Refine
Year of publication
Document Type
- Doctoral Thesis (39)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Autism Spectrum Disorder (1)
- CNV 16p11.2 (1)
- Cardiac regeneration (1)
- Cerebral cortex (1)
- Connectomics (1)
- Coronaries (1)
- Development (1)
- EphrinB2 (1)
- Excitatory balance (1)
- Extracellular matrix (1)
Institute
ß1-integrins are essential for angiogenesis but the mechanisms regulating integrin function in endothelial cells (EC) and their contribution to angiogenesis remain elusive. BRAG2 is a guanine nucleotide exchange factor for the small Arf-GTPases Arf5 and Arf6. The role of BRAG2 in EC and angiogenesis and the underlying molecular mechanisms remains unclear. siRNA-mediated BRAG2-silencing reduced EC angiogenic sprouting and migration. BRAG2-siRNA-transfection differentially affected a5ß1- and aVß3-integrin function: specifically, BRAG2-silencing increased focal/fibrillar adhesions and EC adhesion on ß1-integrin-ligands (fibronectin and collagen), while reducing the adhesion on the aVß3-integrin-ligand, vitronectin. Consistent with these results, BRAG2-silencing enhanced surface expression of a5ß1-integrin, while reducing surface expression of aVß3-integrin. Mechanistically, BRAG2 mediated recycling of aVß3-integrins and endocytosis of ß1-integrins and specifically of the active/matrix bound a5ß1-integrin present in fibrillar/focal adhesions (FA), suggesting that BRAG2 contributes to the disassembly of FA via ß1-integrin-endocytosis. Arf5 and Arf6 are promoting downstream of BRAG2 angiogenic sprouting, ß1-integrin-endocytosis and the regulation of FA. In vivo silencing of the BRAG2-orthologues in zebrafish embryos using morpholinos perturbed vascular development. Furthermore, in vivo intravitral injection of plasmids containing BRAG2-shRNA reduced pathological ischemia-induced retinal and choroidal neovascularization. These data reveals that BRAG2 is essential for developmental and pathological angiogenesis by promoting EC sprouting through regulation of adhesion by mediating ß1-integrin internalization and associates for the first time the process of ß1-integrin endocytosis with angiogenesis.
Even one century after Santiago Ramón y Cajal’s groundbreaking contribu- tions to neuroscience, one of the most fundamental questions in the field is still largely open, namely understanding how the shape of a dendrite is adapted to its specific biological function. A systematic investigation of this problem is challenging both technically and conceptually because neurons have diverse genetic, molecular, morphological, connectional and functional properties.
In the light of the preceding, dendritic arborisation (da) neurons of the Drosophila melanogaster larva PNS have proven to be an excellent model system for the study of such growth and patterning processes. Structure and function in these cell classes are intimately intertwined, as class type-specific dendritic arbour differentiation processes are required to satisfy a given phys- iological need. Also, there is a remarkable genetic toolkit that enables one to selectively and reproducibly label, image and manipulate each one of these sensory neuron classes. In this thesis, I address the aforementioned open problem by linking single-cell patterning, information processing and wiring optimisation in sensory da neurons to behaviour in Drosophila larva.
In particular, I study Class I ventral peripherical dendritic arborisation (c1vpda) neurons. These are a class of proprioceptive neurons that relay information on the position of the larva’s body back to the CNS during crawling behaviour to assure proper locomotion. Their stereotypical comb- like shaped dendritic branches spread along the body-wall, and they get noticeably deformed during crawling behaviour. The bending of the den- dritic branches is hypothesised to be a possible mechanism to transduce the mechanosensory inputs arising from cuticle folding. Interestingly, c1vpda neurons do not necessarily satisfy optimal wiring constraints since they are required to pattern into a specific shape to fulfil their function. Therefore, I considered the da system to study how the specific functional requirements may be combined with optimal wiring constraints during development.
Although the molecular machinery of dendrite patterning in c1vpda neurons is well studied, the precise elaboration of the comb-like shaped dendrites of these cells remains elusive. Moreover, even though a lot of work has been put into the description and quantification of growth processes of the nervous system, there are still few solid and standardised models of arbour staging and patterning. Importantly, the defining parameters that determine the dendrite elaboration program that in turn is responsible for creating the final arbour morphology are still unknown. As a result, unraveling possible universal stages of dendrite elaboration shared between different model systems and cell types is challenging.
Thus, in order to understand the development of the fine regulation of branch outgrowth that leads to the observed terminal arbour morphology in the mature cell, I collected in vivo, long-term, non-invasive high temporal res- olution time-lapse recordings of dendritic trees during the differentiation process in the embryo and its maturation phase in the larva. For further analysis, I developed new algorithms that quantified the structural changes in dendrite morphology in the time-lapse videos. My approach provides a framework to analyse such developmental data, or any dataset comprising continuous morphological dynamical processes in an unbiased way. Using these newly developed methods, I examined the development of a sample of c1vpda cells and identified five stages of differentiation in these data: initial stem polarization, extension, pruning, stabilization, and isometric stretching during larval stages.
The beginning of the growth process is marked by the polarisation of the main stem. Subsequently, during the extension phase, branches emerge interstitially from the existing main stem. Later, higher-order branches sprout from pre-existing lateral branches, increasing arbour complexity. This is followed by a pruning stage where developmental intermediate dendritic branches are removed. This step leads to a spatial rearrangement of the dendritic tree. The end of the pruning step is followed by a stabilisation period where arbour morphology remains virtually unaltered in the embryo. After hatching, c1vpda dendrites experience an isometric scaling, with their branching complexity and pattern being invariant across all larval stages.
After dissecting the c1vpda dendrites spatiotemporal differentiation process, I established a link between dendritic shape and behaviour. I measured intra- cellular Ca++ activity in the dendrite branches of l1 larvae during forward locomotion, while simultaneously recording branch deformation using a dual genetic line. I reported that post-embryonic c1vpda dendrites Ca++ responses increased in freely crawling larvae. Furthermore, I showed strong correlations between Ca++ signal and deformation of the comb-like dendritic ranches during body-wall contractions.
Then, using a geometrical model, I provided evidence that the pruning stage could reorganise the dendrite morphology to maximise mechanosensory re- sponses during body wall contraction. I showed that the angle orientation of each side branch correlates with the bending curvature and thus with the me- chanical displacement of the cell membrane during locomotion. During the pruning phase, I observed a preferential reduction of less efficient branches with low bending curvature, influencing the mechanisms of dendritic sig- nal integration of c1vpda sensory neurons. I proceeded to quantify branch dynamics at single tip resolution during pruning, providing evidence that a simple random pruning mechanism is sufficient to remodel the tree structure compatible with the observed way.
I used these time-lapse data to constrain a new computational noisy growth model with random pruning based on optimal wiring principles. This model is able to generate highly realistic synthetic c1vpda morphologies. The model furthermore requires few parameters to generate highly accurate temporal development trajectories and morphologies at single-cell level. Utilising this data and model enabled me to investigate upon the hypothesis that a noisy dendrite growth and random pruning mechanism synergise to achieve den- dritic trees efficient in terms of both wiring and function. My findings show how single neurons can create functionally specialised dendrites while min- imising wiring costs, elucidating how general principles of self-organisation may be involved in the generation of these structures.
Introduction: The involvement of platelets in various diseases has been increasingly recognized in the recent decades. This contribution is believed to involve platelet secretion and formation of reactive microparticles. Platelets contain two functionally important forms of vesicles, alpha and dense granules, which are secreted upon activation of platelets. Alpha granules incorporate larger molecules such as adhesive proteins, e.g. P-selectin, vWF and fibrinogen; chemokines like PF4 and RANTES and growth hormones like VEGF and PDGF are among the most important proteins attributed to the involvement of platelets in pathological conditions. In contrast, dense granules contain small molecules like ADP, ATP, serotonin and histamine, and they are more rapidly and completely secreted than alpha granules. Like in all secreting cells, regulated exocytosis in platelets is mediated by “zippering” of three different classes of SNARE proteins. The subtypes of these proteins found to be involved in platelet secretion are SNAP-23, syntaxin-2 and -4 and VAMP-3 and -8. Apart from SNARE proteins, other conserved proteins influencing exocytosis by e.g. acting on SNARE proteins have been described, one of the most important ones being Munc13. Platelets contribute to the progression of atherosclerosis by local deposition of inflammatory mediators like PF4, RANTES and CD40L, which leads to enhanced leukocyte recruitment and plaque formation. In 1865, Armand Trousseau first described the correlation between cancer and thrombotic events. Since the 1960s, an increasing number of studies have found an involvement of platelets also in the progression of cancer, especially in the formation of metastases. Platelets bind to circulating tumor cells and may shield them from NK cell attacks and shear stress. Platelets may also facilitate the interaction of tumor cells with other cell types and the vessel wall. Lastly, they may secrete molecules that influence the tumor cell phenotype and invasiveness.
Aims of this study: We sought to generate and describe genetically modified mouse lines with defective platelet secretion and to employ these mouse lines in murine models of atherosclerosis and tumor progression to study the role of platelet secretion under pathological in vivo conditions.
Results: Clostridial toxins cleave members of the SNARE protein family and can thus completely block exocytosis of neuronal and other cells. We generated three transgenic mouse lines expressing tetanus, botulinum-E or -C light chains and two transgenic mouse lines with dominant-negative mutations of SNAP-23 under the control of the platelet-specific PF4 promotor. None of these constructs was able to interfere with platelet secretion despite expression of the transgene. A functional null mutant of the only Munc13 isoform expressed in platelets, Munc13-4, showed complete lack of dense granule secretion, measured by ATP release, while alpha granule release as determined by PF4 and vWF secretion, was unaltered. Morphology, composition and adhesion of these platelets were also normal. Aggregation in response to U46619 and collagen and formation of large aggregates in flow chamber assays was attenuated. Munc13-4-deficient mice showed a severe defect in bleeding time and no formation of stable aggregates in FeCl3 thrombosis model. In response to B16 melanoma and LLC1 carcinoma cells, Munc13-4 KO platelets also showed complete abrogation of dense granule secretion, whereas alpha granule secretion and binding of platelets to tumor cells was unchanged. Interestingly, wild-type platelets, but not Munc13-4 KO platelets, enhanced transmigration of B16 and LLC1 cells through an endothelial cell layer. Exogenous ATP was able to mimic the effect of wild-type platelets and the ATP-degrading enzyme apyrase blocked platelet-mediated tumor cell transmigration. Platelets incubated with tumor cells secreted large amounts of ATP. Murine endothelial cells showed perturbed adherens junctions identified by irregular VE-cadherin staining and gap formation when incubated with supernatants from tumor cell-activated platelets as well as increased permeability under the same conditions. Addition of apyrase preserved normal endothelial morphology and function. In vivo, primary tumor growth and weight was comparable in wild-type and Munc13-4 KO mice upon B16 or LLC1 flank injection but formation of lung metastases was strongly reduced. Number, but not size of metastases was also reduced upon i.v. injection of B16 and LLC1 cells. We found P2Y2 and P2X4 receptors to be the most abundantly expressed endothelial metabotropic and ionotropic ATP receptors, respectively. Neither knock-down nor inhibition of P2X4 in endothelial cells influenced platelet-mediated transendothelial migration of B16 cells, but knock-down of P2Y2, for which no specific antagonist is available, strongly reduced plateletdependent tumor cell transmigration. When B16 melanoma cells were injected i.v. shortly after FITC-dextran (70 kDa) into wild-type mice, prominent leakage of FITC-dextran was observed three hours post-injection at extraluminal sites in the lung. In contrast, leakage into the lung parenchyma was at basal levels in Munc13-4 KO and P2Y2 KO mice after B16 cell injection. Marginal vascular leakage in Munc13-4 KO mice lacking platelet ATP secretion and in P2Y2 KO mice lacking the main endothelial ATP receptor correlated with strongly reduced extravasation of CFSE-labeled B16 melanoma cells 6 hours post-injection in these mice. Consistently, P2Y2 KO mice showed strongly reduced formation of metastases in the lung after i.v. injection of B16 or LLC1 tumor cells. Bone marrow-transplanted LDLR KO mice reconstituted with Munc13-4-deficient or wildtype bone marrow and subjected to 16 weeks of high fat diet showed no significant difference in atherosclerotic plaque formation in the aorta.
Discussion: We hereby provide a thorough analysis of a mouse line with an exclusive defect in platelet dense granule secretion, thus representing a unique genetic tool to study the role of dense granule secretion in various contexts without interfering with other platelet functions. We also provide evidence how extravasation of circulating tumor cells is facilitated by tumor cell-induced ATP release from platelets. This ATP release destabilizes endothelial barriers and facilitates tumor cell extravasation and formation of metastases in the target organ. Since metastasis is the leading cause of cancer death, pharmacological interference with endothelial P2Y2 receptor function may represent a promising therapeutic strategy.
Cardiovascular diseases are still regarded as the main cause of death in the modern world. However, the generic term "cardiovascular diseases" is not uniformly defined. It essentially describes diseases of the cardiovascular system and includes diseases such as hypertension, arteriosclerosis, myocardial infarctions, heart failure, coronary heart diseases, rheumatic heart diseases and heart valve defects. In addition to the well-known risk factors such as obesity, smoking, hypercholesterolemia and lack of exercise, age is a further risk factor that plays an important role in the development of cardiovascular diseases. As the modern societies age; this becomes an increasing problem.
But why does the prevalence of cardiovascular diseases increase with age? In gen-eral, age-dependent changes at the cellular level are assumed to be responsible for the pathological changes in the cardiac and vascular tissues. Important mechanisms such as autophagy, oxidative stress, mitochondrial dysfunctions, genomic instability, cellular senescence and disturbances in signaling pathways of growth factors play a decisive role. In old age, myocardial hypertrophy occurs, which results in cardiac wall thickening and an altered geometry of the ventricle. Chronic inflammations, paracrine and age-dependent cell-intrinsic factors further lead to activation of cardiac fibro-blasts with increase cell proliferation, collagen secretion and matrix cross-linking. The consequences are interstitial and perivascular fibrosis, which stiffen the heart and blood vessels. Oxidative stress and inflammations additionally attack the blood ves-sels and impair endothelial function, which is further aggravated by possible pre-existing conditions such as diabetes mellitus and hypertension.
In the past decades, the main focus has therefore been on researching these age-dependent changes in the hope of better understanding cardiovascular ageing and developing possible regenerative interventions. By studying the repair mechanisms of other organs such as the lungs and the bone marrow, the endothelium in particular showed a high regenerative capacity, which influences the proliferation and cell func-tion of the surrounding cells.
For a long time, the general opinion was that the endothelium is only the internal lin-ing of blood and lymphatic vessels, as well as the heart chambers, which as a single-layer barrier guarantees the integrity of the blood vessels. However, endothelial cells are very heterogeneous, depending on the type of blood vessel and the type of tis-sue they serve. In addition to their barrier function, endothelial cells also regulate the exchange of substances between blood and tissue, stimulate the formation of new blood vessels and re-model existing vascular networks. They are also able to re-structure the extracellular matrix that surrounds them. They release not only matrix proteins, but also cytokines and growth factors into the extracellular space. On de-mand, these factors are then released and stimulate angiogenesis or cell prolifera-tion. In addition, the secretion of various matrix proteins not only stabilizes the cellu-lar neighborhood, but also regulates various cell functions.
By modelling the endothelial environment - the so-called vascular niche - endothelial cells are able to communicate with the surrounding cells. As a result, a regenerative effect of the vascular niche has already been described in various organs. In the liv-er, for example, it has been shown that increased concentrations of endothelial Ang2 and decreased endothelial activin A after partial hepatectomy stimulate the prolifera-tion of hepatocytes and thus liver regeneration. In the bone marrow, endothelial cells mobilize stem cells via nitric oxide and in the lungs, endothelial MMP14 releases growth factors from the extracellular matrix, which stimulate epithelial cell prolifera-tion after partial pneumectomy. Whether such a regenerative effect of the vascular niche also plays a role in the heart is largely unknown.
Since both the regenerative capacity of the heart and endothelial function decrease with age, the aim of this dissertation was to investigate the role of the vascular niche and endothelial cell communication in the aged heart. Human cell lines as well as mouse and artificial rat models were used for these investigations. Since this thesis is a cumulative dissertation with partially published papers, it is divided into three parts.
In the first part of this thesis, the transcriptional signature of secretory genes in the aged cardiac endothelium was studied. Perfused endothelial cells from hearts of young (12-week-old animals) and old mice (20-month-old animals) were isolated and used for bulk RNA sequencing. The two matrix proteins laminin β1 and β2 were among the top-regulated genes. While laminin β2 was particularly expressed in the young cardiac endothelium, laminin β1 was predominantly found in the old endotheli-um. This change in laminin expression was confirmed histologically at protein level and its autocrine function was investigated in vitro. To mimic the in vivo situation in vitro, cell culture dishes were coated with human recombinant laminin 421 or laminin 411 and sutured with human endothelial cells from the umbilical vein (HUVEC). Di-verse functional investigations showed that endothelial cells migrated and adhered poorly in the presence of laminin 411, while in Matrigel tube formation assays HU-VEC formed reduced endothelial networks when cultured on LM 411.
...
Cardiovascular disease is the leading cause of death worldwide. Aging is among the greatest risk factors for cardiovascular disease. Cardiovascular disease comprises several diseases, for example myocardial infarction, elevated blood pressure and stroke. Many processes are known to promote or worsen cardiovascular disease and in the present study, cellular senescence and inflammatory activation were of special interest, as they have a strong association to aging and can be seen as hallmarks of cellular aging.
Long noncoding RNAs (lncRNAs) are noncoding RNAs with a length of more than 200 nucleotides. In recent years, numerous regulatory functions were shown for these transcripts and lncRNAs were shown to directly interact with DNA, RNA and proteins. The long noncoding RNA H19 was among the first described noncoding RNAs and was initially shown to act as a tumor suppressor. More recently, several studies showed oncogenic roles for H19. In regards to the cardiovascular system, H19 was not analyzed before.
We show that H19 is the most profoundly downregulated lncRNA in endothelial cells of aged mice compared to young littermates. Microarray analysis of human primary endothelial cells upon pharmacological H19 depletion revealed an involvement of H19 in cell cycle regulation. Loss of H19 in human endothelial cells in vitro led to reduced proliferation and to increased senescence. H19 depletion was shown to counteract proliferation before, but none of the described mechanisms applied to endothelial cells. We show that the reduction in proliferative capacity and the pro-senescent function of H19 is most probably mediated by an upregulation of p16ink4A and p21 upon H19 depletion.
When we compared the angiogenic capacity of aortic endothelial cells from young and aged mice in an aortic ring assay, rings from aged mice showed a reduced cumulative sprout length. Interestingly, pharmacological inhibition of H19 in aortic rings of young animals, where H19 is highly expressed, was sufficient to reduce the cumulative sprout length to levels we observed from aged animals. Furthermore, overexpression of human H19 in aortic rings of aged mice, where H19 is poorly expressed, rescued the impaired angiogenic capacity of aged endothelial cells.
We generated inducible endothelial-specific H19 knockout mice (H19iEC-KO) and subjected these animals to hind limb ischemia surgery followed by perfusion analysis in the hind limbs by laser-doppler velocimetry and histological analysis. Perfusion in the operated hind limb was increased in H19iEC-KO compared to Ctrl littermates, which was in contrast to a reduction in capillary density in the operated hind limbs of H19iEC-KO animals compared to Ctrl littermates and to our previous results. Analysis of arteriogenesis revealed an increase in collateral growth upon EC-specific H19 depletion in the ischemic hind limbs, which explains the increase in perfusion despite the reduction in capillary density. Further characterization of the animals revealed an increase in leukocyte infiltration into the tissue in the ischemic hind limbs upon endothelial-specific H19 depletion, indicating a potential role of H19 in inflammatory tissue activation.
Reanalysis of the microarray data from human primary endothelial cells upon H19 depletion revealed an association of H19 with inflammatory signaling and more specifically with IL-6/JAK2/STAT3 signaling. Analysis of cell surface adhesion molecule expression revealed an upregulation of ICAM-1 and VCAM-1 on mRNA level and an increase of the abundance of the two proteins on the cell surface of human primary endothelial cells. Consequently, adhesion of isolated human monocytes to human primary endothelial cells was increased upon H19 depletion in vitro. Interestingly, TNF-α mediated inflammatory activation of primary human endothelial cells repressed H19 expression. H19 did not function via previously described mechanisms. We excluded a competitive endogenous RNA (ceRNA) function for H19 in endothelial cells and showed that miR-675, which is processed from H19, does not play a role in the endothelium. Furthermore, H19 did not regulate previously described genes or pathways.
Analysis of transcription factor activity upon H19 depletion and overexpression revealed a differential activity of STAT3. STAT3 phosphorylation at TYR705 and thus activation was increased upon H19 depletion. Inhibition of STAT3 activation using a small compound inhibitor abolished the effects of H19 depletion on mRNA expression of p21, ICAM-1 and VCAM-1 and on proliferation, indicating that the effects of H19 are at least partially mediated via STAT3. STAT3 was shown to have positive effects on the cardiovascular system before, most likely due to upregulation of VEGF in a STAT3-dependent manner. We were not able to confirm previously described mechanisms for STAT3 in the present study and propose a new mechanism of action for the H19-dependent regulation of STAT3. Taken together, these results identify the long noncoding RNA H19 as a pivotal regulator of endothelial cell function. Figure 38 summarizes the described functions of H19 in endothelial cells.
Flow hemodynamics regulates endothelial cell (EC) responses and laminar shear stress induces an atheroprotective and quiescent phenotype. The flow-responsive transcription factor KLF2 is a pivotal mediator of endothelial quiescence, but the precise mechanism is unclear. In this doctoral study, we assessed the hypothesis that laminar shear stress and KLF2 regulate endothelial quiescence by controlling endothelial metabolism.
Laminar flow exposure and KLF2 over expression in HUVECs reduced glucose uptake. Endothelial specific deletion of KLF2 (EC-KO) in mice and subsequent infusion of labeled glucose in Langendorff perfused hearts induced glucose uptake in ECs lacking KLF2. Bioenergetic measurements revealed that KLF2 reduces and glycolytic acidification in vitro.
Mechanistically, RNA sequencing analysis of shear stimulated ECs showed reduced expression of key glycolytic enzymes Hexokinase 2, PFKFB3 and PFK-1. KLF2 also reduced expression of these enzymes at protein level. KLF2 knockdown in shear stimulated ECs reversed the reduction in expression of PFKFB3 and PFK-1, indicating KLF2-dependency. Promoter analysis revealed KLF binding sites in the promoter of PFKFB3 and KLF2 over expression markedly reduced PFKFB3 promoter activity which was abolished on mutation of the KLF binding site. In addition, PFKFB3 knockdown reduced glycolysis while over expression increased glycolysis. Over expression of PFKFB3 along with KLF2 partially reversed the KLF2-mediated reduction in glycolysis. Importantly, PFKFB3 over expression reversed KLF2-mediated reduction in angiogenic sprouting and network formation in vitro. Ex-vivo aortic ring assays revealed an increase in endothelial sprouting from aortas from KLF2 EC-KO mice, which was partially reversed upon PFKFB3 inhibition by 3-PO.
In conclusion, work performed during this doctoral thesis demonstrates that laminar shear stress and KLF2 mediated repression of endothelial metabolism via regulation of PFKFB3 contributes to the anti-angiogenic and quiescent properties of the endothelium.
Cerebellar ataxias are a group of neurodegenerative disorders primarily affecting the cerebellum. Although causative mutations in several genes have been identified there is currently no cure for ataxias.
The first part of this dissertation is focused on Spinocerebellar ataxia type 2 (SCA2). SCA2 is a dominant ataxia caused by repeat expansion mutations in the ATXN2 gene, which encodes the protein Ataxin2 (ATXN2). A polyglutamine (polyQ) tract consisting of CAG repeats interrupted by CAA was identified at exon 1 of ATXN2. Healthy individuals have between 22 and 23 glutamines, while expansions longer than 33 CAG repeats cause SCA2. The most noticeable symptom that SCA2 patients show is ataxic gait; however, they also show cerebellar dysarthria, dysdiadochokinesia, and ocular dysmetria caused by the progressive cerebellar degeneration.
To model the SCA2 disease, we generated a new mouse model where 100 CAG repeats were introduced in the mouse Atxn2 gene via homologous recombination. The characterization of this mouse model, Atxn2-CAG100-KIN, demonstrated that it reproduces the symptomatology observed in SCA2 patients. These animals showed significant loss of weight over time, brain atrophy, and motor deficits.
In addition, ATXN2 intermediate expansions have been linked to the pathology of Amyotrophic lateral sclerosis (ALS) as a risk factor. ALS is a fatal neurodegenerative disease where the motor neurons in the brain and spinal cord degenerate. A hallmark of ALS is the presence of TDP43-positive inclusions in neurons and glia. Further studies of post mortem spinal cord samples from SCA2 patients showed severe and widespread neurodegeneration of the central somatosensory system. Therefore, it was of interest to further investigate the pathology affection of this tissue in the Atxn2-CAG100-KIN line and the relationship between ATXN2 and TDP43. The characterization of the spinal cord pathology via protein quantification, transcript quantification, and immunohistochemistry showed a preferential affection of RNA binding proteins (RBP) in the spinal cord rather than the cerebellum. The ALS-linked factors TDP43 and TIA1 showed time-dependent co-aggregation with ATXN2 in spinal cord sections together with an increase of CASP3 levels. Therefore, this mouse model can help develop new therapies and evaluate their effect in differently affected areas.
A transcriptome data set from Atxn2-CAG100-KIN spinal cord samples at the final disease stage of this mouse model showed a strong up-regulation of RNA toxicity-, immune- and lysosome-implicated factors. These data pointed to a pathological reactivation of the synaptic pruning and phagocytosis in microglia. ATXN2-positive aggregates were found in microglia from spinal cord sections of 14-month-old Atxn2-CAG100-KIN via immunohistochemistry. The characterization of microglial response and the potentially deleterious effects of the expanded ATXN2 in this cell type could lead to therapies to improve patients’ living standards or delay the symptoms’ onset.
The second part of this thesis was focused on an autosomal recessive form of cerebellar ataxia, Ataxia Telangiectasia (A-T), with childhood onset. A-T patients show severe cerebellar atrophy manifesting as ataxia when the child starts to walk. The genetic cause of A-T is loss-of-function-mutations in the Ataxia Telangiectasia Mutated gene (ATM). ATM is a kinase involved in DNA damage response, oxidative stress, insulin resistance, autophagy via mTOR signaling, and synaptic function.
Working with proteome data from cerebrospinal fluid of 12 A-T patients and 12 healthy controls, we aimed to define novel biomarkers that would allow following the neurodegeneration in extracellular fluid. Additional validation efforts with ~2-month-old Atm-knock-out (Atm-/-) cerebellar samples helped us to define a scenario were the deficit of vesicle-associated ATM alters the secretion of ApoB, reelin, and glutamate. As extracellular factors, apolipoproteins and their cargo such as vitamin E may be useful for neuroprotective interventions.
Der Neocortex der Säugetiere weist charakteristische Schichtungen auf, und jede dieser Schichten enthält verschiedene Typen von Neuronen, die in stereotypen Mustern angeordnet sind. Die Ausbildung dieser geschichteten Struktur ist nur dann möglich, wenn korrekte Migration von Neuronen von proliferativen Zonen zu deren Endpositionen stattfindet. Die exakte Migration und Schichtung wird von Mutationen beeinflusst, die entweder die migratorische Fähigkeit der Neuronen beeinträchtigen, oder deren Fähigkeit, die Position zu erkennen, an der sie die Wanderung beenden sollten (Gupta et al., 2002, Rice et al., 2001, Walsh et al., 2000). In den letzten Jahren wurde das extrazelluläre Protein Reelin als wichtiger Faktor bekannt, der sich auf mehrere Schritte der neuronalen Migration und Schichtung in der Großhirnrinde auswirkt (zusammengefasst in (Tissir et al., 2003). Das sekretierte Glykoprotein Reelin kontrolliert die Migration der Neuronen durch die Bindung an zwei Lipoproteinrezeptoren, den Very-low-density lipoprotein Rezeptor (VLDLR) und den Apolipoprotein E Rezeptor 2 (ApoER2) (D'Arcangelo et al., 1999). Die Bindung von Reelin an ApoER2 und VLDLR ruft die Phosphorylierung von Disabled-1 (Dab1) (D'Arcangelo et al., 1999, Howell et al., 1997), einem Adapterprotein, das an die intrazelluläre Domäne der Rezeptoren bindet, hervor, indem sie Kinasen der Src-Familie (SFKs) aktiviert (Arnaud et al., 2003, Bock et al., 2003a). Außer der Bedeutung des Reelin-Signalwegs für die korrekte Entwicklung des Nervensystems und dem Wissen, dass die Unterbrechung dieses Signalwegs zu verschiedenen neurologischen Krankheiten wie Epilepsie, Schizophrenie und der Alzheimerkrankheit führt (Costa et al., 2002, Botella-Lopez et al., 2006, Herz et al., 2006), ist die molekulare Grundlage der Aktivierung dieses Signalwegs an der Zellmembran noch kaum charakterisiert. Da VLDLR und ApoER2 keine intrinsische Kinaseaktivität besitzen, wurde die Existenz eines Korezeptors für mindestens eine Dekade vermutet, und die genaue Natur dieses Korezeptors ist unbekannt. EphrinBs, Transmembranliganden für Eph-Rezeptoren, besitzen die Fähigkeit zur Signalgebung, die für synaptische Plastizität und Angiogenese durch Sprossung erforderlich ist, indem sie die Aktivität anderer Transmembranrezeptoren wie AMPAR beziehungsweise VEGFR2 beeinflussen (Sawamiphak et al., 2010b, Segura et al., 2007, Essmann et al., 2008). Darüber hinaus führt die Stimulation von cortikalen Neuronen in Kultur mit löslichen EphB-Rezeptoren zur Rekrutierung und Aktivierung von SFKs in Membranpatches, in denen sich ephrinB-Liganden befinden (Palmer et al., 2002). Deshalb nehmen wir an, dass ephrinB in vivo funktionell mit dem Reelin-Signalweg verbunden sein könnte. Der Fokus dieser Arbeit liegt darin, zu zeigen, dass das neuronale Wegweisermolekül ephrinB einen entscheidenden Korezeptor für die Reelin-Signalgebung während der Entwicklung geschichteter Strukturen im Gehirn darstellt. Um zu erforschen, ob ephrinB und die Reelin-Signalgebung in vivo genetisch interagieren, wurden zuerst Mäuse mit Compound-Mutationen hergestellt, die eine Nullmutation im Gen für ephrinB3 tragen und heterozygot für Reelin sind (rl/+; b3-/-). Reeler ist eine autosomal rezessive Mutation der Maus, die, wenn sie heterozygot auftritt, keinen offenkundigen Phänotyp aufweist (Caviness et al., 1972, Caviness et al., 1978). Wir zeigen, dass ephrinBs genetisch mit Reelin interagieren, da Mäuse mit Compound-Mutationen (rl/+; b3 -/-) und ephrinB1-, B2- und B3-Dreifach-Knockouts die verschiedenen Defekte in der Entwicklung phänokopieren, die im Neocortex, Hippocampus und Cerebellum der reeler-Mäuse beobachtet wurden. Eines der Kennzeichen des reeler-Phänotyps ist die gestörte Schichtung der Großhirnrinde mit einer Marginalzone (MZ), die eine äußerst große Zahl an Zellen enthält (Caviness, 1982). Sowohl die Compound-Mäuse als auch die Triple-ephrinB1B2B3-knockouts zeigten eine Zunahme der Zellzahl in der MZ. Um die cortikalen Defekte detailliert zu charakterisieren, wurde die Verteilung von postmitotischen migrierenden Neuronen im Cortex von rl/+; b3-/- Compound-Mäusen mit Hilfe von unterschiedlichen schichtenspezifischen Markern für früh (Tbr1) (Hevner et al., 2001) und spät entstandene (SatB2 and Brn1) (Britanova et al., 2008, McEvilly et al., 2002) Neuronen, analysiert . Unsere Untersuchungen ließen die veränderte cortikale Schichtung in den rl/+; b3-/- Compound-Mäusen erkennen. So befanden sich früh entstandene Neuronen in den oberen cortikalen Schichten und spät entstandene in den unteren cortikalen Schichten, was für eine outside-in-Schichtung spricht, wie man sie von reeler kennt. Interessanterweise ist eine der frühesten strukturellen Abnormalitäten, die man im reeler-Cortex erkennen kann, die Unfähigkeit, die Preplate, die reich an extrazellulärer Matrix ist, in die Marginalzone und die Subplate aufzuspalten (Sheppard et al., 1997). Zum Zeitpunkt E17.5 zeigten rl/+; b3-/- Compound-Mäuse eine beachtliche Anhäufung von Chondroitin-Sulfat-Proteoglykan (CSPG), einer Komponente der extrazellulären Matrix, im gesamten Neocortex mit einer ungeteilten Schicht an der Oberfläche, welche übermäßig viel CSPG enthielt und somit die abnorme Teilung der Preplate der reeler-Maus nachahmte. Um zu bestätigen, dass die beobachteten Effekte auf die Schichtung des Cortex der rl/+; b3-/- Compound-Mäuse als Folge der Beeinträchtigung der neuronalen Migration auftritt, wurden zusätzlich BrdU-Puls-Experimente durchgeführt. BrdU wird in sich teilende Vorläuferzellen eingebaut und spiegelt deshalb das migratorische Verhalten von neu entstandenen Neuronen zum Zeitpunkt der Injektion wieder. Schwangeren Weibchen wurde BrdU zu den Zeitpunkten E12.5, E15.5 und E17.5 injiziert und die Gehirne wurden am postnatalen Tag 20 ausgewertet. Die Verteilung der mit BrdU gekennzeichneten Neuronen zu verschiedenen Zeitpunkten der Entwicklung in der Großhirnrinde bestätigte unsere Untersuchungen, die mit Hilfe der schichtspezifischen Marker durchgeführt worden waren. Deshalb deuten unsere Ergebnisse an, dass die beobachteten Defekte in der Schichtung des Cortex tatsächlich eine Folge von beeinträchtigter neuronaler Migration sind. Es wurde beobachtet, dass auch geschichtete Strukturen im Hippocampus in den rl/+; b3-/- Compound-Mäusen verändert sind, was für einen Crosstalk zwischen ephrinB3 und Reelin auch während der Entwicklung des Hippocampus spricht. Die CA1-Region des Hippocampus zeigte eine lockere Verbindung der pyramidalen Zellschichten, welche zu einer signifikanten Erhöhung der Dicke dieser Region und zu einer Einwanderung von Pyramidalzellen in das Stratum oriens führte. Darüber hinaus haben die Anomalien in den dendritischen Verzweigungen von Pyramidalneuronen der CA1-Region, die in Richtung der Reelin-produzierenden Cajal-Retzius-Zellen im stratum locunosum moleculare projizieren, in den rl/+; b3-/- Compound-Mäusen eine auffallende Ähnlichkeit mit denen, die in reeler-Mutanten beobachtet wurden. Reelin fungiert auch als Differenzierungsfaktor und Positionierungssignal für radiale Gliazellen, die positiv für glial fibrillary acidic protein (GFAP) sind und ein Gerüst für die korrekte Migration von neu entstandenen Granularzellen, die auf das Netzwerk der Granularzellen im Gyrus dentatus zuwandern (Forster et al., 2002) bilden. In rl/+; b3-/- Compound-Mäusen ist dieses Gerüst aus radialen Gliazellen schwerwiegend beeinträchtigt, was ebenfalls zu einer lockeren Organisation der Granularzellen im Gyrus dentatus führt. Die Ataxie in reeler-Mäusen ist das Ergebnis einer schwerwiegenden Fehlorganisation im Cerebellum dieser Mutanten (Tissir et al., 2003). Interessanterweise wurden nur milde Defekte in den Granularzellen, die sich in der internen Granularschicht des Cerebellums von rl/+; b3-/- Compound-Mäusen angesammelt haben, und keine Defekte in der Migration und der Verzweigung der Purkinjezellschicht, festgestellt. Stattdessen ist ephrinB2 in den Purkinjezellen des Cerebellums stark exprimiert (Liebl et al., 2003) und obwohl keine bedeutenden Defekte der Migration dieser Zellen festgestellt wurden, zeigte die Untersuchung der Verzweigung der Purkinjezellen in b2-/- Mäusen eindeutige Defekte, die bereits in einfachen ephrinB2-Mutanten auftraten. Bedeutend ist, dass die Defekte in der Verzweigung bei rl/+; b2-/- Compound-Mäusen signifikant verstärkt waren, was darauf hindeutet, dass der Reelin-Signalweg im Cerebellum spezifisch ephrinB2 benötigt. Um Einblicke in den Mechanismus zu erhalten, wie ephrinB-Liganden den Crosstalk mit Reelin durchführen, um die korrekte Positionierung von Neuronen in den geschichteten Strukturen des Gehirns zu kontrollieren, wurde als nächstes die biochemische Interaktion dieser beiden Signalwege untersucht. In einer gerichteten proteomischen Untersuchung mit Hilfe der Tandem affinity purification-mass spectometry-Methode (Angrand et al., 2006) von Proteinen aus eine Neuroblastom-Zelllinie, die ephrinB binden, wurde Reelin als ein Protein, das mutmaßlich mit ephrinB interagiert, identifiziert. Zunächst bestätigten wir die Fähigkeit von Reelin, mit ephrinBs zu assoziieren mit Ko-Immunpräzipitation beider endogener Proteine aus Gehirnlysaten. Das extrazelluläre Protein Reelin zeigte eine starke Bindung an die extrazelluläre Domäne von ephrinB3 und auch von ephrinB2, was andeutet, dass beide ephrin-Liganden die Funktionen von Reelin in vivo beeinflussen könnten. Die Stimulierung von cortikalen Neuronen mit Reelin führt zu einer effektiven Tyrosin-Phosphorylierung des Adapters Dab1. Da die Stimulation von cortikalen Neuronen mit einer löslichen, vorgeclusterten Form von EphB-Rezeptoren zur Rekrutierung und Aktivierung von Src-Kinasen in ephrinB-Clustern führt (Palmer et al., 2002), nehmen wir an, dass ephrinBs Src-Kinasen in VLDLR- und ApoER2-Rezeptor-Clustern rekrutieren und aktivieren könnten. Aktivierte Src-Kinasen phosphorylieren dann wiederum das Adapterprotein Dab1, das an VLDLR und ApoER2 gebunden ist und initiieren die weitere Signalgebung. In Übereinstimmung damit ko-immunpräzipitiert phosphoryliertes Dab1 zum Zeitpunkt E16.5 mit ephrinBs, während die neuronale Migration und die Schichtung des Cortex stattfindet. Darüber hinaus konnten wir beobachten, dass ephrinB3, das durch EphB3-Fc aktiviert wurde, sowohl Reelin, als auch ApoER2 und VLDLR in ephrinB3-Membranpatches in cortikalen Neuronen anhäuft. Die Aktivierung von ephrinB-Liganden durch Stimulation von cortikalen Neuronen mit EphB3-Fc führt zur Rekrutierung und Phosphorylierung von Dab1 in ephrinB-Clustern. Als nächstes befassten wir uns mit der Notwendigkeit von der durch ephrinB vermittelten Rekrutierung und Aktivierung von Src-Kinasen für den Reelin-Signalweg, indem wir Loss-of-function-Studien sowohl in cortikalen Neuronen in Kultur als auch in vivo in Mäusen durchführten. Cortikale Neuronen, die aus ephrinB3- und ephrinB2-Knockouts isoliert wurden, zeigten eine signifikante Beeinträchtigung der durch Reelin vermittelten Phosphorylierung von Dab1 und die Phosphorylierungslevels von Dab1 in ephrinB3 Mausmutanten waren stark verringert, was andeutet, dass ephrinBs Korezeptoren, die notwendig für einwandfreie Signalgebung durch Reelin sind, darstellen. Um die Bedeutung von ephrinBs für die Kontrolle der Funktion von Reelin zu untersuchen, arrangierten wir eine Reihe von Rescue-Experimenten sowohl in Neuronenkulturen als auch während der neuronalen Migration im Cortex in vivo. Aus reeler-Mäusen isolierte cortikale Neuronen zeigten die erwartet verringerte Phosphorylierung von Dab1, die rückgängig gemacht werden konnte, indem die Neuronen mit exogenem Reelin stimuliert wurden. Noch bedeutender ist die Tatsache, dass die Phosphorylierung von Dab1 durch die alleinige Aktivierung von ephrinBs mit EphB wiederhergestellt werden konnte, was die Bedeutung der ephrinBs als Korezeptoren für die Aktivierung des Signalwegs über die Rezeptoren für Reelin, VLDLR und ApoER2, wiederspiegelt. Um die Rolle von ephrinBs als Korezeptoren für den Reelin-Signalweg während der neuronalen Migration in der Großhirnrinde zu unterstreichen, setzten wir ähnliche Rescue-Experimente in organotypischen Schnittkulturen an. In den Schnitten von reeler-Mäusen und Wildtyp-Wurfgeschwistern wurde die Migration von Neuronen, die durch Fc als Kontrolle und EphB3-Fc stimuliert wurde, nach drei Tagen in Kultur untersucht. Die reeler-Schnitte zeigten den typischen reeler-Phänotyp in der Großhirnrinde. In Übereinstimmung mit der Annahme einer wirksamen Regulation des Reelin-Signalwegs war die Aktivierung von eprhinB mit EphB-Rezeptoren in der Lage, die migratorischen Defekte in reeler-Schnitten aufzuheben. Zusammengefasst identifizieren unsere Ergebnisse ephrinBs als Korezeptoren für den Reelin-Signalweg, die für die Funktion von Reelin in der neuronalen Migration während der Entwicklung der geschichteten Strukturen der Großhirnrinde, dem Hippocampus und dem Cerebellum notwendig sind. Unsere genetischen Analysen von ephrinB-Mutanten zeigen gemeinsam mit starken biochemischen Untersuchungen, dass ephrinBs in vivo für zahlreiche Aktivitäten von Reelin erforderlich sind.
Die Analyse früher Entwicklungsstadien von Säugetierembryonen und daraus gewonnener Stammzelllinien kann entscheidende Erkenntnisse im Bereich der Reproduktionsbiologie und der regenerativen Medizin hervorbringen. Dabei spielt die Maus, als geeignetes Modellsystem für die Übertragbarkeit auf den Menschen eine wichtige Rolle, in erster Linie weil die Blastozysten der Maus verglichen mit menschliche Blastozysten eine morphologische Ähnlichkeit aufweisen. Humane embryonale Stammzelllinien haben großes Potential für die Anwendung in der regenerativen Medizin und vergleichend dazu wurde Gen-Targeting in embryonalen Stammzellen verwendet, um tausende neuer Mausstämme zu generieren. Die Gewinnung embryonaler Stammzellen erfolgt im Blastozystenstadium, diese können dann nach Injektion in eine andere Blastozyste zur Entwicklung aller Gewebearten, einschließlich der Keimbahngewebe, beitragen (Martin, 1981; Evans and Kaufman 1981).
Ursache einer Fehlgeburt können vor allem Defekte in der Entwicklung des Trophoblasten und des primitive Entoderms (PrE) sein, dabei sind ca. 5 % der Paare betroffen die versuchen ein Kind zu bekommen (Stephenson and Kutteh, 2007). Eine Untersuchung dieser Zelllinien im Mausmodell könnte weitere Erkenntnisse für die Gründe einer Fehlentwicklung liefern. Trophoblasten Stammzelllinien können aus den Blastozysten der Maus und dem extraembryonalen Ektoderm von bereits implantieren Embryonen gewonnen werden (Tanaka et al., 1998). Diese Zelllinien geben Aufschluss über die Entwicklung des Trophoblasten, fördern die Entwicklung der Plazenta und sind gleichzeitig ein gutes Modellsystem um die Implantation des Embryos im Uterus näher zu untersuchen. Zellen des primitive Entoderms (PrE) beeinflussen das im Dottersack vorhandene extraembryonale Entoderm, welches dort als “frühe Plazenta” fungiert und für die Versorgung des Embryos mit Nährstoffen zuständig ist (Cross et al., 1994). Des Weiteren besitzt das Entoderm einen induktiven Einfluss auf die Bildung von anterioren Strukturen und die Bildung von Endothelzellen sowie Blutinseln (Byrd et al., 2002).
Extraembryonale Endodermstammzellen (XEN Zellen) können aus Blastozysten gewonnen und in embryonale Stammzellen (ES-Zellen) umgewandelt werden (Fujikura et al., 2002; Kunath et al., 2005). Es war jedoch nicht bekannt, ob XEN-Zellen auch aus Postimplantations-Embryonen gewonnen werden können. XEN-Zellen tragen in vivo zur Entwicklung des Darmendoderms bei (Kwon et al., 2008; Viotti et al., 2014) und könnten als alternative, selbsterneuernde Quelle für extraembryonale Endoderm-abgeleitete Zellen dienen, die zur Herstellung von Geweben für die regenerative Medizin verwendet werden könnten (Niakan et al., 2013).
In der Embryogenese der Maus zeigt sich an Tag E3.0 eine kompakte Morula die sich allmählich in das Trophektoderm (TE) differenziert, welches wiederum den Embryonalknoten (“innere Zellmasse”) umschließt (Johnson and Ziomek, 1981). Ein wichtiger Schritt im Rahmen der Entwicklung findet an Tag E3.5 statt, in diesem Zeitraum gehen aus dem Embryonalknoten der pluripotente Epiblast und das primitive Entoderm hervor. Im späten Blastozystenstadium an Tag E4.5 liegt das PrE als Zellschicht entlang der Oberfläche der Blastocoel-Höhle. Aus dem Epiblast entwickeln sich im weiteren Verlauf der Embryo, das Amnion und das extraembryonale Mesoderm des Dottersacks. Die Zellen des Trophektoderm führen zur Entwicklung der Plazenta. Das PrE differenziert sich im Zuge der Weiterentwicklung in das viszerale Entoderm (VE) und das parietale Entoderm (PE) des Dottersacks (Chazaud et al., 2006; Gardner and Rossant, 1979; Plusa et al., 2008). VE umgibt den Epiblast und extraembryonisches Ektoderm (ExE). PE-Zellen wandern entlang der inneren Oberfläche von TE und sezernieren zusammen mit Trophoblasten-Riesenzellen Basalmembranproteine, um die Reichert-Membran zu bilden (Hogan et al., 1980). Die Reichert-Membran besteht aus Basalmembranproteinen, einschließlich Kollagenen und Lamininen, die zwischen den parietalen Endoderm- und Trophoblastzellen liegen. Diese Membran wirkt als ein Filter, der dem Embryo den Zugang zu Nährstoffen ermöglicht, während er eine Barriere zu den Zellen der Mutter bildet (Gardner, 1983).
...