Refine
Year of publication
Document Type
- Doctoral Thesis (24)
- Diploma Thesis (2)
- Book (1)
Has Fulltext
- yes (27)
Is part of the Bibliography
- no (27)
Keywords
- RFQ-Beschleuniger (3)
- Beschleuniger (2)
- Dauerstrichbetrieb (2)
- Ionenbeschleuniger (2)
- Ionenstrahl (2)
- Linearbeschleuniger (2)
- RFQ (2)
- Radio Frequenz Quadrupol (2)
- Bildladung (1)
- CW (1)
Institute
- Physik (27)
Elektron-Zyklotron-Resonanz-Ionenquellen dienen der Erzeugung von hochgeladenen Schwerionen. Die Erzeugung und Extraktion der Schwerionen beruht auf dem komplexen Zusammenspiel von physikalischen Prozessen aus der Atom, Oberflächen und Plasmaphysik sowie der Elektrodynamik. In dieser Arbeit werden grundlegende physikalische Prozesse in EZR-Ionenquellen experimentell untersucht, welche auf Grund der Komplexität bislang nicht vollständig verstanden sind. Als Schwerpunkt werden insbesondere die häufig angewendeten Methoden zur Steigerung der Ausbeute an hochgeladenen Ionen erforscht. Hierzu zählen die negativ vorgespannte Scheibe (eine Elektrode in axialer Nähe des Plasmas, biased Disk), die Beschichtung der Plasmakammerwände mit Isolatoren (Wall coating) und die Gasbeimischung von leichteren Gasen zum eigentlichen Arbeitsgas. Die Untersuchungen wurden an der Frankfurter EZR-(VE)RFQ-Beschleunigeranlage durchgeführt und mit aktuellen Theorien sowie Messungen an anderen EZR-Ionenquellen verglichen. Zur Diagnose wird erstmals die negativ vorgespannte Scheibe im gepulsten Betrieb eingesetzt, um die dynamische Auswirkung dieser Scheibe auf den Ionisationsprozeß und die Ionenextraktion zu studieren. Als erstaunlichstes Ergebnis wird die bisher vermutete und in der Literatur dargestellte physikalische Wirkungsweise der biased Disk, nämlich die Erhöhung der Plasmadichte und eine Verbesserung des Ionisationsprozesses, widerlegt. Dieses Ergebnis wird durch Messungen der Quellenemittanz, des dynamischen Ionisationsverlaufes durch Injektion von kurzen Neutralteilchenpulsen mittels Laserablation, der Spektroskopie der Röntgenbremsstrahlung und der optischen Spektroskopie des sichtbaren Lichtes bestätigt. Als neue Hypothese für die physikalische Auswirkung der negativ vorgespannten Scheibe auf die Ausbeute an hochgeladenen Schwerionen wird eine axiale Elektronenverteilung angenommen. Diese entsteht aus axial oszillierenden Elektronen, welche in einem Potentialtopf zwischen der negativ vorgespannten Scheibe und dem Extraktionsbereich der Ionenquelle eingeschlossen sind. Radial werden diese Elektronen durch die Magnetfeldlinien der beiden Magnetspulen geführt. Diese Elektronenverteilung beeinflußt die Ionendiffusion aus dem EZR-Plasma und die Ionenstrahlformierung im Extraktionsbereich der Ionenquelle positiv. In dieser Arbeit wird zudem gezeigt, daß die gezielte Steuerung der Ionenextraktion durch die vorgespannte Scheibe (biased Disk) mit sehr geringem Aufwand möglich ist. Insbesondere durch Pulsung der Disk-Spannung ist die Extraktion von gepulsten Ionenstrahlen aus einer EZR-Ionenquelle mit bislang nicht erreichten Wiederholungsfrequenzen möglich (bis einige 10 kHz). Die Ionenpulse weisen zudem höhere Intensitäten im Vergleich zur kontinuierlichen Extraktion auf. Eine weitere angewendete Diagnosemethode ist die Injektion von kurzen Pulsen an Neutralteilchen in das EZR-Plasma mit dem Ziel, die Ionenerzeugung und die Ionenextraktion zeitaufgelöst zu studieren. Die Neutralteilchenpulse werden mit Hilfe der Laserablation erzeugt und im EZR-Plasma sukzessive ionisiert. Das zeitliche Verhalten der extrahierten Ionen gibt Ausschluß über die Dynamik des Ionisationsprozesses, den Ioneneinschluß und die Extraktion der Ionen. Hierbei werden die Auswirkungen der Mikrowellenleistung, des Quellengasdruckes, der Gaszusammensetzung und der negativ vorgespannten Scheibe auf die Erzeugung von hochgeladenen Ionen in einer EZR-Ionenquelle untersucht. Auch diese Messungen werden durch die Untersuchung der Röntgenbremsstrahlung und der optischen Spektroskopie des sichtbaren Lichtes vervollständigt. Außerdem wird der Einfluß der injizierten Neutralteilchenpulse auf das bestehende Plasma in der Ionenquelle gemessen. Neben der Plasmadiagnose durch die Injektion von Neutralteilchenpulsen mittels Laserablation wurde auch die Erzeugung von gepulsten Strahlen hochgeladener Ionen verschiedenster Festkörperelemente untersucht. Es wird gezeigt, daß durch einen einfachen Versuchsaufbau hochgeladene Ionen von nahezu allen Festkörpern erzeugt werden können. Durch den Einsatz von speziellen Aluminium-Hohlzylindern mit metalldielektrischer Beschichtung (AlAl 2 O 3 ) in der Plasmakammer der EZR-Ionenquelle (Wall coating) und der dadurch gezielten Beeinflussung der Plasma-Wand-Wechselwirkung kann die Ausbeute an hochgeladenen Schwerionen (z. B. Ar 16 ) um bis zu einem Faktor 50 gesteigert werden. Die in dieser Arbeit angewandten Diagnosemethoden und das dadurch erzielte bessere Verständnis der physikalischen Prozesse und der Dynamik im EZR-Plasma ermöglichen die Erhöhung der Ausbeute an hochgeladenen Ionen, die effektive Erzeugung von hochgeladenen Festkörperionen und die Extraktion von gepulsten Ionenstrahlen mit bisher nicht erreichten Wiederholungsfrequenzen.
A basic introduction to RFQs has been given in the first part of this thesis. The principle and the main ideas of the RFQ have been described and a small summary of different resonator concepts has been given. Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the limitation of these approaches were shown. The main work of this thesis was the implementation and analysis of a Multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a Multigrid Poisson solver are the ability of a Gauß-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauß-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. After illustrating the results of the multigrid Poisson solver, a comparison to the field of the old multipole expansion method was made. The multipole expansion method is an accurate representation of the field within the minimum aperture, as limited by cylindrical symmetry. Within these limitations the multigrid Poisson solver and the multipole expansion method agree well. Beyond the limitation the two method give different fields. It was shown that particles leave the region in which the multipole expansion method gives correct fields and that the transmission is affected therefrom as well as the single particle dynamic. The multigridPoisson solver also gives a more realistic description of the field in the beginning of the RFQ, because it takes the tank wall into account, and this effect is shown as well. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. For RFQs with small apertures and big modulations the two different method give different values for the transmission due to the limitation of the multipole expansion method. The internal space charge fields without images was analyzed at the level of single particle dynamic and compared to the well known SCHEFF routine from LANL, showing major differences for the analyzed particle. For comparing influences on the transmissions of the set of 12 RFQs a third space charge routine (PICNIC) was considered as well. The basic shape of the transmission curve was the same independent of space charge routines, but the absolute values differ a little from routine to routine, with SCHEFF about 2% lower than the other routines. The multigrid Poisson solver and PICNIC agree quite well (less than 1%), but PICNIC has an extremely long running time. The major advantage of the multigrid Poisson solver in calculating space charge effects compared to the other two routines used here is that the Poisson solver can take the effect of image charges on the electrodes into account by just changing the boundaries to have the shape of the vanes whereas all other settings remain unchanged. It was demonstrated that the effect of image charges on the vanes on the space charge field is very big in the region close to the electrodes. Particles in that region will see a stronger transversely defocusing force than without images. The result is that the transmission decreases by as much as 10% which is considerably more than determined by other (inexact) routines before. This is an important result, because knowing about the big effect of image charges on the electrodes it allows it to taken into account while designing the RFQ to increase the performance of the machine. It is also an important factor in resolving the traditional difference observed between the transmission of actual RFQs and the transmission predicted by earlier simulations. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The machine was assembled in Frankfurt and a beam test stand was built. The shunt impedance of the structure was measured using different techniques, the output energy of the structure were measured and finally its transmission was determined and compared to the beam dynamics simulations of the RFQ. Unfortunately, the transmission measurements were done without exact knowledge of the beam’s emittance. So the comparison to the simulation is somewhat rough, but with a reasonable guess of the emittance a good comparison between the measurement and simulation was obtained.
Das Ziel der vorliegenden Arbeit war der Einbau, die Inbetriebnahme, die Abstimmung und der Test eines Strahlmatchingsystems in eine Zweistrahl-RFQ-Beschleunigerstruktur. Dieses Strahlmatchingsystem wurde entwickelt, um die Beschleunigereinheit des Frankfurter Funneling-Experimentes besser an die nachfolgende HF-Deflektoreinheit anzupassen und um zu zeigen, dass ein Strahlmatching innerhalb der RFQ-Beschleunigerstruktur möglich ist. Des Weiteren wurden die zum Versuch gehörigen Ionenquellen modifiziert, um eine bessere Anpassung der Strahlherstellung an die Beschleunigerstruktur zu erreichen. Die Spannungsverteilung in der Beschleunigerstruktur selbst wurde durch weitergehende Tuningmaßnahmen verbessert, um die Teilchenverluste weiter zu minimieren Mit dem Funnelingexperiment soll experimentell geprüft werden, ob eine Strahlstromerhöhung durch das Zusammenführen mehrerer Ionenstrahlen verschiedener Ionenquellen möglich ist. Solch ein System ist für einige Zukunftsprojekte (HIDIF, SNS-Ausbau, ESS, u.ä.), die große Strahlströme benötigen, die nicht aus nur einer Ionenquelle extrahiert werden können, erforderlich. Das in dieser Arbeit behandelte Strahlmatching ist für das Experiment notwendig, da zu große Teilchenverluste in der Funnelsektion entstanden und somit eine bessere Anpassung des Strahls an den HF-Deflektor erforderlich wurde. Es konnte gezeigt werden, dass die hier verwendete Art der Strahlfokussierung auch in eine komplizierte RFQ-Beschleunigerstruktur integrierbar ist, in der zwei Strahlkanäle auf der gleichen Stützen-Bodenplatten-Konstruktion aufgebaut sind. Die Verlängerung der Endelektroden und die Integration einer Strahlanpassung haben einen positiven Einfluss auf die Transsmission innerhalb des Beschleunigers und verbessern die Transmission durch den Deflektor. Es konnten Energiemessungen und zeitaufgelöste Faradaytassenmessungen der Teilchenbunche sowie zeitaufgelöst Makropulse mit der Faradaytasse gemessen werden. Floureszensschirmmessungen zeigten, dass die beiden Teilchenstrahlen auf eine neue gemeinsame Strahlachse gebogen wurden. Die Energiemessung zeigte, dass die Simulationen mit RFQSIM sehr genau die Endenergie der Teilchen berechnen konnte. Im Strahlkreuzungspunkt hinter dem Zweistrahl-RFQ-Beschleuniger konnten nahezu identische Teilchenbunche erzeugt werden. Diese Teilchenbunche wiesen zudem die in vorherigen Simulationen errechneten Charakteristika auf, in denen eine transversale und eine longitudinale Fokussierung gegenüber dem ungematchten Strahl simuliert wurden. Es konnte auch eine weitere Strahlradiusreduzierung gemessen werden, die auf eine exaktere Justierung der Elektroden zurückzuführen ist. Die Phasenfokussierung konnte verbessert werden, indem die Elektrodenspannung besser an die Strahlmatchingsektion angepasst wurde. Hierzu mussten auch die Einschussparameter der Strahlen in die Beschleuniger angepasst werden, damit die Transmission der Beschleuniger sich nicht verschlechterte. Insgesamt konnte mit den durchgeführten Experimenten erstmals demonstriert werden, dass zwei Strahlen in einem RFQ-Beschleuniger auf einen Punkt hinter dem Beschleuniger angepasst werden können und die Spannungsverteilung in solch einer Struktur durch Tuningmaßnahmen abstimmbar ist. Es konnte erstmals demonstriert werden das über 90% der Teilchen beider Strahlen, bei guten Strahleigenschaften, auf eine neue gemeinsame Strahlachse abgelenkt (gefunnelt) wurden.
Die vorliegende Arbeit befasste sich mit der Entwicklung und der Aufbau einer neuartigen Fingerdriftröhren-Struktur als Teil des neuen Vorbeschleunigers COSY-SCL am Kernforschungszentrum in Jülich. In dieser Arbeit wird die Entwicklung der Spiralresonatoren beschrieben, die als Nachbeschleuniger direkt hinter den RFQs zum Einsatz kommen sollen. Als mögliche Option zur Verbesserung der Strahlqualität wurden Fingerdriftröhren vorgeschlagen. Mit Hilfe dieser Struktur ist es möglich, mit geringer zusätzlicher Leistung eine Fokussierung des Ionenstrahls in der beschleunigenden Struktur zu erreichen. Dies war bisher nur bei niedrigen Energien mit der RFQ-Struktur möglich. Bei höheren Energien ist man stets auf magnetische Quadrupollinsen angewiesen. Dies führt jedoch gerade in einem Geschwindigkeitsbereich bis ca. 10 % der Lichtgeschwindigkeit zu Problemen, da die zur Verfügung stehenden Abmessungen zu gering sind. Nachdem zunächst das COSY-SCL Projekt vorgestellt wurde und die grundlegende Theorie für RFQ und Driftröhrenbeschleuniger behandelt wurde, wurden in Kapitel 5 Rechnungen zur Strahldynamik mit dem Programm RFQSIM vorgestellt. Aufgrund der hohen benötigten Gesamtspannung fiel die Entscheidung, einen Vierspaltresonator mit einer geerdeten Mitteldriftröhre aufzubauen. Durch diese Veränderung wurde es möglich, die Feldstärken in den einzelnen Spalten gleichmäßiger zu verteilen und niedriger zu halten, und die benötigte Verlustleistung zu minimieren. Die Teilchendynamik in einem Beschleunigungsspalt mit Fingerelektroden wurde mit einem neuen Transportmodul in RFQSIM untersucht, das den Transport geladener Teilchen durch beliebige dreidimensionale Elektrodenkonfiguration ermöglicht. Mit Hilfe der Fingerdriftröhren ist es möglich, die transversale Ausdehnung des Strahls am Ausgang des Nachbeschleunigers zu verringern und die Anpassung an einen folgenden Beschleuniger zu vereinfachen, ohne das große Einbußen bezüglich der Effektivität der Beschleunigung in Kauf genommen werden müssen. Um die HF Eigenschaften der beiden Beschleunigerstrukturen zu vergleichen, wurden sie mit dem MWS Programm numerisch berechnet. Um genauere Aussagen über die Eigenschaften des elektrischen Feldes zu machen, wurde eine Multipolanalyse der Felder durchgeführt. Damit lässt sich eine Aussage über die Stärke der Fokussierung und mögliche Feldfehler machen. Dabei zeigte sich, dass die auftretenden Feldfehler vernachlässigbar klein sind und sogar störende Effekte unterdrückt werden. Abschließend wurde der Aufbau des Resonators und den daran durchgeführten Messungen auf Meßsenderniveau behandelt. Resultat dieser Untersuchungen ist eine Struktur, die sehr gut und effektiv als Nachbeschleuniger hinter dem RFQ für COSY-SCL eingesetzt werden kann. Durch den Einsatz der Fingerdriftröhren kann mit einer einzelnen Struktur sowohl die Aufgabe der Beschleunigung als auch der Fokussierung bei mittleren Teilchenenergien bewältigt werden. Der neue fokussierende Spiralresonator entspricht in seinen Eigenschaften einer RFQ-Struktur für höhere Teilchengeschwindigkeiten. Die Ergebnisse dieser Arbeit zeigen, wie attraktiv eine solche Lösung mit Fingerdriftröhren ist. Deshalb ist geplant, in einem nächsten Schritt Strahltests durchzuführen, da die beschriebene Driftröhrenstruktur mit ihren Eigenschaften sehr gut für die Beschleunigung von Ionen in dem Geschwindigkeitsbereich zwischen RFQ- und IH Struktur geeignet ist und ein Einsatz z.B. in dem FLAIR Projekt möglich wäre.
Ziel der vorliegenden Arbeit ist die Entwicklung, Aufbau und Inbetriebnahme eines Funnelsystems zur Zusammenführung zweier Teilchenstrahlen, bestehend aus zwei Injektionssystemen, zwei RFQ-Beschleunigern, Hochfrequenz-Deflektoren und Diagnoseeinheiten. Die Aufgabe des Experiments ist die praktische Umsetzung eines neuartigen Verfahrens zur Strahlstromerhöhung bei im Idealfall gleichbleibender Emittanz und steigender Brillanz. Notwendig wird dies durch die benötigten hohen Strahlströme im niederenergetischen Bereich einiger zukünftiger geplanter Beschleunigeranlagen. Hier kann der Strahlstrom nicht mehr konventionell von einer einzigen Ionenquelle erzeugt werden. Nur durch die Parallelerzeugung mehrerer Teilchenstrahlen sowie mehrfachem Zusammenführen (Funneling) der Teilchenstrahlen ist es möglich, die notwendigen Strahlströme bei der geforderten kleinen Emittanz zur Verfügung zu stellen. Das Frankfurter Funneling-Experiment ist die skalierte erste HIDIF-Funneling-Stufe als Teil eines Fusionstreibers. Hier werden zwei möglichst identische Helium-Teilchenstrahlen von zwei Ionenquellen erzeugt und in zwei RFQ-Beschleunigern beschleunigt. Der Deflektor biegt die Teilchenstrahlen reißverschlussartig auf eine gemeinsame Strahlachse. Am Anfang der Arbeit stand die Optimierung des Betriebs der Beschleunigerkomponeten und die Entwicklung und der Aufbau eines Einzellendeflektors. Erste erfolgreiche Strahlexperimente zur Strahlvereinigung werden im Kapitel 7.5 vorgestellt. Die Phasenraumellipse des zusammengeführten Strahls zeigt starke bananenförmige Deformierungen, die auf eine schlechte Anpassung des RFQ an den Funnel-Deflektor zurückzuführen sind. Das Elektrodendesign des RFQ ist in zwei unabhängige Bereiche unterteilt. Die erste Zone dient der Beschleunigung der Teilchen. In der zweiten Zone soll erstmals ein sogenannter 3D-Fokus der Strahlradien der x- und y-Ebene und einer longitudinaler Fokussierung erreicht werden. Der zweite Abschnitt bestand für erste Strahltests aus zunächst unmodulierten Elektroden. Zur besseren Anpassung des RFQ an den Funneldeflektor wurde dann das letzte Elektrodenteil erneuert. Der Umbau erfolgte zunächst nur bei einem der beiden RFQ-Beschleuniger. Somit war der direkte Vergleich zwischen altem und neuen Elektrodendesign im Strahlbetrieb möglich. Mit diesem neuen Elektrodenendteil wurde eine Reduktion der Strahlradien der x- sowie y-Ebene, eine bessere longitudinalen Fokussierung sowie eine höhere Transmission erreicht (Kapitel 8). Damit ist es erstmals gelungen mit einer speziellen Auslegung der RFQ-Elektroden eine direkte Anpassung an nachfolgende Elemente zu realisieren. Untersuchungen zur Strahlzusammenführungen werden seit einigen Jahren am Institut durchgeführt. Mit der Entwicklung des 3D-matchers wurde ein weiteres der kritischen Probleme gelöst. Der Umbau des zweiten Beschleunigers findet zur Zeit statt. Nach der Inbetriebnahme werden Funneling-Experimente mit dem Einspalt- und einem neuem Vielspaltdeflektor folgen.
Für das Helmholtzzentrum für Schwerionenforschung (GSI), in Darmstadt, wurde ein neuer RFQ zur Beschleunigung schwerer Ionen für den Hochladungsinjektor (HLI) entwickelt. Dieser RFQ hat den bereits vorhandenen ersetzt und soll, für die Anpassung des HLI an die neue 28 GHz-ECR-Ionenquelle, den Duty-cycle von 25 % auf 100 % erhöhen, um superschwere Ionen zu erzeugen und die Experimente mit schweren Ionen zu versorgen. Der RFQ hat die Aufgabe schwere, hochgeladene Ionen von 4 keV/u auf 300 keV/u zu beschleunigen. Wichtige Eigenschaften sind ein hoher Strahlstrom, eine hohe Strahl-Transmission, eine kleine Strahlemittanz und eine geringe transversale Emittanzzunahme. Die Erhöhung der Injektionsenergie von 2,5 keV/u auf 4 keV/u ermöglicht eine Verkleinerung des Konvergenzwinkels. Der Aufbau des 4-Rod-RFQs für den HLI ist Thema der vorliegenden Arbeit. Die Auslegung des HLI-RFQs bezieht sich auf ein festgelegtes max. Masse zu Ladungsverhältnis von A/q = 6, bei einer Betriebsfrequenz von 108,408 MHz. Die Ionen sollen bei einem Strahlstrom von 5 mA von 4 keV/u auf 300 keV/u beschleunigt werden. Durch die spezielle teilchendynamische Auslegung konnte die Länge des Tanks von vorher 3 m auf jetzt 2 m verkürzt werden. Dies begünstigt den CW-Betrieb der Struktur. Durch den CW-Betrieb hat man eine hohe Leistungsaufnahme, dies erfordert eine besondere teilchendynamische und hochfrequenztechnische Auslegung der RFQ-Struktur und eine effiziente Kühlung. Zur Simulation der Hochfrequenzeigenschaften wurde ein Modell des RFQ mit dem Programm Microwave Studio (MWS) erstellt. Die Simulationen ergaben einen nur 2 m langen RFQ mit sehr hoher Transmission > 95%. Nach den entsprechenden Simulationsrechnungen bezüglich der Teilchendynamik und der Hochfrequenzeigenschaften wurde der RFQ aufgebaut. Der zeitaufwändige Aufbau lässt sich in drei Abschnitte einteilen. Die Elektroden wurden präzise ausgemessen. Danach wurden Stützen, Elektroden und Tuningplatten an der Bodenplatte montiert und in den Tank eingesetzt. Im Tank wurden die Elektroden justiert, die zuerst außerhalb vermessen wurden. Die korrekte Position der Elektroden zur Referenzfläche wurde berechnet und mit Hilfe eines Faro-Gage im Tank eingemessen. Die maximale Abweichung der Elektrodenposition konnte auf 0,03 mm reduziert werden. Nach der mechanischen Einrichtung folgte die HF-Anpassung des Resonators. Durch das Erhöhen der Tuningplattenpositionen zwischen den Stützen konnte die Resonanzfrequenz von 90,8 MHz auf 108,4 MHz erhöht werden. Als nächstes wurde die Spannungsverteilung im Tank gemessen und mit Hilfe der Tuningplatten konnte sie so eingestellt werden, dass die maximale Abweichung zur mittleren Elektrodenspannung bei nur ± 2% liegt. Zur weiteren Hochfrequenzabstimmung wurde die Wirkung zweier Tauchkolben mit einem Durchmesser von 75 mm untersucht. Die Tauchkolben ermöglichen eine Anpassung der Frequenz im Bereich von 1,4 MHz. Sie sollen die möglichen Frequenzverschiebungen durch beispielsweise thermische Effekte, auf Grund des HF-Betriebs, regulieren. Für die Hochfrequenzabstimmung wurde eine Ankoppelschleife gefertigt und angepasst. Die Güte des Resonators betrug Q0 = 3100, bei einem RP-Wert RP = 100 kΩm, d.h. die zur Versorgung stehende HF-Leistung (50 kW im CW-Betrieb) reicht aus. An der GSI wurde nach dem Transport eine Kontrolle der Elektroden vorgenommen, danach wurde der RFQ erst einzeln, danach als komplette HLI Einheit getestet. Dazu wurden verschiedene Pulsmessungen und Emittanzmessungen mit Argon 7+ und Argon 8+ durchgeführt. Bei der ersten Strahlinbetriebnahme wurden die Transmission, die Ionenenergie und die Emittanz mit verschiedenen Ionen gemessen. Die ersten Tests des HLI-RFQ waren sehr vielversprechend. In den Tests war zu sehen, dass die vorgenommenen Arbeiten, wie Justage und HF-Abstimmung der Resonanzstruktur, erfolgreich waren. Danach wurde der Strahlbetrieb mit Calcium, bei einer Leistung von 50 kW, durchgeführt. Die gemessene Transmission bei einer Spannung von 43 kV lag bei 70 %. Im Mai 2010 gab es eine 14Stickstoff2+ -Strahlzeit mit einer gepulsten Leistung von N = 90 kW. Danach wurde Anpassungstests mit verschiedenen Schwerionen durchgeführt. Im November 2010 wurden neue Tuningplatten mit einer besseren Stützenkontaktierung sowie einer besseren Kühlung eingebaut. Die Elektroden wurden nach diesen Maßnahmen auf ± 0,04 mm einjustiert. Die Flatness liegt bei ± 2,1 %, die Güte beträgt Q0 = 3300. Der RFQ wurde in die Beamline eingebaut und geht im Januar 2011 in Betrieb.
Ionenstrahlen werden in der Grundlagenforschung, in der Industrie und der Medizin verwendet. Um die Teilchen für die jeweiligen Anforderungen nutzbar zu machen, werden sie mit Ionenbeschleunigern je nach Anwendung auf eine bestimmte Energie beschleunigt. Eine Beschleunigeranlage besteht dabei aus einer Reihe von unterschiedlichen Elementen: Ionenquellen, Linearbeschleuniger, Kreisbeschleuniger, Fokussierelemente, Diagnosesysteme usw. In jeder dieser Kategorien gibt es wiederum verschiedene Realisierungsmöglichkeiten, je nach Anforderung des jeweiligen Abschnitts und der gesamten Anlage. Im Bereich der Linearbeschleuniger ist als Bindeglied zwischen Ionenquelle/Niederenergiebereich und Nachfolgebeschleuniger der Radiofrequenzquadrupol (RFQ) weit verbreitet. Dieser kann den aus der Quelle kommenden Gleichstromstrahl in Teilchenpakete (Bunche) formen und diese gleichzeitig auf die nächste Beschleunigerstufe angepasst vorbeschleunigen. Desweiteren wird der Teilchenstrahl innerhalb des RFQ kontinuierlich fokussiert, wodurch insbesondere bei diesen niedrigen Energien Strahlverluste minimiert werden. Bei hohem Masse-zu-Ladungs-Verhältnis wird für schwere Ionen eine niedrige Resonanzfrequenz von deutlich unter 100 MHz benötigt. Dies führt zu längeren Beschleunigungszellen entlang der Elektroden, womit durch eine bessere Fokussierung auch höhere Strahlströme beschleunigt werden können. Im Allgemeinen bedeutet eine niedrigere Resonanzfrequenz aber auch einen größeren Querschnitt der Resonanzstruktur sowie einen längeren Beschleuniger. Gegenstand dieser Arbeit ist die Untersuchung unterschiedlicher RFQ-Strukturen für niedrige Frequenzen, wie sie beispielsweise im Linearbeschleunigerbereich der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt Anwendung finden. Zunächst wird die Beschleunigeranlage des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt und dessen zur Zeit im Bau befindliche Erweiterung FAIR (Facility for Antiproton and Ion Research) kurz vorgestellt. Teil dieser Anlage ist der Hochstrominjektor genannte Anfangsbeschleuniger, der wiederum aus einem RFQ und zwei nachfolgenden Driftröhrenbeschleunigern besteht. Dieser Hochstrominjektor dient als Referenz für die vorliegende Arbeit. In Kapitel 3 wird kurz auf Linearbeschleuniger im Allgemeinen und auf das Grundprinzip und die Eigenschaften eines RFQ näher eingegangen. Anschließend werden verschiedene RFQ-Strukturkonzepte vorgestellt und die Strahldynamik in einem RFQ sowie charakteristische Resonatorgrößen beschrieben. Ausgangspunkt ist der aktuelle RFQ des Hochstrominjektors (Kapitel 4). Dieser IH-RFQ mit einer Betriebsfrequenz von 36 MHz ist seit vielen Jahren in Betrieb und soll für eine verbesserte Effizienz und Betriebssicherheit ein Upgrade erfahren. Dazu wurden Simulationen sowohl der bestehenden Struktur als auch mit Modifikationen durchgeführt und diese miteinander verglichen. Zur Entwicklung eines kompakten Resonators werden in Kapitel 5 verschiedene Splitring-RFQ-Modelle als Alternative zur IH-Struktur mittels Simulationen untersucht. Diese wurden für eine niedrigere Frequenz von 27 MHz entworfen, was der Frequenz des ursprünglichen Wideröe-Beschleunigers (Vorgänger des Hochstrominjektors HSI) entspricht und ebenso wie die 36 MHz des IH-RFQ eine Subharmonische der 108 MHz des Folgebeschleunigers ist. Abschließend wurde noch eine neue RFQ-Struktur, der Splitframe-RFQ, entworfen und untersucht. Auch dieser wurde für eine Frequenz von 27 MHz ausgelegt. Die Ergebnisse dieser Entwicklung, die eine Mischung aus einem Splitring- und einem klassischen 4-Rod-RFQ darstellt, befinden sich in Kapitel 6. Alle Feldsimulationen wurden mit dem Programm Microwave Studio von CST durchgeführt. Zusammenfassend werden die verschiedenen Konzepte anhand der charakteristischen Resonatorgrößen verglichen und ein Ausblick auf weiterführende Arbeiten gegeben.
Im Jahr 2000 wurde am Soreq Nuclear Research Center in Yavne bei Tel Aviv, Israel, der Neubau der Forschungsanlage SARAF (Soreq Applied Research Accelerator Facility) begonnen. Mit dem Bau der Anlage sollen neue Forschungsfelder erschlossen, sowie die vorhandenen Experimente erweitert werden, der Forschungsreaktor IRR1 und die vorhandenen Beschleunigeranlagen werden damit abgelöst. Kernstück der Anlage ist der Linearbeschleuniger aus EZR-Ionenquelle, LEBT, RFQ, MEBT und 46 supraleitenden HWRs, damit soll ein 5 mA Deuteronen CW-Strahl der Teilchenenergie 40 MeV erzeugt werden.
Das Funneling-Prinzip ist für Großprojekte wie SNS und IFMIF zur Erzeugung hoher Strahlströme bei hoher Brillanz von großem Interesse und bietet die Möglichkeit der Strahlstromerhöhung bei gleichbleibender Emittanz. Das Frankfurter Funneling-Experiment ist ein skalierter Aufbau einer ersten Funneling-Stufe von HIDIF. Hauptbestandteile des Experimentes sind zwei Multicusp-Ionenquellen, ein Zwei-Strahl-RFQ-Beschleuniger, ein Einzellen- und ein Mehrzellen-Deflektor sowie eine Emittanzmeßanlage. Das Zusammenführen zweier Ionenstrahlen nach dem Funneling-Prinzip konnte am IAP im Jahr 2000 erstmalig realisiert werden. Allerdings war aufgrund der unmodulierten End-Elektroden des RFQ-Beschleunigers der Strahlradius und die Emittanz bereits bei Eintritt in den Deflektor viel zu groß. Die dadurch aufgetretenen Strahlverluste an den Elektroden führten also nicht zu der gewünschten Strahlstromverdoppelung. Daraufhin wurden die letzten Elektrodenstücke der beiden Beschleuniger gegen modulierte Elektroden ausgetauscht. Der Fokus der Ionenstrahlen wird nun mittels eines sogenannten 3D-Matchings in den Strahlkreuzungspunkt gelegt. Experimente mit den neuen RFQ-End-Elektroden und dem überarbeiteten Mehrzellen- Deflektor stehen noch aus. Die vorliegende Arbeit entstand als theoretischer Teil im Rahmen des Frankfurter Funneling-Experimentes. Es sind zahlreiche Simulationsrechnungen zum bestehenden experimentellen Aufbau durchgeführt worden, die in Auszügen in Kapitel 7 dargestellt wurden. Weiterhin wurde die Teilchendynamik und die Raumladung in Deflektoren, das Emittanzwachstums während des Funnelings, der Einfiuß der inhomogenen Felder bei verschiedenen Deflektorgeometrien ausführlich untersucht und ausgewertet (Kapitel 8). Für diese Aufgaben sind einerseits neue Programme für eine dreidimensionale Deflektorsimulation und andererseits Software zur Auswertung mit graphischer Darstellung geschrieben worden. Diese wurden in Kapitel 6 vorgestellt. Die für diese Arbeit entwickelten Programme ermöglichen die Berechnung der Potential- und Feldverteilungen in elektrischen Hochfrequenz-Funneling-Deflektoren sowie die Simulation des Funnelingprozesses zweier Ionenstrahlen. Ferner sind diverse Auswertemethoden in tabellarischer oder graphischer Form wie Strahlverlauf, Emittanzebenen, Dichteverteilungen und Verlustgraphen verfügbar. Damit sind umfangreiche Simulationen und Auswertungen bezüglich des Deflektordesigns und der Strahldynamik sowie Optimierungen solcher Systeme möglich. Der Einfluß der Raumladungskräfte und der inhomogenen Felder auf den Funnelingprozeß konnten in Kapitel 8 gezeigt werden. Für den im Experiment verwendeten Mehrzellen-Deflektor sollten folgende Strahlparameter eingehalten werden: der Strahlradius in der x-y-Ebene sollte vor Eintritt in den Deflektor kleiner als 0.5 cm sein, die Energiebreite deltaW < +- 2% und die Phasenbreite deltaPhi < +- 30° betragen. Ansonsten treten Teilchenverluste durch Elektrodenkontakt auf oder der Bunch wird in longitudinaler Richtung zu groß, so daß die Möglichkeit besteht, das eine Überlappung der Bunche stattfindet. Mit der vorliegenden Arbeit sind Programme zur detaillierten Berechnung und Analyse von Funneling-Systemen entwickelt worden. Zukünftige Aufgaben sind neben der Untersuchung der Randfelder in Deflektoren die Minimierung des Emittanzwachstums durch die inhomogenen Felder. Nach ersten Strahltests und Funnelingergebnissen ist zu entscheiden, ob eine Matching-Sektion zwischen RFQ-Beschleuniger und Funneling-Deflektor zur weiteren Strahlanpassung eingebracht werden muss.
Bei der Ionenstrahltherapie bestimmt die Energie der Ionen die Eindringtiefe in das Gewebe und damit die Lage des Braggpeaks, in dem der größte Teil der Ionisationsenergie deponiert wird.
Um die gewünschte Dosis möglichst genau im Tumor zu lokalisieren, müssen in den aufeinanderfolgenden Extraktionen die gewünschten unterschiedlichen Energien möglichst genau sein.
In der Beschleunigungsphase werden die Magnetfelder der Magnete im Synchrotron bis zum vorgegebenen Exktraktionswert hochgefahren. Dieser bestimmt zusammen mit der Synchrotronfrequenz die Strahlenergie. Während und insbesondere am Ende dieser Phase, Rampe genannt, sollte das Magnetfeld daher sehr genau dem berechneten Sollwert folgen, um Strahlverluste zu minimieren und die geforderte Strahlqualität zu erreichen.
In der zeitlichen Steuerung der Magnetströme müssen magnetische Effekte, die hauptsächlich im Eisen der Magnete auftreten, wie Wirbelströme und die Hysterese berücksichtigt werden, da sie das Feld verfälschen und damit den Strahl in unerwünschter Weise beeinflussen. Die während der Rampe entstehenden Wirbelströme stören das Magnetfeld, so dass bisher vor der Extraktion des Strahls eine Wartezeit eingeführt wurde, bis die Wirbelströme abgeklungen waren.
Bei beliebig wählbaren Abfolgen der vordefinierten Zyklen kommt es durch die Hysterese des Eisens zu unterschiedlichen Remanenzfeldern, die das Magnetfeld verändern. Um dem vorzubeugen, durchliefen die Magnete eine vordefinierte Hystereseschleife. Ist die geforderte Energie des Strahls erreicht, wird das Magnetfeld konstant gehalten und die Teilchen aus dem Synchrotron extrahiert. Der Rest der Hystereseschleife wurde am Ende des Zyklus durchlaufen.
Die im Rahmen dieser Dissertation entwickelte dynamische Magnetfeldregelung misst das integrale Magnetfeld sehr genau und korrigiert die Feldfehler. Das integrale Magnetfeld folgt damit jederzeit seiner Vorgabe, unabhängig von den dynamischen Störeffekten. Die Wirbelströme und die Hysterese sind zwar immer noch vorhanden, die dadurch verursachten Feldfehler können aber durch eine Rückkopplung auf den Strom des Magneten korrigiert werden.
Es werden verschiedene Verfahren zur Messung der Magnetfelder untersucht. Am besten eignet sich für die dynamische Magnetfeldregelung die Kombination aus einer Hallsonden- und einer Induktionsspulenmessung. Die Messung muss das integrale Magnetfeld des Magneten BL, also das gesamte Feld entlang des Strahlwegs, bestimmen. Die Induktionsspule, oder Pickupspule, liegt deshalb entlang des Strahlrohrs im Magneten und liefert eine Spannung in Abhängigkeit von der Änderung des magnetischen Flusses. Durch die Integration dieser Spannung erhält man das integrale Feld des Magneten. Die Messung wird mit einer Hallsondenmessung zu Beginn des Beschleunigerzyklus auf einen absoluten Messwert geeicht.
Der Hauptteil dieser Arbeit beschäftigt sich mit der Entwicklung des sogenannten HIT Integrators, der die Integration der Pickupspulenspannung übernimmt. Bisher verfügbare Integratoren konnten die notwendigen Anforderungen an Genauigkeit, Echtzeitfähigkeit, automatische Kalibrierung, ständige Messbereitschaft, Temperaturunabhängigkeit und hohe Verfügbarkeit nicht erfüllen. Der neu entwickelte HIT Integrator wurde diesen Anforderungen entsprechend entwickelt. Der Integrator mit dem neuartigen Konzept der gleichzeitigen Messung und Kalibrierung in Echtzeit ist als Patent angemeldet worden. Neben der Entwicklung und Verwirklichung des Gesamtkonzepts war die numerische Integration des stark verrauschten Pickupspulensignals und die sofortige Umsetzung des integralen Werts in ein Steuersignal für die Dipolmagnetstromgeräte eine besondere technische Herausforderung.
Die elektronischen Schaltungen für die dynamische Magnetfeldregelung sind in der Baugruppe des HIT Integrators zusammengefasst. Die Ansteuerung der Hallsonde mit einer temperaturkompensierten Stromquelle, der Signalaufbereitung und Analog-Digital-Wandlung, sowie der Integrator und der Regler bilden eine technische Einheit.
Der HIT Integrator ist speziell für den Einsatz im bestehenden Beschleunigerkontrollsystem und den Magnetnetzgeräten entwickelt worden.
Die Regler der Magnetnetzgeräte wurden so verändert, dass sie einen Zusatzsollwert verarbeiten können, der auf den berechneten Sollwert der Datenversorgung addiert wird.
Die Magnetfeldregelung wurde in den Therapiebeschleuniger integriert, dazu wurde die Datenversorgung und das Kontrollsystem angepasst. Die Magnetfeldregelung stellt ein neues Gerät im Beschleuniger dar, das in die Netzgeräte der Synchrotronmagnete eingebaut worden ist. Die Datenversorgung dieser Geräte beinhaltet u.a. eine neue Methode der Kalibrierung.
Es konnte durch Messungen gezeigt werden, dass die Magnetfeldregelung mit hoher Genauigkeit funktioniert. Es wird eine Genauigkeit von besser als 10^{-4} des maximalen Feldes von 1.5 T erreicht, also weniger als 150uT, der dreifachen Stärke des Erdmagnetfelds. Vor allem die Bestrahlungszeit mit Protonen und die Bestrahlung bei niedrigen Energien profitiert von der Magnetfeldregelung, da hier das Extraktionsniveau der Magnete relativ gering ist und das Durchlaufen der vordefinierten Hystereseschleife prozentual mehr Zeit im Zyklus in Anspruch nimmt. Durch den Wegfall dieser Phase wird daher pro Zyklus mehr Zeit eingespart. Die Messungen zeigen, dass im Beschleunigerzyklus trotz der fehlenden Wartezeiten, die bis zu 24% betragen, eine gleichbleibend gute Strahlqualität erreicht wird. Dies wurde mit Vergleichsmessungen gezeigt, bei denen der Strahl mit und ohne Feldregelung vermessen wurde. Untersucht wurde eine große Stichprobenmenge aus dem Parameterraum, gegeben durch zwei Ionensorten mit jeweils 255 Strahlenergien, 10 verschiedenen Teilchenraten und 4 Strahlbreiten. Außerdem wurde die Energie des Strahls nachgemessen.
Für die Einführung in den Therapiebetrieb musste eine Impactanalyse gemacht werden, die mögliche Auswirkungen des neuen Verfahrens behandelt. Das Risiko für Patienten, Mitarbeiter und Dritte darf durch die Magnetfeldregelung nicht erhöht werden. Daraus entstand auch die Forderung nach einem redundanten System, das Fehler erkennt und die Bestrahlung abbricht.
Die mittlere Leistungsaufnahme des Beschleunigers des Heidelberger Ionenstrahltherapiezentrums liegt bei etwa 1 MW, bei einem Jahresenergieverbrauch von 8 GWh mit Kosten von etwa 1 Million Euro. Dies entspricht einer deutschen Kleinstadt mit 10000 Einwohnern. Die Verkürzung der Zykluszeiten wirkt sich direkt auf die Bestrahlungszeit und auf die Energiekosten aus. Würde man die Anlage durch die Zeiteinsparungen kürzer betreiben, würde man etwa 2 GWh pro Jahr sparen, was die Stromkosten um etwa 250000 Euro reduziert.
Zusätzlich zu den eingesparten Kosten wird auch die Bestrahlungszeit kürzer und damit auch die Zeit, die der Patient bei der Behandlung fixiert wird. Die Behandlung für die Patienten wird angenehmer. Man kann aber auch durch die eingesparte Bestrahlungszeit pro Patient entsprechend mehr Patienten behandeln. Das heißt man kann an Stelle von 700 Patienten im Jahr 910 Patienten mit einem Tumor behandeln. Dieser für die Patienten willkommene Effekt bedeutet auf der anderen Seite für HIT aber auch Mehreinnahmen von 4.2 Millionen Euro im Jahr.
Das Konzept der Magnetfeldregelung kann auch an anderen Beschleunigeranlagen zum Einsatz kommen. Dazu müssen die Magnete mit den Sonden bestückt werden und die Magnetnetzgeräte einen Eingang für einen Zusatzsollwert bekommen. Das Beschleunigerkontrollsystem kann erweitert werden, damit es einen Sollwert mit allen notwendigen Kalibrierungen berechnen kann. Der HIT Integrator wird dann als eigenständiges Gerät in das Kontrollsystem eingebunden.