis, the properties of substituted azobenzenes have been explored, in collaboration with two experimental groups at the department. In particular, para- and meta-hydroxy substituted azobenzenes were suggested as improved photoswitches for the photoregulation of RNA, but spectroscopic investigations showed that isomerization was inefficient in some of the investigated species. Therefore, we investigated the photoisomerisation pathway of the keto/enol-form of para- and meta-hydroxy-azobenzenes by Time-Dependent Density Functional Theory (TDDFT) calculations. These calculations show that the competing keto/enol-tautomerism can result in an unstable cis form, making these substituted chromophores unsuitable as photoswitches.
Overall, the present thesis has contributed to obtaining a molecular-level understanding of photocontrol in azobenzene substituted RNAs, showing that theory and simulations can provide useful guidance for new experiments.
Für die Optimierung sowie Entwicklung lichtsteuerbarer Systeme für biologische Anwendungen oder neue Materialien ist ein detailliertes Verständnis der zugrunde liegenden komplexen, lichtinduzierten Prozesse eine Voraussetzung. Die Verwendung von Photoschaltern in Makromolekülen ermöglicht eine zeitliche und örtliche Kontrolle über strukturelle Änderungen sowie die entsprechend folgenden (biologischen) Funktionen durch die Verwendung von Licht als externem Auslöser.
Ein wichtiger Bestandteil dieser Arbeit befasst sich mit der Entwicklung eines auf Licht reagierenden Riboschalters, welcher die gezielte Kontrolle über Genexpression ermöglicht. Hierzu wurde eine spektroskopische Charakterisierung von verschiedenen Photoschaltern bezüglich einer Verwendung als biologischer Ligand sowie der Wechselwirkungen zwischen Azobenzolen und RNA, auch hinsichtlich ihrer Bindungsdynamiken durchgeführt. Zunächst wurde die hohe Abhängigkeit der (photo-)chemischen Eigenschaften der Azobenzole von der Wahl der Substituenten untersucht, wobei besonders die Anwendung in wässrigem Milieu betrachtet wurde. In einer detaillierten (zeitaufgelösten) Studie wurde der positionsabhängige Einfluss der Hydroxy-Substitution von Azobenzolen auf die Photoisomerisierung in wässriger Lösung untersucht. Für eine ortho-Substitution ergab sich hierbei ein alternativer Deaktivierungskanal nach Photoanregung, welcher stärker ausgeprägt ist als die Isomerisierung. Hierbei wird ein intramolekularer Protontransfer im angeregten Zustand (ESIPT) beobachtet, welcher mit einer Zeitkonstante von 0.3 ps beschrieben werden kann und in einer Keto-Spezies resultiert. Eine Keto-Enol-Tautomerie konnte für die para-Hydroxy-Substitution schon im Grundzustand beobachtet werden. Somit können beide Spezies gezielt adressiert werden. Durch Acetylierung der Hydroxygruppe verlangsamt sich die thermische Relaxation des cis-Isomer zu dem entsprechenden trans-Isomer signifikant ohne die Isomerisierung zu beeinträchtigen. Dementsprechend ermöglicht eine solche Acetylierung die Verwendung von bekannten Azobenzolderivaten als Photoschalter.
Zudem werden in dieser Arbeit zwei verschiedene Herangehensweisen in der Entwicklung eines Riboschalters beschrieben, welcher sich durch Licht regulieren lässt.
Diese sind durch kovalentes bzw. nicht-kovalentes Einbringen eines Azobenzolderivats in die RNA Struktur charakterisiert. Ein neuer Linker, welcher auf einer Desoxyribose-Struktur beruht, wird für die kovalente Anbindung des Azobenzols an den RNA Strang präsentiert, welcher eine licht-induzierte Dehybridisierung ermöglichen soll. Eine außergewöhnlich hohe Schaltamplitude mit einem cis-Gehalt von etwa 90% konnte für das Azobenzol im RNA Einzelstrang schon bei Raumtemperatur ermittelt werden. Zudem wurde der Einfluss des Photoschalters sowie der benachbarten Nukleotide in der RNA auf die Stabilität der RNA Doppelhelix untersucht. Die zweite Vorgehensweise beruht auf einer nicht-kovalenten Bindung zwischen einem Azobenzolderivat und einem RNA-Aptamer, welche lediglich für eines der Photoisomere ermöglicht wird, wodurch eine örtliche und zeitliche Kontrolle der Ligandenbindung der RNA erfolgt. Im Rahmen dieser Arbeit war es möglich zwei verschiedene photoschaltbare RNA Aptamere zu identifizieren und zu untersuchen, welche eine hohe Spezifität und Affinität aufweisen. Zudem wurde die Photoisomerisierung des Azobenzols innerhalb der RNA-Struktur sowie daraus resultierende lichtinduzierte Konformationsänderungen der RNA mittels zeitaufgelöster Anreg-/Abtastspektroskopie untersucht. Die daraus resultierende Dynamik der photoinduzierten Ligandenbindung sollte eine weitere gezielte Optimierung lichtschaltbarer biologischer Systeme erlauben.
Der zweite Teil dieser Arbeit beschäftigt sich mit der zeitaufgelösten Untersuchung eines photoschaltbaren Foldamers. Speziell wurde der strukturelle Übergang des OmPE-Foldamers 10-5 zwischen einer definierten helikalen und einer ungefalteten Konformation auf Grund der Photoisomerisierung der, in das Rückgrat integrierten, Azobenzole untersucht.
Dabei konnten die frühen (Ent-)Faltungsmechanismen des Foldamers im sub-Nanosekunden-Zeitbereich beobachtet werden, welche durch quantenmechanische Rechnungen unterstützt werden konnten. Darüberhinaus, war es möglich einen Anregungsenergietransfer vom PE-Rückgrat des Foldamers auf die Azobenzole nachzuweisen, welcher die Lebensdauer der angeregten Zustände des Systems signifikant verkürzt.
Diese Arbeit liefert wichtige Informationen zu den Reaktionspfaden, den gezielten Wechselwirkungen zwischen Photoschaltern und größeren organischen Molekülen, sowie den daraus resultierenden lichtinduzierten strukturellen Änderungen durch die Anwendung einer Vielzahl an (zeitaufgelösten) spektroskopischen Methoden. Diese Ergebnisse tragen zum weiteren Verständnis komplexer Prozesse in biologischem sowie nicht-biologischem Zusammenhang und somit zu einer weiterführenden Entwicklung neuer Systeme bei.
Die Verwendung von photolabilen Schutzgruppen zur nicht-invasiven Kontrolle von Systemen birgt ein großes Potential für verschiedenste Anwendungsgebiete, die von der Erforschung und Regulation biologischer Prozesse, über den Einsatz in medizinischer Therapie bis hin zur Verwendung als molekulare Datenspeicher reichen. Für diese Umsetzung benötigt es allerdings eine breite Auswahl an entsprechenden PPGs und das Wissen über ihre Reaktionsmechanismen. Im Allgemeinen lässt sich die Konzeptionierung von PPGs in drei Prozesse einteilen, beginnend bei dem Design und der Synthese einer neuen PPG. Bei diesem Schritt liegt der Fokus auf ein oder zwei besonderen Eigenschaften, wie beispielsweise einer Absorptionswellenlänge in einem bestimmten Spektralbereich oder einer hohen Uncaging-Quantenausbeute. Im zweiten Schritt folgt die Untersuchung der PPG bezüglich spektroskopischer und mechanistischer Eigenschaften und ggf. anschließender Optimierung auf synthetischer Ebene. Die so gewonnenen Informationen sind dann hilfreich bei dem letzten Schritt, bei dem es um den Einsatz der PPG in einem entsprechenden System geht. Hierbei müssen die verwendeten PPGs genau auf das Zielsystem abgestimmt sein, dazu zählen verschiedenste Parameter wie Anregungswellenlänge, Extinktionskoeffizient, Art und Struktur der Photoprodukte sowie Uncaging-Effizienz und Geschwindigkeit.
In der vorliegenden Arbeit wurde über die drei vorgestellten Projekte mittels spektroskopischer Methoden zu allen drei genannten Stadien zur Konzeptionierung von PPGs ein Beitrag geleistet. Dazu zählt die Entwicklung der CBT-basierten PPGs, die Untersuchung der Struktur-Wirkungsbeziehung von (DMA)(2)F-PPGs und die Etablierung einer wellenlängenselektiven An-/Aus-Funktionalität eines Antibiotikums. In enger interdisziplinärer Zusammenarbeit zwischen theoretischen, synthetischen und biologischen Teilgebieten konnte jedes Projekt innerhalb der jeweiligen Entwicklungsstufe erfolgreich abgeschlossen werden.
Mithilfe des relativ neuen Ansatzes, bei dem durch quantenmechanische Berechnungen der vertikalen Anregungsenergie von der kationischen Spezies einer PPG-Grundstruktur eine Aussage über ihre Qualität postuliert werden kann, konnte ausgehend von der Fluoren-Grundstruktur eine neue Klasse von PPGs gefunden werden. Dabei erwies sich die CBT-Struktur mit den Schwefelatomen an der para-Position als besonders geeignet. Insbesondere konnte die Grundstruktur durch die (OMePh)2-Substitution, welche in einer signifikanten bathochromen Verschiebung des Absorptionsmaximums resultierte, optimiert werden. Die Untersuchung der Ultrakurzzeit-Dynamik beider p-CBT Strukturen gab Aufschluss über die unterschiedlichen photochemischen Eigenschaften als PPG.
Für die Stoffklasse der Dimethylamino-Fluorene wurde ein wichtiger Unterschied zwischen den einfach- und zweifach-substituierten Derivaten aufgedeckt, der entscheidend für einen signifikanten Uncaging-Effizienzunterschied ist. Dabei stellt sich die Stabilität des symmetrisch-substituierten Fluorenyl-Kations als der wichtigste Faktor bezüglich der Uncaging-Quantenausbeuten heraus. Beide Schutzgruppen sind in der Lage photoinduziert eine AG freizusetzen, wobei der Reaktionsmechanismus über die kationische Spezies (DMA)(2)F + abläuft. Der Unterschied hierbei liegt in der Lebensdauer der beiden Kationen, die im Falle der symmetrischen PPG stark lösungsmittelabhängig ist und bis zu mehreren Stunden betragen kann, was bis dato das langlebigste Kation dieser Molekülklasse darstellt. Für die zukünftige Optimierung dieser PPG-Klasse ist die Erkenntnis über die Gründe für die Stabilität des Kations von großem Vorteil. Der stabilisierende Faktor ist zum einen die zweite Dimethylamino-Gruppe der symmetrischen Verbindung, welche durch die Erweiterung der Mesomerie zur besseren Verteilung der positiven Ladung im Molekül führt. Zum anderen spielt das Lösungsmittel eine entscheidende Rolle. Dabei bieten protische, polare Medien eine zusätzliche Stabilisierung, die notwendig für die Langlebigkeit des Kations ist. Die Lebensdauer des Kations war zudem durch eine zweite Bestrahlungswellenlänge kontrollierbar. Ausgehend vom Kation konnte eine reversible Nebenreaktion in protischen Lösungsmitteln identifiziert werden, die einen Austausch der AG durch das Lösungsmittel darstellt.
Zusätzlich konnte die kleine Stoffklasse der bisher bekannten Photobasen durch die Verbindung (DMA)2F-OH erweitert werden. Genauer betrachtet handelt es sich dabei um eine photoinduzierte Hydroxidfreisetzung, wodurch je nach eingesetzter Konzentration ein pH-Sprung von bis zu drei Einheiten erreicht werden konnte. Dabei stellt sich die Lebensdauer des pH-Sprungs als ein entscheidender Parameter für Photobasen dar, welcher sich für die hier untersuchte Verbindung aufgrund der besonderen Stabilität des entsprechenden Kations, im Vergleich zu einigen der bereits bekannten Verbindungen, als besonders langlebig herausgestellt hat. Ein weiterer Vorteil des Einsatzes von (DMA)2F-OH als Photobase ist die Möglichkeit den pH-Sprung durch zwei verschiedene Wellenlängen sowohl zeitlich als auch örtlich zu kontrollieren, indem die Verbindung zwischen den zwei Spezies (DMA)2F-OH und (DMA)2F + geschaltet werden kann.
Im Hinblick auf die Anwendungen von PPGs zur verbesserten zeitlichen und örtlichen Kontrolle biologischer Zielsysteme ist im Rahmen dieser Arbeit das Prinzip vom wellenlängenselektiven Uncaging zweier PPGs an einem Molekül (two-PPG-one-molecule, TPOM) etabliert worden. Das Zielmolekül war hier das Antibiotikum Puromycin, welches durch seine Fähigkeit an das Ribosom zu binden, die Proteinbiosynthese inhibieren kann. Dabei wurden zwei verschiedene PPGs gefunden, die sowohl aufeinander als auch auf das Biomolekül selbst abgestimmt sind. Im Ausgangszustand sind beide PPGs am Puromycin angebracht, wodurch es in seiner biologischen Wirkung inaktiv ist. Befindet sich das doppelt geschützte Puromycin in der ROI, so kann es durch die Bestrahlung mit einer bestimmten Wellenlänge infolge des ersten Uncaging-Schritts aktiviert werden. Da biologische Systeme nicht statisch sind, können aktivierte Moleküle stets von der gewünschten ROI nach außen gelangen, wodurch der Anspruch der räumlichen Kontrolle nicht erfüllt wird. In diesem Fall kann durch die TPOM-Umsetzung die zweite Bestrahlungswellenlänge auf den entsprechenden Bereich angewendet werden, wodurch das Uncaging der zweiten PPG initiiert und folglich das Puromycin deaktiviert wird. Des Weiteren konnte gezeigt werden, dass die Deaktivierungswellenlänge auch in der Lage ist beide PPGs zu entfernen, wodurch eine vollständige Inaktivierung des Puromycins außerhalb der ROI garantiert werden kann.
Ist die Proteinbiosynthese längerfristig blockiert, führt das schließlich zum Zelltod. Ein großes Anwendungsgebiet dieses Antibiotikums sind die Neurowissenschaften. Aufgrund der Tatsache, dass Puromycin keine Unterscheidung zwischen eukaryotischen und prokaryotischen Zellen macht, findet es keine Anwendung in der Medizin. Eine zeitliche und örtliche Kontrolle seiner Wirkung könnte den Anwendungsbereich dieses Antibiotikums evtl. ausweiten. Das wohl naheliegendste wäre der Einsatz bei Tumorzellen, deren Behandlung durch Zytostatika auf den gesamten Körper wirken und dadurch viele schwere Nebenwirkungen verursachen.
Wie bereits weiter oben beschrieben muss für jedes Biomolekül und das entsprechende Wirkzentrum die Auswahl des passenden PPG-Paares einzeln abgestimmt werden. Dennoch lässt sich anhand des hier etablierten Systems ein Konzept für die erfolgreiche Umsetzung zukünftiger TPOM-Systeme an anderen biomolekularen Wirkstoffen zusammenfassend formulieren.
* Der erste Schritt sollte die Betrachtung des Wirkzentrums des zu modifizierenden Biomoleküls sein: Welche funktionelle Gruppe bzw. Gruppen sind entscheidend für die Bindetasche oder –stelle? Dieser Bereich des Biomoleküls soll im Zuge des Uncagings entweder blockiert oder abgespalten werden. In der unmittelbaren Nähe muss die PPG1 angebracht werden.
* Bei der Wahl von PPG1 ist das wichtigste Kriterium, dass das Biomolekül mit enthaltener Schutzgruppe in seiner Wirkung unbeeinträchtigt bleibt. Dies schränkt die Auswahl beträchtlich ein. Eine mögliche Umsetzung wäre die Anbringung einer Nitro-Gruppe falls vorhanden an einen Benzolring, welcher sich im Fall eines großen Biomoleküls in der Nähe der wichtigen funktionellen Stelle befindet.
* Die zweite PPG (PPG2), deren photoinduzierte Abspaltung zur Aktivierung des Wirkstoffs führen soll, kann strukturell frei gewählt werden. Das Auswahlkriterium hierbei ist das Absorptionsspektrum. Hierbei sollte das Absorptionsmaximum rotverschoben zur PPG1 sein, um eine unerwünschte Abspaltung zu vermeiden. Außerdem darf keine signifikante Absorption von PPG2 bei der Uncaging-Wellenlänge von PPG1 vorhanden sein.
* Beide PPGs sollten eine ähnliche Uncaging-Quantenausbeute vorweisen, um im Deaktivierungsschritt der doppelt geschützten Verbindung durch das höher energetische Licht keine Bevorzugung einer einzelnen Schutzgruppe zu riskieren.
Anhand der erarbeiteten Herangehensweise können weitere Wirkstoffe oder Biomoleküle hin zu einer An- / Aus-Funktionalität modifiziert werden. Mit der Umsetzung des TPOM-Konzepts kann eine Verbesserung der örtlichen und zeitlichen Kontrolle der Aktivität eines Antibiotikums erreicht werden. Für die Anwendung in biologischer Umgebung ist diese präzische Kontrolle essentiell, um unerwünschte Nebenwirkungen angesundem Gewebe zu verhindern.