Refine
Document Type
- Doctoral Thesis (8)
Language
- German (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Keywords
- Arteriosklerose (1)
- C-reaktives Protein (1)
- Carrier-Proteine (1)
- DNS-Chip (1)
- Differentielle Genexpression (1)
- Endotheliale Stickstoffmonoxidsynthase (1)
- Entzündung (1)
- G-Protein-gekoppelter Rezeptor (1)
- Genexpression (1)
- Hepatomazelllinie (1)
Institute
- Pharmazie (7)
- Biochemie und Chemie (1)
Die Wiederherstellung der Perfusion eines ischämischen Areals, auch Reperfusion genannt, ist vorrangiges Therapieziel bei Herzinfarktpatienten. Durch Thrombolyse oder Ballondilatation eines verschlossenen Koronargefäßes erzielt, kann sie jedoch selbst zum Organschaden beitragen. Dieser so genannte Reperfusionsschaden manifestiert sich je nach vorangegangener Ischämiedauer in funktionellen oder in strukturellen Schäden. Frühere Untersuchungen haben gezeigt, dass während der Reperfusion auftretende Entzündungsreaktionen maßgeblich zu einem myokardialen Reperfusionsschaden beitragen. Diese können durch polymorphkernige Neutrophile (PMNs) hervorgerufen werden. Das erste Ziel dieser Arbeit war es, ein Tiermodell zu etablieren, das die präklinische Prüfung von neuen Therapieansätzen erlaubt, die einen PMN-induzierten Reperfusionsschaden pharmakologisch verhindern. In einem Modell des isoliert-perfundierten Rattenherzens nach Langendorff wurde durch die externe Applikation von humanen PMNs eine mögliche Beteiligung dieser Zellen an der Entstehung eines Reperfusionsschadens nach globaler no-flow-Ischämie untersucht. Hierbei wurden unterschiedliche myokardiale Funktionsparameter, das Ausmaß der Zellschädigung und die myokardiale Konzentration der proinflammatorischen Zytokine Interleukin-1ß (Il-1ß) und Tumor-Nekrose-Faktor-á (TNF-á) erfasst. Die Quantifizierung der Zellschädigung erfolgte mittels histologischer Triphenyltetrazoliumchlorid-(TTC)-Färbung. Ferner wurde aus dem koronarvenösen Effluat die Konzentration der Creatinkinase (CK) und der Lactatdehydrogenase (LDH) bestimmt. Die Reperfusion der Herzen mit PMNs führte im Vergleich zur zellfreien Reperfusion zu einer signifikanten Verschlechterung der linksventrikulären Funktion. Ferner wiesen die PMN-reperfundierten Herzen eine signifikant höhere Zytokinkonzentration auf. Dagegen führte die PMN-Reperfusion lediglich zu einer tendenziellen Erhöhung der myokardialen Zellschädigung. Unter Verwendung eines Antikörpers gegen das Adhäsionsmolekül CD11/18 auf der Zelloberfläche der PMNs wurde das Modell validiert. Hierbei verminderte die Blockade der CD11/18-vermittelten PMN-Adhäsion an das Koronarendothel sowohl die PMN-induzierte myokardiale Dysfunktion als auch die myokardiale Zytokinkonzentration in den PMN-perfundierten Herzen. Das zweite Ziel dieser Arbeit war es, erstmals die pharmakologische Wirkung des neuen eNOS-Transkriptionsverstärkers S803, auf den PMN-induzierten Reperfusionsschaden in isoliert-perfundierten Rattenherzen zu untersuchen. Um einen in diesem Therapieansatz postulierten NO-abhängigen Mechanismus zu bestätigen, erfolgte eine Bestimmung der myokardialen eNOS-Expression mittels Western-Blot- Analyse. Ferner wurde in einem zusätzlichen Modell mit isoliert-perfundierten Rattenherzen die NO-abhängige Dilatationsfähigkeit der Koronarien untersucht. Darüber hinaus diente der HMG-CoA-Reduktase-Hemmer Simvastatin, der über die Stabilisierung der eNOS-mRNA zu einer erhöhten NO-Verfügbarkeit führt, als Positivkontrolle für einen NO-abhängigen Wirkungsmechanismus. Die subchronische Gabe des eNOS-Transkriptionsverstärkers S803 führte in den isoliert-perfundierten Herzen zu einer signifikanten Besserung der PMN-induzierten linksventrikulären Dysfunktion und verminderte signifikant die myokardiale Zytokinkonzentration gegenüber den PMN-perfundierten Kontrollherzen. Ferner wurde die eNOS-Proteinexpression in den Herzen signifikant erhöht. Diese Ergebnisse deuten auf eine Verbesserung der PMN-induzierten linksventrikulären Dysfunktion über eine Erhöhung der NO-Verfügbarkeit hin. Diese Hypothese wurde durch die therapeutische Wirksamkeit von Simvastatin im Modell des PMN-reperfundierten Herzens bestätigt. Zudem führte Simvastatin zu einer signifikanten Erhöhung der eNOS-Expression. Des Weiteren war die myokardiale Dilatationsfähigkeit während der reaktiven Hyperämieantwort nach S803- und Simvastatin-Behandlung im Vergleich zu den Kontrollherzen signifikant verbessert. Durch Gabe des NOSynthasehemmers L-NAME wurde diese im Modell der reaktiven Hyperämie unter S803-Behandlung wieder aufgehoben und bestätigte ebenfalls einen NO-abhängigen Mechanismus. Die verbesserte reaktive Hyperämieantwort unter Simvastatin- Behandlung war dagegen nicht ausschließlich NO-vermittelt. S803, ein neuer eNOS-Transkriptionsverstärker, verbesserte in isoliert-perfundierten Rattenherzen sowohl einen PMN-induzierten Reperfusionsschaden als auch die reaktive Hyperämieantwort. Ferner wies die Substanz in der Vergangenheit in Arteriosklerose-Modellen in ApoE-Knock-out-Mäusen antiarteriosklerotische Wirkungen auf. S803 eröffnet somit einen neuen, vielversprechenden Therapieansatz zur Behandlung koronarer Herzkrankheiten.
In der vorliegenden Arbeit wurde die mögliche Regulation verschiedener Ionenkanalgene bei Herz-Kreislauf-Erkrankungen mit Hilfe von Northern Blots, der semiquantitativen RT-PCR- Technik und zum Teil durch elektrophysiologische Untersuchungen analysiert. Ziel war es, solche Gene zu identifizieren, deren mRNA-Spiegel hochreguliert oder herunterreguliert waren, da diese möglicherweise eine wichtige Rolle bei den kardiovaskulären Erkrankungen spielen könnten. Diese Untersuchungen sollten zu einem besseren Verständnis der renalen und kardialen Funktion dieser Ionenkanäle und der Pathogenese der untersuchten Krankheiten beitragen, aber auch helfen, neue Kandidatengene für diese Krankheiten zu identifizieren. Es wurden insgesamt fünf Tiermodelle mit Hypertonie, kardialer Hypertrophie, Herzinsuffizienz, Niereninsuffizienz und Vorhofflimmern untersucht. Ein Schwerpunkt dieser Untersuchungen waren die CLC-Chloridkanäle, deren kardiovaskuläre Funktionen noch wenig untersucht sind. Die Genprofile der Chloridkanäle CLC-2, CLC-3, CLC-4, CLC-5, CLC-6 und CLC-7 sowie CLC-K1 und CLC-K2 wurden in den Herzen und Nieren der folgenden Tiermodelle analysiert: (1) In spontan hypertensiven Ratten (SHR) und (2) in SH-stroke-prone-Ratten, die eine genetisch bedingte Hypertonie und Herzhypertrophie entwickeln. (3) In salz-sensitiven Dahl-Ratten, die Hypertonie und Herzhypertrophie erst nach einer salzhaltigen Diät, und (4) in Aortic-Banding-Ratten, die nach einem operativen Eingriff Bluthochdruck und kardiale Hypertrophie entwickeln. (5) Schließlich wurde noch ein Rattenmodell untersucht, in dem durch die Ligatur der Koronararterie ein Herzinfarkt induziert wurde, der letztlich zur Herzinsuffizienz führte. In keinem dieser Tiermodelle wurde jedoch eine auffällige Veränderung in der mRNA-Expression der acht untersuchten CLC-Chloridkanäle in den erkrankten Tieren im Vergleich zu den Kontrolltieren beobachtet. Die CLC-Chloridkanäle wurden ferner in einem Niereninsuffizienz-Modell untersucht, bei dem in Ratten durch Abklemmen der renalen Arterien und Venen ein akutes Nierenversagen und letztlich eine Niereninsuffizienz hervorgerufen wurde. In diesem Tiermodell war bereits eine Herunterregulation vieler anderer Ionenkanäle und Transporter beschrieben worden. In zwei unabhängigen Tierstudien wurde eine unterschiedlich starke Abnahme der mRNA-Expression für die einzelnen CLC-Chloridkanäle beobachtet. In einer weiteren Studie konnte die Behandlung von niereninsuffizienten Ratten mit einem bei Niereninsuffizienz wirksamen Inhibitor des NHE-3-Transports das Ausmaß der Reduktion einzelner CLC-Gene abschwächen. Weitere Studien mit höheren Dosen oder potenteren Substanzen sind notwendig, um diese vorläufigen Befunde zu bestätigen. Ein weiterer Schwerpunkt der vorliegenden Arbeit war die Charakterisierung der kardialen Ionenkanaldichten bei einem neuen Kaninchenmodell für Vorhofflimmern, die in Zusammenarbeit mit der Universitätsklinik Tübingen durchgeführt wurde. Das Vorhofflimmern ist eine sehr häufige Herzerkrankung bei älteren Menschen, und anhand dieses Tiermodells sollten vor allem frühe Prozesse des elektrischen Remodelings, das für das Auftreten und die Aufrechterhaltung des Vorhofflimmerns von Bedeutung ist, untersucht werden. Mit Hilfe der semiquantitativen RT-PCR-Analyse konnte in diesem Tiermodell erstmals eine Reduktion der mRNA für die Kaliumkanalgene Kv1.4, Kv4.3 und Kv1.5 sowie für die Kalziumkanalgene alpha1, CaB2a, CaB2b und CaB3 im frühem Stadium des Vorhofflimmerns nachgewiesen werden. Diese Befunde konnten die Resultate von Patch-Clamp-Messungen erklären, die gleichzeitig an der Universität Tübingen an isolierten Vorhofzellen durchgeführt wurden. In diesen Studien wurde in Übereinstimmung mit den erzielten mRNA-Daten eine Abnahme des Ito-Kaliumstromes und des ICa,L-Kalziumstromes nachgewiesen. Mit diesen Untersuchungen konnten frühere Resultate, die auch an Patienten mit chronischem Vorhofflimmern erhoben wurden, bestätigt werden. Die gefundene Regulation zeigt, dass diese Ionenkanalgene eine wichtige Rolle bei dem frühen elektrischen Remodeling spielen und dass das Rapid-Pacing- Kaninchenmodell ein geeignetes Tiermodell für das Vorhofflimmern beim Menschen ist.
In der vorliegenden Arbeit wurden die pharmakologischen und elektrophysiologischen Eigenschaften des Kaliumkanals KCNQ1 und des KCNQ1/MinK (IKs) untersucht. Hierzu wurden die Kanäle in Xenopus-laevis-Oozyten und der KCNQ1/MinK (IKs) in CHO-Zellen exprimiert und in Voltage-Clamp-Experimenten untersucht. Die Blockwirkung des Chromanol-293B-Razemates und die der beiden Enantiomere wurden am KCNQ1- und KCNQ1/MinK-Kanal untersucht. Eine Enantiomerenselektivität der Chromanol 293B-Enantiomere wurde nachgewiesen. Beide Enantiomere wirken abhängig vom Zustand der KCNQ1- und IKs-Kanäle. Das 3S,4R-293B blockierte nur geschlossene Kanäle, während das andere Enantiomer 3R,4S-293B auf geschlossene und auf geöffnete Kanäle wirkte. Als Grundlage dieser Aussagen wurden kinetische Analysen der Kanalkinetiken ohne Blocker und bei partieller Blockade der Kanäle durchgeführt. Die Inhibiton des IKs
Die Rho-Kinase gehört zur Familie der Serin/Threonin Kinasen und wird durch verschiedene vasoaktive Mediatoren, wie Katecholamine, UII, Thromboxan und Serotonin aktiviert. Sie spielt eine Schlüsselrolle in der Gefäßkontraktion des glatten Muskels. Die Rho-Kinase induzierte Kontraktion ist in allen Gefäßbetten der verschiedenen untersuchten Tierspezies (Ratte, Maus, Kaninchen, Schwein) induzierbar und durch selektive Rho-Kinase Inhibitoren konzentrationsabhängig hemmbar. Die Rho-Kinase Inhibitoren induzieren in vitro eine Gefäßrelaxation und führen in vivo zu einer Blutdrucksenkung. In akuten invasiven Blutdruckmessungen und chronischen telemetrischen Untersuchungen wurde für Rho-Kinase Inhibitoren eine Senkung des peripheren arteriellen Blutdrucks nachgewiesen. Der vasorelaxierende Effekt von Rho-Kinase Inhibitoren in vitro und in vivo ist gleichermaßen in normotensiven und hypertensiven Tiermodellen messbar und hängt nicht von der Endothelfunktion ab. Es wurden keine Unterschiede in der Sensitivität gegenüber Rho-Kinase Inhibitoren zwischen hypertensiven Tieren und normotensiven Tieren gemessen. In der Proteinexpressionsanalyse zeigte sich eine tendenziell, aber nicht signifikante Erhöhung der Rho-Kinase II-Expression im arteriellen glatten Gefäßmuskel der hypertensiven Tiere. Im Tiermodell der pulmonalen arteriellen Hypertonie wurde durch chronische Behandlung mit Rho-Kinase Inhibitoren die Progredienz der PAH verbessert. Rho-Kinase Inhibitoren normalisierten die Endothelfunktion und die Hyperkontraktilität der pulmonalen Gefäße. Zusätzlich konnten die Rechtsherzhypertrophie und rechtsventrikuläre Druck verbessert werden. In Untersuchungen am isoliert perfundierten Herzen nach Langendorff führte die Perfusion mit Rho-Kinase Inhibitoren zu einer verbesserten Durchblutung der Herzkranzgefäße. Die kardiale Kontraktilität und die Herzfrequenz wurden durch die akute Rho-Kinase Hemmung nicht beeinflusst. Zusätzlich zur Gefäßfunktion reguliert Rho-Kinase auch die Aktivierung und Aggregation von Thrombozyten. Vasoaktive Mediatoren können eine Rho-Kinase induzierte Aktivierung von Thrombozyten bewirken und so die Atherogenese begünstigen. Die Hemmung von Rho- Kinase bewirkt die Hemmung der Thrombozytenaggregation. Die Aktivierung von Rho- Kinase ist essentiell für zelluläre Transportvorgänge und die Zellmotilität. Dies wird durch Umstrukturierung des Zytoskeletts und mit Hilfe von Stressfaserformierungen realisiert. Rho- Kinase Hemmung verringert die Formierung von Stressfasern und kann somit Transporte von cholesterolsensitiven Transkriptionsfaktoren, z.B. SREBPs, zu ihren Bindungselementen reduzieren. Dadurch wird eine verstärkte Expression SRE-regulierter Gene, wie z.B. Cholesterolsyntheseenzymen, verhindert. Gleichzeitig führt eine Hemmung der Rho-Kinase Aktivität zu einer Senkung der Proliferationsrate von glatten Muskelzellen und Monozyten. Im LDLR defizienten Tiermodell der Atherosklerose wurde durch eine chronische Behandlung mit Rho-Kinase Inhibitoren eine signifikante Verbesserung der Endothelfunktion erreicht. Die Behandlung mit Rho-Kinase Inhibitoren zeigt allen untersuchten Modellen der Hypertonie blutdrucksenkende Effekte. In Modellen der Atherosklerose wurden durch Langzeitbehandlung mit Rho-Kinase Inhibitoren therapeutische Effekte auf die Endothelfunktion erzielt. Durch Reduktion der Risikofaktoren Bluthochdruck, Atherosklerose und endotheliale Dysfunktion senken Rho-Kinase Inhibitioren das kardiovaskuläre Risiko und bieten eine neue Therapiemöglichkeit zur Behandlung und Prophylaxe von Herz- Kreislauferkrankungen.
Diese Arbeit beschreibt die Identifizierung, Klonierung und Charakterisierung von zwei neuen humanen S1P-Rezeptoren. Damit wird die Familie der S1P-Rezeptoren um einen hochaffinen und einen niedrig affinen Rezeptor erweitert. Die Untersuchungen der Expressionsprofile aller humanen S1P/LPA-Rezeptoren sowohl in Herz-Kreislauf-relevanten Geweben als auch in Endothelzellen und glatten Muskelzellen erfolgten bisher nicht im Sinne der hier dargestellten familienübergreifenden Betrachtung. Zusätzlich wurde in dieser Arbeit erstmalig auch der hS1P5-Rezeptor mit eingeschlossen. Wir konnten zeigen, dass zur Beurteilung der S1P- und LPA-Effekte in den untersuchten Gewebe- und Zellarten neben den bisher bekannten sieben Rezeptoren auch der hS1P5-Rezeptor betrachtet werden muss. Dies ist von entscheidender Bedeutung, da in bisherigen Untersuchungen insbesondere bei der Interpretation der S1P-Wirkungen nur die Rezeptoren S1P1-3 berücksichtigt wurden. In dieser Arbeit wurde außerdem zum ersten Mal eine große Anzahl potentieller Lipidliganden an den S1P-Rezeptoren S1P1-3 und 5 sowie am hGPR63 getestet. Auch wenn hierbei keine neuen Liganden identifiziert werden konnten, grenzen unsere Untersuchungen die Zahl potentieller zusätzlicher Liganden ein. Außerdem konnten wir zeigen, dass Suramin nicht - wie bisher vermutet - ein spezifischer Antagonist des S1P3-Rezeptors ist, sondern auch S1P5-Rezeptor-vermittelte Effekte blockieren kann. Hierdurch kann eine Fehlinterpretation von durch Suramin-hemmbaren Effekten verhindert werden. Ein wichtiger Befund dieser Arbeit, insbesondere für die pharmazeutische Industrie, ist die speziespezifische Expression des S1P5-Rezeptors. Während in der Ratte hauptsächlich eine Verteilung des Rezeptors im ZNS zu beobachten ist, findet sich das humane Homologe hauptsächlich in peripheren und hier insbesondere Herz-Kreislauf-relevanten Geweben. Der Einsatz von Tiermodellen, bei denen es sich in der Regel um Nager handelt, zur Untersuchung der S1P-Effekte muss daher kritisch überdacht werden, da in diesem Fall ein im Menschen potentiell relevanter Rezeptor nicht in den peripheren Geweben der Ratte vorhanden und somit nicht an den S1P-Wirkungen beteiligt ist. Zudem konnten wir auch funktionelle Unterschiede zwischen den beiden Rezeptoren unterschiedlicher Spezies beobachten, was zusätzlich gegen die Verwendung von Tiermodellen zumindest bei Untersuchungen des S1P5-Rezeptors spricht. Neben der erstmaligen Charakterisierung der Signaltransduktionswege des S1P5-Rezeptors konnte im Laufe dieser Arbeiten eine weitere neue Eigenschaft des S1P5-Rezeptors festgestellt werden: Dieser ist in der Lage, ligand-unabhängige Effekte hervorzurufen. Dies ist von Bedeutung, da häufig Rezeptoren, die aufgrund von Mutationen konstitutiv aktiv sind, für die Ausbildung von Krankheiten verantwortlich sind. Wir konnten darüberhinaus zeigen, dass der zweite in dieser Arbeit identifizierte S1P-Rezeptor, der orphan-hGPR63, von relativ hohen Konzentrationen an S1P sowie von doPA angeschaltet wird. Wenngleich die Affinität des hGPR63 zu doPA niedrig ist, ist dies jedoch der erste Rezeptor, der auf dieses Lipid reagiert. Welche physiologische Bedeutung diesem Rezeptor zukommt, ist noch völlig offen, die primäre Expression im Hirn weist jedoch auf eine zumindest partielle zentrale Wirkung hin. Zusätzlich zu den molekularbiologischen Befunden können aus dieser Arbeit wichtige Informationen für das Screenen von GPCRs und hier insbesondere von Lipid-GPCRs abgeleitet werden. Allgemein gilt, dass der Auswahl des richtigen Versuchssytems im Hinblick auf die Fragestellung und das zu untersuchende Protein eine entscheidende Bedeutung zukommt. Während bei Rezeptoren mit einer restriktiven Gewebeverteilung die Suche nach einem geeigneten Zellsystem keine Schwierigkeiten bereitet, stellt dies das Hauptproblem in der Lipidforschung dar. Da es keine Säugerzellen gibt, die nicht auf S1P reagieren, muss jedes Versuchssystem erneut auf Eignung und optimale Zellart untersucht werden. So konnten in transient transfizierten CHO-K1-Zellen hintergrundfreie S1P-Signale im FLIPR-Versuch gemessen werden, während in den MAP-Kinase-Versuchen in CHO-K1-Zellen der hohe endogene Hintergrund das Versuchsfenster auf ein Minimum reduzierte. Während die Messung von LPA-Effekten in CHO-K1-Zellen mit der FLIPR-Technologie aufgrund der endogenen Signale nicht möglich ist, können LPA-Effekte in McARH7777-Zellen ohne störenden Hintergrund gemessen werden. In diesem Zellsystem ist wiederum die Messung von S1P nicht oder nur begrenzt möglich. Auch wenn diese Beispiele spezifisch für Lipidrezeptoren sind, lässt sich doch aus dieser Arbeit die Notwendigkeit ableiten, neben der richtigen Substanz-Bibliothek besonders bei der Suche nach Liganden für orphan-GPCRs das richtige zelluläre System einzusetzen.
In der vorliegenden Arbeit wurden neue Interaktionspartner des einwärtsrektifizierenden, renalen ROMK-Kaliumkanals identifiziert und funktionell in Xenopus Oozyten untersucht. Zunächst wurde mit Hilfe eines modifizierten Hefe-Zwei-Hybrid-Systems und dem zytosolischen C-Terminus von ROMK als Köderprotein eine cDNS-Bibliothek der humanen Niere durchmustert. Eine Besonderheit hierbei war, daß das Köderprotein im Gegensatz zu dem herkömmlichen Hefe-Zwei-Hybrid-System in der nativen, tetrameren Konformation vorlag. Die Interaktion der isolierten Proteine mit dem ROMK-C-Terminus wurde anschließend in der Hefe in direkten Bindungsstudien bestätigt. Auf diese Weise konnten 25 neue Interaktionspartner für ROMK gefunden werden. Aufgrund ihrer teilweise bekannten Funktionen und Strukturen wurden einige, insbesondere das Golgi-Protein Golgin-160, das Adapterprotein GRB7 und die Serin/Threonin-Proteinphosphatase-Untereinheit PP2A B56β, für eine weitergehende Charakterisierung ausgewählt. Die vermutete Beteiligung von Golgin-160 am vesikulären Membrantransport machte die gefundene Interaktion mit ROMK besonders interessant, da über den Transport des Kanals vom Endoplasmatischen Retikulum über den Golgi-Apparat bis an die Zelloberfläche nur wenig bekannt ist. Zunächst konnte die Bindung von Golgin-160 an das ROMK Kanalprotein durch Koimmunpräzipitation beider Proteine aus Lysaten transfizierter Säugerzellen unterstützt werden. Immunfluoreszenzmikroskopische Untersuchungen bestätigten weiterhin, daß beide Proteine tatsächlich und ausschließlich im Bereich des Golgi-Apparats kolokalisiert sind. Dies verstärkte die Vermutung, daß Golgin-160 am Membrantransport von ROMK beteiligt ist. Funktionelle Untersuchungen in Xenopus Oozyten mit Hilfe der Zwei-Elektroden-Spannungsklemme ergaben nach Koexpression beider Proteine reproduzierbar eine Verdopplung der ROMK-Stromamplitude. Mittels einer Chemolumineszenz-Oberflächenexpressionsanalyse konnte dies auf eine Zunahme der Dichte des Kanalproteins in der Plasmamembran zurückgeführt werden. Ähnliche Resultate wurden auch für das nahe verwandte Kir2.1-Kanalprotein erhalten. Diese Untersuchungen zeigten zudem, daß nur das Kanalprotein an der Zelloberfläche, nicht aber die Gesamtmenge des Proteins in der Zelle erhöht war. Dementsprechend waren auch die biophysikalischen und pharmakologischen Eigenschaften des ROMK-Kanals durch das koexprimierte Golgin-160 nicht verändert. Um die Bedeutung der gefundenen Interaktion näher zu untersuchen, wurden Bindungsstudien mit C-terminalen Bartter-Mutanten von ROMK durchgeführt. Alle untersuchten Punkt- und Trunkationsmutanten waren noch zur Bindung von Golgin-160 fähig, und zwei Punktmutanten konnten durch Golgin-160 auch funktionell stimuliert werden. Daraus kann geschlossen werden, daß diese hochkonservierten Aminosäurereste des Kanalproteins nicht an der Bindung von Golgin-160 beteiligt sind, und daß der defekte Membrantransport dieser krankheitsverursachenden Mutanten nicht auf einer gestörten Interaktion mit dem untersuchten Golgi-Protein beruht. Mit diesen Untersuchungen wurde erstmalig gezeigt, daß Golgin-160 am Golgi-Apparat selektiv mit transportierten Membranproteinen interagiert und dadurch deren Zelloberflächenexpression reguliert. Eine spezifische Rolle beim Transport von Oberflächenproteinen zur Plasmamembran wird durch das Ergebnis unterstrichen, daß auch die Oberflächenexpression der entfernt verwandten Kv1.5- und Kv4.3-Kanalproteine stimuliert wird, aber nicht die des HERGKaliumkanals. In weiteren funktionellen Untersuchungen konnten auch für GRB7 und PP2A B56β erstmalig Einflüsse auf die ROMK-Kanalaktivität gezeigt werden. Die Koexpression von GRB7 führte sowohl bei ROMK als auch bei verwandten Kir2-Kanalproteinen zu einer Verringerung der Stromamplitude. Bei PP2A B56β war der Effekt von der Expressionshöhe dieser regulatorischen Phosphatase- Untereinheit abhängig. So waren die ROMK-Ströme bei geringen Mengen an injizierter PP2A B56β erhöht, nach Injektion größerer Mengen dagegen reduziert. Die Regulation der ROMK-Kanalaktivität wird größtenteils durch die Kontrolle der Kanaldichte an der Zelloberfläche erzielt. Da unterschiedliche Signalwege die Häufigkeit des Kanalproteins an der Zelloberfläche modulieren können, kann vermutet werden, daß nicht nur Golgin-160 sondern auch GRB7 und PP2A B56β an der Regulation der Oberflächenexpression von ROMK beteiligt sind (Abb. 36). Die Identifizierung dieser neuen Interaktionspartner stellt deshalb einen ersten wichtigen Schritt bei der Aufklärung der dieser Regulation zugrundeliegenden molekularen Mechanismen dar.
Ziel der vorliegenden Arbeit war es, die Mechanismen aufzuklären, die im Rahmen inflammatorischer Erkrankungen zur Expression sogenannter Akute Phase Proteine führen. Der Fokus lag hierbei auf der Untersuchung von Signaltransduktionkaskaden, die aktiviert durch proinflammatorische Zytokine in der Leber die Bildung proatherogener Plasmaproteine wie C-reaktives Protein zur Folge haben. Zu diesem Zweck sollten verschiedene in vitro Zellmodelle etabliert und evaluiert werden. Neben Genexpressionsanalysen in zytokin-stimulierten primären humanen Hepatozyten, sowie in den Hepatoma-Zellinien HepG2 und Hep3B sollte die Manipulation der CRP-Expression durch gezielten Gentransfer und die Anwendung der siRNA-Technologie im Mittelpunkt dieser Arbeit stehen. Zu diesem Zweck sollten Transkriptionsfaktoren der NFKB-Familie, sowie der Familie der „Signal transducer and activator of transcription“ (STAT) und der CCAAT/Enhancer-bindenden Proteine (C/EBP) überexprimiert werden, bzw. deren Expression durch die Transfektion mit entsprechenden siRNA-Oligonukleotide gehemmt werden. Ein weiteres wichtiges Ziel war es, ein zelluläres Modellsystem zu generieren und zu charakt-erisieren, das zur Identifizierung von Substanzen geeignet ist, die die CRP-Expression modu-lieren oder inhibieren.
Der Prävention und Therapie von diabetischer Nephropathie kommt immer mehr Bedeutung zu, da sie der Hauptgrund für terminale Niereninsuffizienz ist. Ein möglicher Therapieansatz ist die Hemmung des Renin-Angiotensin-Aldosteron-Systems mit Angiotensin Converting Enzyme Inhibitoren oder kombinierten ACE und neutrale Endopaptidase (Vasopeptidase) Inhibitoren. Trotz der therapeutischen Effektivität einer pharmakologischen Hemmung des RAAS ist die Bedeutung von ACE und NEP in der Pathogenese der diabetischen Nephropathie noch nicht vollständig geklärt. Auf Gewebsebene kann die erhöhte Bildung und Akkumulation von AGEs zur Entwicklung von diabetischer Nephropathie beitragen (73) und der ACE-Inhibitor Ramipril kann die Anreicherung von fluoreszierenden AGEs in der Niere und im Serum von Typ I diabetischen, hypertensiven Ratten verhindern (73). Da AGEs unterschiedliche Strukturen und Effekte auf Proteine haben, sollte der Einfluss des ACEInhibitors Ramipril und des Vasopeptidase Inhibitors AVE7688 auf die Akkumulation von den drei prototypischen AGEs 3-DG-Imidazolon, Pentosidin und CML in einem Typ II diabetischen Tiermodell untersucht werden. Für den AGE-Subtyp CML wurde zusätzlich noch die Konzentration im Serum und die CML Clearance in ZDF Ratten bestimmt. Des Weiteren sollte der Effekt von Ramipril und AVE7688 auf die AGE Bildung in vitro analysiert werden. Die Charakterisierung der ZDF Ratten ergab, dass es zu einer 40, 50 und 55%igen Akkumulation der AGE-Subtypen 3-DG-Imidazolon, Pentosidin und CML in der Niere von 37 Wochen alten ZDF Ratten kommt. Diese Akkumulation konnte durch die Behandlung mit AVE7688 komplett verhindert werden, während Ramipril nur die CML Akkumulation in 37 Wochen alten ZDF Ratten leicht reduzierte. Auch wurde die CML Akkumulation im Serum von 37 Wochen alten ZDF Ratten durch AVE7688 verhindert. AVE7688 reduzierte nicht nur die AGE Akkumulation, sondern verbesserte auch die CML Clearance, während Ramipril keinen Effekt hatte. Die Effekte zur AGE Reduktion gingen einher mit einer Verhinderung der Albuminurie durch AVE7688 und einer 30%igen Reduktion durch Ramipril. In vitro Studien zu AGE Bildung zeigten, dass AVE7688 die Bildung von CML und Pentosidin verhindern kann und dass chelatierende Eigenschaften von AVE7688 an diesem Effekt beteiligt sein könnten. Ramipril hatte nur sehr schwach chelatierende Eigenschaften und keinen Einfluss auf die in vitro Bildung von CML oder Pentosidin. Neben der Akkumulation von AGEs trägt auch die Aktivierung der intrazellulären Signaltransduktion des Receptor of Advanced Glycation End Products (RAGE) zur Entwicklung von diabetischer Nephropathie bei. Dies wurde in doppelt transgenen diabetischen Mäusen gezeigt, die aufgrund der RAGE Überexpression verstärkt diabetische Nephropathie im Vergleich zu diabetischen Mäusen mit normaler RAGE Expression entwickeln (64). Die Aktivierung der RAGE Signaltransduktion mit den Liganden AGEs und S100B führt zu Entzündungsprozessen und zu einer Hochregulation der RAGE Expression (97). Da es in ZDF Ratten zur Akkumulation von AGEs kommt, wurde untersucht, ob ihr Rezeptor RAGE vermehrt in ZDF Ratten exprimiert wird und ob AVE7688 oder Ramipril die RAGE Expression beeinflussen. Die Substanzen könnten zum einen die RAGE-Liganden Interaktion direkt beeinflussen oder über eine Reduktion der Liganden die RAGE Expression verändern. Um dies zu untersuchen, wurde zunächst biochemisch die Interaktion von RAGE mit den Liganden AGEs und S100B näher analysiert, und die Bindedomaine von RAGE charakterisiert. Anhand dieser Daten wurde der Effekt von AVE7688 und Ramipril auf die biochemische RAGE-Liganden Interaktion und zelluläre RAGE Aktivierung in Makrophagen im Vergleich zu einem RAGE Antagonisten untersucht. In den ZDF Ratten korrelierte die AGE Akkumulation mit einer erhöhten RAGE Expression in der Niere von 37 Wochen alten ZDF Ratten. AVE7688, nicht jedoch Ramipril, reduzierte die erhöhte RAGE Expression in den ZDF Ratten. Bei der Charakterisierung der RAGE-Liganden Interaktion stellte sich heraus, dass AGEs, die Pentosidin und CML enthalten, ebenso wie S100B an RAGE binden und dass die V-Domaine von RAGE ausreichend für die Bindung der Liganden ist. Kreuzkompetitionen zeigten, dass AGEs und S100B innerhalb der gleichen Bindungsstelle von RAGE binden und dass AGEs, die Pentosidin enthalten, wesentlich affiner an RAGE binden als reine CML AGEs, wobei S100B von den untersuchten Liganden am affinsten an RAGE gebunden hat. Eine Untersuchung des Einflusses der Substanzen auf die RAGE-Liganden Interaktion ergab, dass die aktiven Metabolite von AVE7688 und Ramipril in physiologisch relevanten Konzentrationen keinen Effekt auf die Interaktion von RAGE mit AGEs oder S100B hatten. Da weder AVE7688 noch Ramipril die RAGE-Liganden Interaktion beeinflussten, wurde ein Homologiemodell der RAGE V-Domaine erstellt, um die Struktur eines RAGE Antagonisten besser vorhersagen zu können. Anhand des Modells konnte eine stark positiv geladene Fläche identifiziert werden, was vermuten lies, dass elektrostatische Wechselwirkungen an der RAGE-Liganden Interaktion beteiligt sein könnten. Diese Hypothese wurde durch die Daten unterstützt, dass Heparin aufgrund seiner negativen Ladung an die RAGE V-Domaine bindet und die Bindung von AGEs und S100B an RAGE kompetieren kann. Punktmutationen von ausgewählten positiven Resten innerhalb der RAGE V-Domaine zeigten, dass die Mutation von einer Aminosäure kaum einen Effekt hatte, während die Mutation von drei oder fünf positiv geladenen Resten, die Bindung der Liganden an RAGE reduzierte. Auch zellulär konnte Heparin die RAGE vermittelte Sekretion von TNFα in Makrophagen verhindern. Die erhöhte AGE Clearance und die Inhibition der AGE Bildung, vermutlich durch die chelatierenden Eigenschaften von AVE7688, könnten zur Reduktion der renalen AGE Akkumulation und einer Verbesserung der Nephropathie bei Typ II Diabetes beitragen. Die Daten lassen auch vermuten, dass die Aktivierung der RAGE Signaltransduktion bei Diabetes durch AVE7688 verhindert werden kann, wobei AVE7688 keinen Effekt auf die Bindung der pathogenen RAGE-Liganden AGEs und S100B an RAGE hatte. Die Inhibition der RAGE Signaltransduktion könnte auf eine Reduktion der Liganden zurückgeführt werden, wobei der Effekt eine differenzielle Regulation der Expression von sRAGE nicht ausgeschlossen werden kann. Dieser neu identifizierte Wirkungsmechanismus der Vasopeptidasehemmung trägt mutmaßlich zur hohen Wirksamkeit dieser Substanzklasse bei diabetischer Nephropathie bei.