Refine
Document Type
- Doctoral Thesis (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- ADC (2)
- Quantenchemie (2)
- Algebraisch Diagrammatische Konstrution (1)
- Angeregter Zustand (1)
- Dipolmoment (1)
- Dissipation (1)
- Doorway-Window-Formalismus (1)
- Doorway-window-formalism (1)
- ISR (1)
- Licht-Sammel-Komplex (1)
Institute
Die Entwicklung neuer und Verbesserung bestehender Methoden zur theoretischen Beschreibung molekularer Systeme ist eine der wichtigsten Aufgaben der theoretischen Chemie, vor allem zur Berechnung elektronisch angeregter Zustände zur Simulation von Spektren. Das Ziel dieser Arbeit ist in diesem Zusammenhang die Weiterentwicklung des algebraisch-diagrammatischen Konstuktionsverfahrens (ADC), einer Methode zur Berechnung elektronisch angeregter Zustände, und die Bereitstellung effizienter Computerprogramme zum theoretischen Studium optischer Eigenschaften von "open-shell" Molekülen. Im Vordergrund stehen hierbei die physikalisch richtige Beschreibung von ladungsgetrennten Zuständen und solchen mit hohem Doppeltanregungscharakter. Verbesserte theoretische Methoden sind notwendig, da die zu berechnenden Systeme häufig für eine Beschreibung mit vorhandenen hochgenauen ab initio Methoden zu groß sind. Einfachere, durchführbare Methoden wie z.B. semi-empirische oder DFT-basierte Methoden, die es erlauben, sehr große Molekülsysteme mit mehr als 100 Atomen zu beschreiben, weisen häufig große, nicht vorhersagbare Fehler auf. Experimente im Forschungsgebiet angeregter Zustände von Molekülen finden spektroskopisch statt und erfordern auf der anderen Seite eine Unterstützung durch zuverlässige theoretische Voraussagen. Die Weiterentwicklung der Theorie ist also auch im allgemeinen Interesse der Chemie, Biologie und der anderen Naturwissenschaften. Teil 1 dieser Arbeit umfasst die Theorie, während in Teil 2 deren Anwendung auf ausgewählte Systeme zu finden ist. Nach einer allgemeinen Einführung in die Problematik und grundlegenden Methoden der Quantenchemie in Kapitel 1, wurde im ersten Teil von Kapitel 2 die Methode zur Berechnung angeregter Zustände und ihrer Eigenschaften vorgestellt, auf der diese Arbeit basiert, nämlich das algebraisch-diagrammatische Konstruktionsverfahren (ADC). Dabei sind Eigenschaften von ADC zu betonen, die es von den anderen Methoden unterscheidet. Zum einen werden in ADC alle angeregten Zustände energetisch zuverlässig beschrieben, das heißt Rydberg-, Ladungstransfer- und doppelt angeregte Zustände findet man im Anregungsspektrum an der richtigen Position. Andererseits ist die Methode eine der schnellsten zur Beschreibung doppelt angeregter Zustände (z.B. bei Polyenen) und eignet sich, deren Relevanz im Spektrum zu ermitteln. Denn die beiden Schemata ADC(2)-s und ADC(2)-x unterscheiden sich in der störungstheoretischen Behandlung doppelt angeregter Zustände um eine Ordnung, ADC(2)-s beschreibt sie in nullter Ordnung, ADC(2)-x in erster. Im folgenden Abschnitt stehen die ausführlichen Gleichungen des ADC-Verfahrens für unseren Computercode. Kapitel 2 wurde abgeschlossen durch die Gleichungen der Erweiterung von ADC zur Behandlung von "open-shell" Molekülen auf UADC. Kapitel 3 umfasst die Beschreibung der "intermediate state representation" (ISR), die zur Berechnung von Eigenschaften angeregter Zustände dient und die theoretische Herleitung des UADC-Verfahrens erlaubt. Am Anfang von Teil 2 in Kapitel 4 steht die Untersuchung der Genauigkeit und Zuverlässigkeit des neu entwickelten UADC-Verfahrens. Dabei wurden elf verschiedene, mittelgroße, aromatische Moleküle ausgewählt, zu denen in der Literatur auch experimentelle Daten zu Vergleichszwecken zu finden waren. Das Ergebnis ist sehr überzeugend und nur minimal aufwändiger als ADC. Kapitel 5 zeigt eine erste Anwendung von UADC auf größere Moleküle und stellt die Eigenschaft der Bestimmung von doppelt angeregten Zuständen von ADC und UADC noch einmal heraus. Der Vergleich der Polyene mit ihren "open-shell" Partnern, den Polyen-Radikalkationen und den neutralen Polyenylradikalen, zeigte, dass der Einfluss der Doppeltanregungen in den Radikalen kleiner ist, für eine exakte Beschreibung der angeregten Zustände ist er jedoch nicht zu vernachlässigen. Danach wurde eine Extraplation der angeregten Zustände von langkettigen Polyenen, Polyenradikalkationen und Polyenylradikalen vorgenommen, die den konjugierten pi-Systemen von Karotinoiden als Modellsysteme dienen. Die Beschreibung der Polyene bestätigte die experimentellen Vorhersagen zu Karotinoiden. Eine erste Anwendung der ISR bezüglich der Berechnung von Eigenschaften angeregter Zustände ist mit der Berechnung von Dipolmomenten angeregter Zustände in Kapitel 6 durchgeführt worden. Die Ergebnisse zeigen eine gute Übereinstimmung mit anderen Methoden und Messergebnissen. Eine weitere Anwendung der ISR ist die Berechnung von resonanten Zwei-Photonen-Absorptionsspektren, mit deren Hilfe spektroskopisch "dunkle" Zustände detektiert werden können. Die zur Berechnung notwendigen Übergangsdipolmomente zwischen angeregten Zuständen aus der ISR wurden dazu in einer sogenannten "sum-over-states" Näherung verwendet. Eine mögliche andere Berechnung über einen geschlossenen Ausdruck mit Hilfe der ADC-Näherung ist noch nicht implementiert.
Photo-initiated processes, like photo-excitation and -deexcitation, internal conversion, excitation energy transfer and electron transfer, are of importance in many areas of physics, chemistry and biology. For the understanding of such processes, detailed knowledge of excitation energies, potential energy surfaces and excited state properties of the involved molecules is an essential prerequisite. To obtain these informations, quantum chemical calculations are required. Several quantum chemical methods exist which allow for the calculation of excited states. Most of these methods are computationally costly what makes them only applicable to small molecules. However, many biological systems where photo-processes are of interest like light-harvesting complexes in photosynthesis or the reception of light in the human eye by rhodopsin are quite large. For large systems, however, only few theoretical methods remain applicable. The currently most widely used method is time-dependent density functional theory (TD-DFT), which can treat systems of up to 200–300 atoms with the excitation energies of some excited states exhibiting errors of less than 0.5 eV. Yet, TD-DFT has several drawbacks. The most severe failure of TD-DFT is the false description of charge transfer states which is particularly problematic in case of larger systems where it yields a multitude of artificially low-lying charge transfer states. But also Rydberg states and states with large double excitation character are not described correctly. Still, if these deficiencies are kept in mind during the interpretation of results, TD-DFT is a useful tool for the calculation of excited states. In my thesis, TD-DFT is applied in investigations of excitation energy and electron transfer processes in light-harvesting complexes. Since light-harvesting complexes, which consist of thousands of atoms, are by far too large to be calculated, model complexes for the processes of interest are constructed from available crystal structures. The model complexes are used to calculate potential energy curves along meaningful reaction coordinates. Artificial charge transfer states are corrected with the help of the so-called ∆DFT method. The resulting potential energy curves are then interpreted by comparison with experimental results. For the light-harvesting complex LH2 from purple bacteria the experimentally observed formation of carotenoid radical cations is studied. It is shown that the carotenoid radical cation is formed most likely via the optically forbidden S1 state of the carotenoid. In light-harvesting complex LHC-II of green plants the fast component of the so-called non-photochemical quenching (NPQ) is investigated. Two of several different hypotheses on the mechanism of NPQ, which have been proposed recently, are studied in detail. The first one suggests that NPQ proceeds via simple replacement of violaxanthin by zeaxanthin in the binding pocket in LHC-II. However, the calculated potential energy curves exhibit no difference between violaxanthin and zeaxanthin in the binding pocket. In combination with experimental results it is thus shown that simple replacement alone does not mediate NPQ in LHC-II. The second hypothesis proposes conformational changes of LHC-II that lead to quenching at the central lutein and chlorophyll molecules during NPQ. My TD-DFT calculations demonstrate that if this mechanism is operative, only the lutein 1 which is one of two central luteins present in LHC-II can take part in the quenching process. This is corroborated by recent experiments. Though several conclusions can be drawn from the investigations using TD-DFT, the interpretability of the results is limited due to the deficiencies of the method and of the models. To overcome the methodological deficiencies, more accurate methods have to be employed. Therefore, the so-called algebraic diagrammatic construction scheme (ADC) is implemented. ADC is a widely overlooked ab initio method for the calculation of excited states, which is based on propagator theory. Its theoretical derivation proceeds via perturbation expansion of the polarization propagator, which describes electronic excitations. This yields separate schemes for every order of perturbation theory. The second order scheme ADC(2), which is employed here, is the equivalent to the Møller-Plesset ground state method MP(2), but for excited states. It represents the computationally cheapest excited state method which can correctly describe doubly excited states, as well as Rydberg and charge transfer states. The quality of ADC(2) results is demonstrated in calculations on linear polyenes which serve as model systems for the larger carotenoid molecules. The calculations show that ADC(2) describes the three lowest excited states of polyenes sufficiently well, particularly the optically forbidden S1 state which is known to possess large double excitation character. Yet, the applicability of the method is limited compared to TD-DFT due to the much larger computational requirements. To facilitate the calculation of larger systems with ADC(2) a new variant of the method is developed and implemented. The variant employs the short-range behavior of electron correlation to reduce the computational effort. As a first step, the working equations of ADC(2) are transformed into a basis of local orbitals. In this basis negligible contributions of the equations which are due to electron correlation can be identified based on the distances of local orbitals. A so-called “bumping” scheme is implemented which removes the negligible parts during a calculation. This way, the computation times as well as the disk space requirements can be reduced. With the “bumping” scheme several new parameters are introduced that regulate the amount of “bumping” and thereby the speed and the accuracy of computations. To determine useful values for the parameters an evaluation is performed using the linear polyene octatetraene as test molecule. From the evaluation an optimal set of parameter values is obtained, so that the computation times become minimal, while the errors in the excitation energies due to the “bumping” do not exceed 0.15 eV. With further calculations on various molecules of different sizes it is tested if these parameter values are universal, i.e. if they can be used for all molecules. The test calculations show that the errors in the excitation energies are below 0.15 eV for all test systems. Additionally, no trend is visible for the errors that their magnitude might depend on the system. In contrast, the amount of disregarded contributions in the calculations increases drastically with growing system size. Thus, the local variant of ADC(2) can be used in future to reliably calculate excited states of systems which are not accessible with conventional ADC(2).
Im Mittelpunkt der Arbeit steht die theoretische Beschreibung von ultraschnellen nichtadiabatischen cis-trans-Photoisomerisierunen in kondensierter Phase. Zu diesem Zweck wurde auf einen etablierten Modell-Hamilton-Operator zur Darstellung des isomerisierenden Systems zurückgegriffen und die Wechselwirkung mit der Umgebung im Rahmen der Redfield-Theorie behandelt. Eine gängige Näherung im Rahmen der Redfield-Theorie ist die Säkularnäherung, welche eine deutliche Reduktion des numerischen Aufwands bewirkt. Allerdings liefert die Säkularnäherung keine korrekte Beschreibung der Dynamik für Systeme, welche Regelmäßigkeiten im Eigenwertspektrum aufweisen, was für die in dieser Arbeit benutzten Isomerisierungsmodelle mit harmonischen Schwingungsmoden zutrifft. Andererseits verbietet sich für diese Systeme aus numerischer Sicht der Redfield-Algorithmus mit vollem Relaxationstensor. Daher wurde in dieser Arbeit ein nichtsäkularer Algorithmus entwickelt, der durch die Berücksichtigung der wichtigsten nichtsäkularen Terme eine adäquate Beschreibung der Dynamik im Rahmen der Redfield-Theorie liefert und gleichzeitig zu einer durchschnittlichen Reduktion der Rechenzeit auf ein Zehntel gegenüber der vollen Redfield-Rechnung führt. Im Rahmen der Redfield-Theorie wurden dann Dekohärenz- und dissipative Effekte für ein zweidimensionales Isomerisierungsmodell untersucht, wobei die unterschiedliche nichtadiabtische Dynamik an einer konischen Durchschneidung versus einer vermiedenen Kreuzung im Mittelpunkt des Interesses stand. Fazit dieser Studie ist, dass die konische Durchschneidung ein schnelles Abklingen anfänglicher Kohärenzen und eine effiziente Energieabgabe an die Umgebung bewirkt, was zu einer um eine Größenordnung schnelleren Isomerisierung gegenüber der vermiedenen Kreuzung führt. Daraus kann gefolgert werden, dass der photochemische Trichter tatsächlich der bevorzugte Reaktionsweg bei ultraschnellen internen Konversionsprozessen ist. Ein weiteres Anliegen dieser Arbeit war die Simulation von zeit- und frequenzaufgelösten Pump-Probe-Spektren für Photoreaktionen in dissipativer Umgebung. Hierzu wurde der Doorway-Window-Formalismus herangezogen, bei dem die Wechselwirkung der Pump- und Probepulse mit dem System im Doorway- bzw. Window-Operator enthalten ist. Für diese wurden unter der Annahme gaussförmiger Laserpulse durch analytische Integration der zweizeitigen Antwortfunktionen explizite Ausdrücke erhalten, die in den Redfield-Algorithmus integriert wurden. Somit existiert nun eine Methode zur Berechnung von Pump-Probe-Spektren, deren Skalierungsverhalten durch den Redfield-Algorithmus bestimmt wird. Diese Methode wurde dann angewandt für eine umfangreiche Modellstudie zu PumpProbe-Spektren von Isomerisierungsreaktionen in dissipativer Umgebung. Dabei wurden potentielle Probleme bei der Interpretation von transienten Spektren durch die Überlagerung und teilweisen Auslöschung der spektralen Beiträge zum Gesamtsignal aufgezeigt und diskutiert. In einer weiteren Studie wurde die Methode benutzt, um am Beispiel eines Morse-Oszillators zeitaufgelöste IR-Experimente zu simulieren, wie sie zur Gewinnung von modenselektiven Informationen über eine Reaktion durchgeführt werden.
Das Ziel meiner Arbeit ist die zuverlässige quantenchemische Beschreibung der Absorptionsspektren von mittelgroßen Molekülen und das Studium von photoaktiven Pigmenten. Nach einer kurzen Einführung in das Thema "elektronisch angeregte Zustände und Photoreaktionen" beschreibe ich die Formalismen, die den verwendeten Rechenmethoden zu Grunde liegen und diskutiere die Anwendbarkeit auf größere Moleküle. Hierbei liegt ein Hauptaugenmerk auf den dichtefunktionaltheoriebasierten Methoden (DFT-Methoden), vor allem auf den Eigenschaften der zeitabhängigen Dichtefunktionaltheorie (engl.: time dependent density functional theory, TDDFT). Anschließend erfolgt eine Zusammenfassung der im Laufe dieser Arbeit erhaltenen Ergebnisse.
Die moderne Quantenchemie befasst sich mit der Anwendung der in den 20er und 30er Jahren des 20. Jahrhunderts entwickelten Quantenmechanik auf chemische Probleme. Zum theoretischen Studium von Molekülen gibt es verschiedene Ansätze. Zum einen gibt es die hochgenauen ab initio Methoden, die Näherungsverfahren zur elektronischen Schrödingergleichung sind. Sie haben den Vorteil systematisch verbesserbar und auf einem sehr soliden theoretischen Gerüst aufgebaut zu sein. Die Genauigkeit der Rechnungen kann die von experimentellen Ergebnissen erreichen, allerdings beschränkt der hohe Rechenaufwand die Anwendung solcher ab initio Methoden auf kleine Moleküle wie Wasser, Methan oder Benzol.
Am anderen Ende des Spektrums der quantenchemischen Methoden sind die "semiempirischen Methoden" angesiedelt. Sie erfordern nur einen sehr geringen Rechenaufwand, wodurch es möglich ist, sehr große Systeme mit mehr als 1000 Atomen zu beschreiben. Allerdings führt der Ansatz, verschiedene Terme der Schrödingergleichung durch an experimentelle Daten gefittete Parameter zu ersetzen, zu einer geringen Genauigkeit und unvorhersehbaren Fehlern. Dies schränkt die standardmäßige Anwendung dieser Methoden stark ein, und eine Verifizierung durch genauere Methoden ist oftmals erforderlich.
Zwischen diesen beiden Polen (hoch genau aber sehr hoher Rechenaufwand und geringer Rechenaufwand, dafür aber ungenau) stehen die auf der Dichtefunktionaltheorie (DFT) basierenden Methoden. Sie zeichnen sich durch eine gute Genauigkeit bei vergleichsweise geringem Rechenaufwand aus. Dadurch hat sich die DFT in den letzten Jahren zur beliebtesten Methode für das Studium mittelgroßer Moleküle mit bis zu 400 Atomen entwickelt. DFT ist eine formal exakte Methode, bei der die berechneten Größen aus der Elektronendichte des Systems abgeleitet werden. Elektronenaustausch- und Korrelationseffekte werden durch Funktionale, den sogenannten Austauschkorrelationsfunktionalen (engl.: exchange correlation functionals, xc-functionals) beschrieben.
Die zeitabhängige Dichtefunktionaltheorie (time dependent DFT, TDDFT) ermöglicht die Beschreibung elektronisch angeregter Zustände mit einer guten Genauigkeit, aber zu einem Bruchteil des Rechenaufwands von ab initio Methoden, was TDDFT zur Methode der Wahl für das Studium der Photochemie mittelgroßer Moleküle macht. Die Fehler in den Anregungsenergien sind in der Regel systematischer Natur und den verwendeten xc-funktionalen geschuldet. Dennoch kann TDDFT nicht als "black box" Methode verwendet werden, da nicht alle elektronischen Zustände gleich gut beschrieben werden. Während energetisch niedrig liegende, lokale π -> π* und n -> π* Zustände oftmals in sehr guter Übereinstimmung mit dem Experiment sind, können Rydberg und Ladungstransferzustände (engl.: charge transfer states, ct-states) Fehler von mehreren Elektronenvolt in der Anregungsenergie haben. Doppelt oder höher angeregte Zustände können mit standard TDDFT Methoden nicht beschrieben werden. Dies kann zu Problemen bei ausgedehnten π-Systemen führen, da z.B. die angeregten Zustände von Polyenen einen hohen Doppelanregungscharakter besitzen. Trotz alledem ist TDDFT eine sinnvolle Methode zum Studium elektronisch angeregter Zustände, da ihre Probleme bekannt sind und vor allem ihr Ursprung in der Theorie gut verstanden ist. Die meisten Probleme können durch die intelligente Wahl der verwendeten xc-Funktionale vermieden werden. Kombiniert man TDDFT mit der Konfigurationswechselwirkungsmethode mit Einfachanregungen (engl.: configuration ineraction singles, CIS) erhält man sehr zuverlässig und mit vergleichbar geringem Rechenaufwand die richtige Energiereihenfolge der angeregten Zustände. Mit dieser Methode war es in dieser Arbeit möglich, die komplexe Photochemie von Bisazomethinpigmenten zu untersuchen und die experimentellen statischen und zeitaufgelösten Spektren auf molekularer Ebene zu interpretieren. Es konnte sowohl der Mechanismus aufgeklärt werden, der für die Fluoreszenzlöschung in den nicht-fluoreszierenden Derivaten verantwortlich ist, als auch die unerwartet komplizierte Photochemie der fluoreszierenden Moleküle schlüssig erklärt werden. Auch die Photoisomerisierung von Z-Hemithioindigo-Hemistilbene (HTI) zu seine E-Form wurde mit dieser Methode untersucht.
Die vorliegende Arbeit ist dem Gebiet der theoretischen Femtochemie zu zurechnen. Im Mittelpunkt steht eine der klassischen Methoden – das klassische Mapping-Verfahren. Dieses klassische Mapping-Verfahren wird auf seine Anwendungsmцglichkeiten im Bereich Dynamik und zeitaufgelцste Spektroskopie untersucht. Das klassische Mapping-Verfahren basiert darauf, dass der Hamiltonoperator des quantenmechanischen Systems in der Basis von harmonischen Oszillatoren dargestellt wird, in der dann der klassische Limes durchgeführt wird. Obwohl das Mapping-Verfahren, wie auch die anderen klassischen und semiklassischen Ansätze als Kurzzeitnäherungen entwickelt worden sind, kцnnen sie in gewissen Maßen auch das Verhalten der Langzeitpopulationen, der Dynamik der Wellenpakete und der Pump-Probe-Spektren sowohl der kleinen als auch der komplexen Systeme mit oder ohne Ableitung korrekt abbilden.
Im Mittelpunkt des ersten Teils dieser Arbeit stehen die Abbildung der Population und der Dynamik der Wellenpakete der untersuchten Systeme. Zunächst wurde das einfache Ein-Moden-Zwei-Niveau-System studiert. Für das diabatische und das adiabatische Verhalten der Populationen wurde der klassische Ansatz mit einer quantenmechanischen Referenzrechnung verglichen. In einem zweiten Schritt wurden Verbindungen mit auf gemischten Valenzen basierenden Modellen mit zwei Metallzentren, die für ultraschnelle Metall-Metall Ladungtransferprozesse bekannt sind, untersucht. Analysiert wurde die Dynamik der ultraschnellen Elektrontransferreaktionen, in denen die Anregung der Photonen den Übergang der Elektronen von einem Metallzentrum in das andere initiiert. In der vorliegenden Arbeit bilden zwei unterschiedliche Verbindungen mit gemischten Valenzen ( ) ( )-III II 3 5 5 NH Ru NCFe CN und ( ) ( )- III II 3 5 5 NH Ru NCFe CN den Gegenstand der Untersuchung. Ausgehend von den Arbeiten von Barbara et al. und den jüngeren Arbeiten von Wang und Thoss wurden hier mehrere unterschiedliche Systeme analysiert. Im nächsten Schritt wurde die Anwendbarkeit des klassischen Mapping-Verfahrens für die Beschreibung der Dynamik der Wellenpaketeevolution von nonadiabatischen cis-trans-Photoisomerisierung untersucht. Als Beispiel für eine solche cis-trans-Photoisomerisierungreaktion wurde das parametrisierte Modell von Retinal in Rhodopsin herangezogen. Analysiert wurden die Ergebnisse der klassischen Methode unter Berücksichtigung von verschiedenen Typen und Stärken der System-Bad-Kopplung.
Numerische exakte Berechnungen des Multi-Configuration-Time-Dependent-Hartree (MCTDH) Methode für die Analyse der Populationen und Wellenpaketsevoluationen wurden durchgeführt.
Es wurde festgestellt, dass in einigen Fällen die klassische Mapping-Näherung die quantum-mechanische Redfield Methode oder die Säkularnäherungen übertrifft.
Der zweite Teil dieser Arbeit ist dem klassischen Ansatz für die Berechnung der zeit- und frequenzaufgelцsten Pump-Probe-Spektren von nichtadiabatisch gekoppelten molekularen Systeme gewidmet. Hier wurden die Anwendbarkeit der semiklassischen Franck-Condon-Näherung erster und zweiter Ordnung auf die vibronische gekoppelte Potentialflächen verallgemeinert, eine klassischen Version der nichtadiabatischen Version der Franck-Condon-Näherung entwickelt und ein klassisches Analogon der Dipolfunktion angewendet. Die Untersuchung hat gezeigt, dass, da die numerische Anwendung der abgeleiteten Doorway- und Window-Funktionen für die zweite Ordnung der Franck-Condon-Näherung direkt sind, ist die verallgemeinernde Franck-Condon-Näherung der zweiten Ordnung die beste Methode für diese Berechnung.
In der vorliegenden Arbeit wurde gezeigt, dass die Mapping-Näherung im Vergleich zu exakten quantenmechanischen Simulationen, die korrekte Abbildung der Populationen und der Dynamik der Wellenpakete der komplexen molekularen Systeme ermцglicht. Außerdem wurde hier ein besseres Verständnis der Anwendungsmцglichkeiten dieser Theorie erreicht und verschiedene Methoden für die Simulation der meisten Fälle der Pump-Probe-Spektroskopie-Signale vorgeschlagen.