Refine
Year of publication
Document Type
- Doctoral Thesis (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- 19F NMR shifts for fluoroarenes (1)
- Anthracen (1)
- Atmosphärenchemie (1)
- Austrittsarbeit (1)
- Benzolsensor (1)
- Bororganische Verbindungen (1)
- Broken symmetry (1)
- Chemische Synthese (1)
- Chloroxospezies (1)
- Core-Hole-Clock Methode (1)
Institute
In der vorliegenden Arbeit wurde ein Flugzeitmassenspektrometer (TOF-MS) für die Messung von halogenierten Spurengasen charakterisiert und das verwendete analytische System optimiert. Ein TOF-MS hat den Vorteil, dass es die volle Masseninformation aufzeichnet. Dadurch ist es möglich, auch im Nachhinein Substanzen zu identifizieren und retrospektiv auszuwerten. Eine retrospektive Auswertung kann helfen, Auswirkungen auf die Atmosphäre besser abschätzen zu können. Aus diesem Grund wurde mit Hilfe des TOF-MS ein digitales Datenarchiv durch regelmäßige Messungen von Luftproben, die am Taunus Observatorium auf dem Kleinen Feldberg genommen wurden, initialisiert. Durch die Wahl des Taunus Observatoriums werden in unmittelbarer Nähe des industriellen Ballungsraums Rhein-Main auf der Nordhemisphäre Luftproben genommen, wodurch die Wahrscheinlichkeit erhöht wird, unbekannte Substanzen in erhöhter Konzentration zu messen.
Bevor das TOF-MS jedoch für die Initialisierung des Datenarchivs verwendet werden konnte, wurde es charakterisiert und mit einem, für die Analyse von halogenierten Kohlenwasserstoffen etablierten QP-MS verglichen. Um beide Detektoren vergleichen zu können, erfolgte die Probenaufgabe, Probenaufkonzentrierung und die Separation der Probe im Gaschromatographen innerhalb eines gemeinsamen Systems. Nach der Separation im GC teilt sich der Trägergasfluss auf. Die Charakterisierung des TOF-MS und der Vergleich mit dem QP-MS umfasst die Auswertung der Daten, die Messpräzision, die Linearität, die Sensitivität der Detektoren, die Massenauflösung und die Massenachsenbestimmungsgenauigkeit.
Hinsichtlich der Messpräzision liegen beide Massenspektrometer, wie ermittelt auf dem selben Niveau, wodurch sie auch sehr geringe Variabilitäten in den Mischungsverhältnissen von halogenierten Kohlenwasserstoffen aufzeichnen können.
Die Linearität der Detektoren ist substanzspezifisch. Während das QP-MS in Übereinstimmung mit bereits literaturbekannter Eigenschaft, einen sehr großen linearen Bereich aufweist, zeigt das hier verwendete TOF-MS für 2/3 aller ausgewerteter Substanzen starke substanz- und fragmentabhängig Nichtlinearitäten. Das nichtlineare Verhalten des Detektors des TOF-MS zeigt sich auch bei den Messvergleichen, wobei jedoch nur signifikante Abweichungen bei sehr hohen und sehr niedrig gemessenen Mischungsverhältnissen beobachtet wurden. Diese starke Nichtlinearität stellt eine große Einschränkung für eine retrospektive Auswertung unbekannter Substanzen dar, da deren Verlauf nur qualitativ nicht aber quantitativ dargestellt werden kann.
Die Massenauflösung liegt beim TOF-MS bei 1000 mit einer Massenachsenbestimmungsgenauigkeit zwischen 50-170~ppm, wodurch es dem QP-MS, welches nur Einheitsauflösung vorweist, weit überlegen ist. Mit dieser Auflösung und Massenachsenbestimmungsgenauigkeit ist das TOF-MS in der Lage einen halogenierten von einem nichthalogenierten Kohlenwasserstoff quantitativ zu trennen.
Zum Vergleich der Sensitivität der beiden Massenspektrometer wurde das QP-MS in drei verschiedenen Modi betrieben: Zum einen dem SCAN-Modus, dem operationalen SIM-Modus, welcher im regulärem Messbetrieb verwendet wird und mehrere Ionen pro Zeitfenster misst, und dem optimierten SIM-Modus, welcher nur ein Ion der jeweiligen Substanz misst. Das TOF-MS hat die gleiche Sensitivität wie das QP-MS im optimierten SIM-Modus. Das TOF-MS hat eine um den Faktor 3 höhere Sensitivität als das QP-MS im operationalen SIM-Modus und eine um den Faktor 12 höhere Sensitivität als das QP-MS im SCAN-Modus bei den betrachteten Substanzen.
Die Initialisierung des digitalen Datenarchivs wurde im Oktober 2013 mit der Probennahme am Taunus Observatorium begonnen, wobei in der vorliegenden Arbeit der Zeitraum von einem Jahr betrachtet wurde. Es wurden Identifizierungen aus regulären Proben der Taunus Observatoriums-Zeitreihe durchgeführt und so die Substanzen HFC-32, HFC-245fa,HCFC-133a und HFO-1234yf gefunden. Zusätzlich stellte Martin Vollmer (Eidgenössische Material und Prüfgesellschaft) zwei Gasmischungen zu Verfügung für die Identifikation von noch nicht am System vermessenen Substanzen. Somit konnte die Vielfalt an diesem System vermessener Substanzen von 40 auf insgesamt 64 Substanzen erweitert werden.
Von den neu identifizierten Substanzen wurden HFC-227ea, HFC-236fa, HFC-32, HCFO-1233zd, HFO-1234zd, HFO-1234yf, HFC-245fa, HCFC-31, HFC-133a, Isofluran und HFC-112 in der Taunus Observatoriums-Zeitreihe gefunden und rückwirkend aufgearbeitet.
Durch die retrospektive Auswertung ist das TOF-MS für seine charakterisierte Anwendung zum Einsatz gekommen.
Metallorganische Netzwerke (engl. metal-organic frameworks, MOFs) sind eine neuartige Klasse mikro/mesoporöser Materialien, für die eine Vielzahl von möglichen Anwendungen demonstriert werden konnte. Das Ziel dieser Arbeit besteht in der Synthese von MOF Mikro/Nanopartikeln sowie der Herstellung von sogenannten Oberflächen-deponierten MOFs (engl. surface-attached metal-organic frameworks, SURMOFs). MOF Partikel mit kontrollierbarer Morphologie und Größe wurden unter milden Bedingungen synthetisiert. Um MOFs als Sensoren, intelligente Membrane, oder in nanotechnologischen Bauelementen verwenden zu können, ist die Integration auf der jeweiligen Oberfläche wichtig. Daher beschäftigt sich der Großteil dieser Arbeit mit der kontrollierten Abscheidung von SURMOFs auf verschiedenartigen Trägermaterialien. Etliche interessante Eigenschaften (z.B. die Fluoreszenz in Abhängigkeit von der Gegenwart von Gastmolekülen und die dynamische Gasadsorptionskapazität) der SURMOFs wurden untersucht.
Metal-organic frameworks (MOFs) have emerged as a promising class of crystalline porous inorganic-organic hybrid materials showing a wide range of applications. In order to realize the integration of MOFs into specific devices, this thesis mainly focuses on the controlled growth and the properties of highly oriented surface-mounted metal-organic frameworks (SURMOFs).
The stepwise layer-by-layer (LbL) growth method exhibits vast advantages for the controllable growth of SURMOFs regarding the crystallite orientation, film thickness and homogeneity. However, up to date, only a few MOFs have been demonstrated to be suited for this protocol. So the first project of this thesis was designed to extend the applicability of the LbL growth. To this end, a semi-rigid linker based [Cu2(sdb)2(bipy)] (sdb = 4,4’-sulfonylbiphenyl dicarboxylate; bipy = 4,4’-bipyridine) MOF was chosen. Employing the LbL growth, [Cu2(sdb)2(bipy)] SURMOFs were successfully grown onto both pyridyl- and carboxyl-terminated surfaces at the temperature range of 15-65 °C. Interestingly, the orientation of the SURMOFs largely depends on temperature on both surfaces. At low temperatures (below 40 °C), SURMOFs with exclusive [010] orientation are obtained. In contrast, at high temperatures (40-65 °C), [001] oriented SURMOF growth is favored. A novel growth mode was demonstrated, which is, instead of surface chemistry, the temperature-induced ripening processes and the tendency to minimize surface energies can dominate the SURMOF growth.
Inspired by the advantages of LbL deposition of isoreticular SURMOFs, the second project was conceived to grow multivariate SURMOFs (MTV-SURMOFs) using mixed dicarboxylate linkers. We advance a hypothesis that linker acidity (expressed by the pKa values) may have an influence on the oriented growth of MTV-SURMOFs. To test the hypothesis, seven isoreticular [Cu2L2(dabco)] (L = single kind of dicarboxylate linker; dabco = 1,4-diazabicyclo[2.2.2]octane) SURMOFs were grown onto pyridyl-terminated surfaces at 60 °C. The quality of [001] orientation is greatly affected by the acidity of the linkers. With this observation, we deposited a series of [Cu2Lm2(dabco)] (Lm = mixed dicarboxylate linkers) SURMOFs under the same conditions. [Cu2Lm2(dabco)] SURMOFs with exclusive [001] orientation are obtained when the growth solution contains two linkers of relatively high pKa value or more than two kinds of linkers (independent of the pKa values), while the mixtures of ligands with relatively low pKa values or a high content of low pKa valued linkers can result in mis-oriented growth of SURMOFs with unexpected [100] orientation.
Moreover, the LbL growth shows enormous potential in the rational construction of functional SURMOFs. Therefore, the third project of this thesis was devised to deposit SURMOFs containing redox-active species. For this, the 4,4’-biphenyldicarboxylic acid (H2(bpdc)) linker was functionalized with ferrocene (Fc) and dimethyl ferrocene (Me2Fc) moieties. [Cu2(bpdc-amide-Fc)2(dabco)] SURMOF (Fc-SURMOF) is perfectly grown along the [100] direction, while mis-oriented growth of [Cu2(bpdc-amide-Me2Fc)2(dabco)] SURMOF (Me2Fc-SURMOF) was observed. Surprisingly, Fc-SURMOF shows excellent electrochemical properties due to the reversible oxidation and reduction of the ferrocene moieties in the oriented pores, while the Me2Fc-SURMOF was found to be a closely packed insulating layer since no extensive charge transfer is observed. A diffusion controlled mechanism of redox reaction is proposed, where the diffusion of the counter anions in the pores limits the current.
Besides the LbL growth protocol, the spin-coating technique is also promising for the oriented growth of SURMOFs. Driven by the specific applications, the fourth project of this thesis was planned to grow functional SURMOFs containing catalytically active units. The Keggin-type polyoxometalates (POMs) with high catalytic activities were chosen to functionalize the HKUST-1 SURMOFs. Combining the technique with methanol vapor induced growth, a series of POM functionalized HKUST-1 SURMOFs (denoted as POM@HKUST-1 SURMOFs) were controllably deposited onto pyridyl-terminated surfaces. The SURMOFs exhibit great potential as electrocatalysts in electrochemical devices due to the excellent redox properties of POMs. In addition, the PTA@HKUST-1 (PTA = phosphotungstic acid) SURMOF can be employed as an ideal platform for the selective loading of methylene blue (MB) dye with high efficiency. Owing to the strong binding between the dye molecules and the framework, the MB dye cannot be desorbed by ion exchange and MB loaded PTA@HKUST-1 SURMOF shows reliable redox properties under inert conditions, further confirming the application potential in electrochemical devices.
Zur Untersuchung der Eigenschaften organischer Halbleiter sollte die Ultrareinigung organischer Materialien durch Zonenschmelzen ermöglicht werden und anschließend dieses Verfahren auf einen neuen molekularen n-Halbleiter, Perfluoranthracen, angewendet werden. Ein Großteil der vorliegenden Arbeit beschäftigte sich daher mit der Konstruktion einer Zonenschmelze. Diese sollte in der Lage sein, laborübliche Mengen organischer Materialien zu reinigen (ca. 0,5-5 g). Ein Eigenbau wurde in Angriff genommen, um eine optimale Anpassung an die zu erwartenden Aufgabenstellungen zu erreichen. Daher wurde das System in einer modularen Bauweise konzipiert, sodass einzelne oder mehrere Heizzonen verwendet werden können und die Apparatur auch später beliebig erweitert werden kann. Zunächst mussten Erfahrungen mit der Wärmezufuhr und Kühlung gesammelt werden und ein verlässlicher Zugmechanismus entwickelt werden, der die Probe in kontrollierter, langsamer Weise durch die Apparatur bewegt. Ein grosses Problem stellte das Bersten der gläsernen Probenbehältnisse beim Zonenschmelzen einiger Substanzen dar. Nach dem erfolgreichen Einsatz verschiedener Puffermaterialien wurde schliesslich ein apparativer Aufbau entwickelt, der auf eine aktive Kühlung verzichtete. Hierdurch konnte die unkontrollierte Sublimation unterbunden werden und das Bersten der Probenbehältnisse wurde unterdrückt. Gleichzeitig musste jedoch sichergestellt werden, dass die Effektivität des Zonenschmelzen auch ohne den Einsatz grosser Temperaturgradienten gegeben war. Die Reinigung verschiedener kommerziell verfügbarer Substanzen wurde getestet und gleichzeitig die Analytik der organischen Verunreinigungen mittels Gaschromatographie im Arbeitskreis etabliert. Das Zonenschmelzen ermöglichte schließlich die Reinigung von Anthracen bis auf 99,97%. In Dibenzothiophen konnten der Anteil der Nebenkomponenten unter die Nachweisgrenze verringert werden. Nach der Herstellung von Perfluoranthracen wurden unterschiedliche Methoden zur Reinigung getestet und schließlich das Zonenschmelzen angewendet. Es war möglich, kleinere Mengen an Perfluoranthracen in einer Reinheit von bis zu 99,11% zu isolieren, was durch reguläre Reinigungsverfahren wie Umkristallisation oder Sublimation nicht erreicht werden konnte. Dennoch limitierte die thermische Instabilität des Materials die Effektivität des Zonenschmelzens.
Weiterhin wurden die optische und elektrochemische Bandlücke von Perfluoranthracen untersucht, um Aussagen über die mögliche Anwendung als n-Halbleiter treffen zu können. Es wurde eine optische Bandlücke von 3,08 eV und eine elektrochemische Bandlücke von 2,82 eV ermittelt. Im Vergleich zu Anthracen wurden niedriger liegende Grenzorbitale bestimmt, was ein Einbringen von Elektronen in das energetisch niedrigste unbesetzte Molekülorbital (LUMO) und somit n-Halbleitung vereinfachen könnte. Schließlich wurde untersucht, ob sich durch die äquimolare Mischung von Anthracen und Perfluoranthracen Mischkristalle herstellen lassen, die Charge-Transfer-Eigenschaften (CT) und eine hohe elektrische Leitfähigkeit aufweisen würden. Hierzu mussten zunächst ausreichend grosse Einkristalle gezüchtet werden, von denen anschliessend die Röntgenkristallstruktur bestimmt wurde. Das einkristalline Material zeigte eine gemischt gestapelte Anordnung (siehe Abbildung 0.2), wie sie für andere Systeme, beispielsweise Benzol/Hexafluorbenzol, bekannt ist. In feldstärkenabhängigen und temperaturabhängigen Messungen wurden danach die elektrischen Eigenschaften des Materials charakterisiert. Es konnten keine Hinweise für CT-Eigenschaften gefunden werden. Dennoch besitzt der Mischkristall im Vergleich zu Anthracen eine etwa 10 12 -fach höhere Leitfähigkeit und erreicht Werte guter anorganischer Halbleiter. Das temperaturabhängige Verhalten selbst zeigt aber keine typisch halbleitenden Charakteristiken, da für die thermisch angeregte Zunahme der Ladungsträgerkonzentration im untersuchten Mischkristall kein lineares Verhalten im Arrhenius-Plot gefunden wurde. Die genauen Leitungsmechanismen bedürfen weiterer Untersuchungen. In nachfolgenden Experimenten könnte die mögliche Anwendbarkeit in elektronischen Anwendungen geklärt werden.
Die Kenntnis der Struktur von Biomolekülen und der biologischen Abläufe, in welche diese involviert sind, ist grundlegend für die Entwicklung von medizinischen Behandlungen. Im Rahmen dieser Arbeit wurden Systeme zur Untersuchung von Biomolekülen, insbesondere Proteinen, hergestellt. Im Mittelpunkt stand die Entwicklung von Materialien, welche neue Möglichkeiten zur Präparation von Proteinen zur Untersuchung derer Struktur mittels Kryo-Transmissionselektronenmikroskopie (Kryo-TEM) eröffnen. In zwei weiteren Projekten wurden biomimetische Systeme aufgebaut, welche die Oberfläche eines Biomoleküls oder biologischen Ensembles nachahmen und hierdurch deren Untersuchung ermöglichen. Hier wurden Systeme zur einfachen Nachbildung biologischer Membranen oder Proteinoberflächen betrachtet.
Eine wichtige Methode zur Untersuchung der dreidimensionalen Struktur von Biomolekülen ist die Kryo-TEM. Zur Mikroskopie werden die Biomoleküle in wenige Mikrometer großen Löchern eines amorphen Kohlenstofflochfilms mittels einer wenige Nanometer dicken Schicht aus amorphem Eis fixiert. Hierfür wird ein dünner Film einer wässrigen Probe auf den Kohlenstofflochfilm aufgebracht und gefroren. Insbesondere für Membranproteine ist die Herstellung derartiger Proben schwierig, da die Proteinpartikel zur Aggregation und Adsorption an dem Kohlenstofflochfilm neigen, wodurch keine Partikel in den Löchern des Kohlenstofffilmes auftreten, welche mikroskopiert werden können.
In dieser Arbeit wurden Materialien zur Verbesserung der Präparation von Proteinen für die Kryo-TEM entwickelt. Es wurden hierfür verschiedene biorepulsive Materialien, auch solche, welche eine spezifische Anbindung der Biomoleküle erlauben, untersucht. Da in der TEM die Probe durchstrahlt wird, eignen sich Nanometer dünne Membranen dieser Materialien als Trägermaterial für die Biomoleküle, da sie nur zu einem geringen Hintergrund führen. Zum einen wurden Nanomembranen durch die chemische Quervernetzung von Nanometer dicken Hydrogelfilmen mit verschiedenen quervernetzenden Molekülen hergestellt. Zum anderen wurden Trägerfilme, wie amorphe Kohlenstofffilme oder Kohlenstoffnanomembranen (engl. carbon nanomembranes, CNM) biorepulsiv funktionalisiert. Darüber hinaus wurde eine Nitrilotriessigsäure(NTA)-funktionalisierte Hydrogel-beschichtete Nanomembran entwickelt, welche markierte Proteine selektiv über einen His-Tag bindet.
Neben der Entwicklung von Materialien zur Untersuchung von Proteinen mittels Kryo-TEM wurden Beschichtungen hergestellt, welche die Oberfläche eines Biomoleküls oder eines Ensembles von Biomolekülen nachahmen. Diese Modelloberflächen sollten ebenfalls die Untersuchung von Eigenschaften der biologischen Systeme ermöglichen. Biologische Membranen bestehen aus einem Ensemble von Biomolekülen. Eine Vielzahl verschiedener Biomolekülen tritt in einer komplexen Anordnung in diesen dünnen Membranen auf. Es wurde versucht, strukturierte Membranen mit lokalen Variationen der physikalischen und chemischen Eigenschaften, jedoch weitaus weniger komplexen Aufbau, herzustellen. Die hergestellten Membranen mit biologisch relevanten Strukturen im Mikrometer- bis Zentimeterbereich, können nach weiterer Forschung als einfache Modellsysteme zur Nachahmung ihrer komplexen biologischen Vorbilder dienen.
In einem weiteren Projekt wurde eine Modelloberfläche für die Bindungstasche des Proteins FimH, welches eine wichtige Rolle in der bakteriellen Adhäsion spielt, entwickelt. In dem Kooperationsprojekt mit der Arbeitsgruppe Lindhorst wurde ein Modellsystem entwickelt, welches dazu dient, herauszufinden, inwiefern eine Funktionalisierung einer Aminosäurevon FimH über eine vorgeschlagenen Ligationsstrategie möglich ist. Das Modellsystem besteht aus einer biorepulsiven Hydrogel-Matrix, aus welcher die Seitenkette der Aminosäure Tyrosin in die Lösung exponiert ist. Die Substrat-katalysierte Reaktion der Aminosäuren-Seitenkette mit dem Photoschalter wurde mithilfe eines Bakterienadhäsionstests untersucht. Es konnte gezeigt werden, dass sich die vorgeschlagene Ligationsstrategie unter Berücksichtigung von Nebenreaktionen zur Modifizierung des Proteins eignet.
Es konnten vier neuartige Systeme, welche die Probenpräparation zur Untersuchung von Proteinen mittels Kryo-TEM vereinfachen, entwickelt werden. Die Ergebnisse sind von wissenschaftlicher Relevanz, da sie die Strukturbestimmung vieler Proteine deutlich vereinfachen und hierdurch beschleunigen können. Außerdem wurden biomimetische Beschichtungen entwickelt, welche entweder Proteinoberflächen oder Biomembranen nachahmen. Die entwickelten Modellsysteme erweitern das Spektrum an Möglichkeiten, Biomoleküle oder biologische Ensembles zu untersuchen.
In dieser Arbeit werden Projekte beschrieben, in denen das Adsorptionsverhalten von Proteinen und Bakterien an verschiedene Materialoberflächen manipuliert wird.
Durch die Reaktion verschiedener oxidischer Oberflächen mit Glycidol konnten biorepulsive Polyglycerolschichten erzeugt werden. Für die Herstellung dieser Polyglycerolschichten wurden zwei unterschiedliche Verfahren entwickelt und untersucht. Die erste Methode beruht auf der Bildung einer aminoterminierten Monolage auf Silicium-Oberflächen, an der in einem zweiten Schritt die Polymerisation von Glycidol durchgeführt wird. Die Dicke der angebundenen Polyglycerolschicht ist abhängig von der Beschichtungsdauer, wobei die dicksten Schichten bis zu 98% der Bakterienadhäsion unterdrücken können. Das zweite Verfahren ist die direkte Anbindung von stabilen Polyglycerol-Beschichtungen an Silicium-, Aluminium- oder Stahl-Oberflächen. Je größer die abgeschiedene Polyglycerolmenge ist, desto höher ist die Biorepulsivität der Schicht, was durch Adsorptionstests mit Proteinen und ermittelt wurde.
Polyglycerolschichten eignen sich besonders gut für die nachträgliche Modifizierung. So konnten beispielsweise mittels Elektronenstrahlen laterale Strukturierungen der Polyglycerol-beschichteten Oberflächen erfolgreich durchgeführt werden. Sensorisch aktive Moleküle wie Ethylendiamintetraessigsäure oder Biotin konnten im Rahmen dieser Arbeit nachträglich an Polyglycerolschichten angebunden werden. Die Aktivität der Bindungsstellen nach der Anbindung an die Oberfläche konnte dabei durch spezifische Erkennungsereignisse nachgewiesen werden.
Im zweiten Teil dieser Arbeit wurden selbstanordnende Monoschichten mit Oligoethylenglycol (OEG)-Kopfgruppen und Thiolat-Ankergruppen verwendet, um lateral strukturierbare, biorepulsive Schichten auf Gold zu erzeugen. Es wurde untersucht, ob derartige OEG-Monolagen kontrolliert durch langwelliges UV-Licht (390 nm) abgebaut werden können, um proteinbindende und proteinrepulsive Bereiche auf einer Substrat-Oberfläche zu generieren. Die Bestrahlung mit UV-Licht bewirkte die Oxidation und Abspaltung der Ethylenglycol-Einheiten, wodurch die unspezifische Adsorption von Proteinen erfolgen kann. Zusätzlich konnten Photooxidations-Reaktionen an der Thiolat-Ankergruppe nachgewiesen werden, welche die Ablösung des SAM-Bausteins zur Folge haben.
Für den Einsatz von Lithographie-Techniken in mikrofluidischen Anlagen wurde das Abbauverhalten der biorepulsiven Monolage bei der Bestrahlung unter Wasser untersucht. In Abwesenheit von molekularem Sauerstoff kommt es hier lediglich zur Spaltung der Etherbindung zwischen den Ethylenglycol-Einheiten. Die Beobachtung, dass die An- bzw. Abwesenheit von molekularem Sauerstoff zu zwei unterschiedlichen Abbaumechanismen führt, kann für die Feinabstimmung der Oberflächenbeschaffenheit und somit der Proteinanlagerung genutzt werden.
Biorepulsive OEG-Monolagen können auch dazu verwendet werden, um gezielt bestimmte Biomoleküle anzulagern. Dazu können die Monolagen mit Erkennungsstellen ausgestattet werden, welche die spezifische Anbindung einer Biomolekül-Spezies ermöglichen. Gerade bei der Detektion von großen Biomolekülen oder Mikroorganismen spielt jedoch nicht nur die chemische Zusammensetzung, sondern auch die Ausrichtung der Bindungsstelle eine entscheidende Rolle. Für die Untersuchung des Orientierungseinflusses wurden Moleküle verwendet, die neben einer Mannose-Einheit als Bindungsstelle für Bakterien auch eine Azobenzol-Gruppe, welche die strahlungsinduzierte reversible Schaltung der Konformation ermöglicht, tragen. Bakterien-Adhäsionstests zeigten, dass sich die Orientierung der Mannose-Einheit auf die Anbindung der Bakterien auswirkt.
Im Rahmen dieser Arbeit wurden neuartige Methoden zur Herstellung, Charakterisierung und Strukturierung biorepulsiver und biosensorischer Schichten entwickelt. Die dadurch gewonnenen Erkenntnisse sind von bedeutender wissenschaftlicher Relevanz und ermöglichen die potentielle industrielle Anwendung der entwickelten Methoden im Kontext der Material- und Biotechnologie sowie der Nanofabrikation.
Ferrocenbasierte Polymere stellen interessante Verbindungen dar. Sie weisen herausragende optische und/oder elektronische Eigenschaften auf, die sich auf die redoxaktiven Eisenionen sowie die kooperativen Effekte entlang des Polymerstrangs zurückführen lassen. Befindet sich Ferrocen in der Hauptkette und sind die Ferrocenbausteine jeweils über ein einzelnes Atom miteinander verbunden, so ist dieses Brückenelement maßgebend für die substanzspezifischen Merkmale des Makromoleküls. Während bereits effiziente Syntheserouten bekannt sind, auf denen sich Atome der Gruppen 14 bis 16 in die Brücke einführen lassen, bereitet die Synthese borverbrückter Poly(ferrocenylene) große Schwierigkeiten. Gerade diese Stoffklasse wäre aber besonders attraktiv, da Boratome sowohl dreifach als auch vierfach koordiniert vorliegen können und über diese Eigenschaft das Ausmaß der elektronischen Wechselwirkungen entlang des Polymerrückgrats ebenso wie die Struktur des Makromoleküls gezielt beeinflussbar ist. Vor diesem Hintergrund galt es im Rahmen der vorliegenden Arbeit, chemisch stabile Poly(ferrocenylene) mit tetrakoordinierten anionischen Boratbrücken darzustellen. Als Grundlage diente die Adduktbildung zwischen lewissauren 1 ,1'-fc(BRz)zDerivaten und dem lewisbasischen doppelt deprotonierten Ferrocen 1,1 '-fcLi2 x 2/3 TMEDA. Frühere Untersuchungen an BMez-verbrückten di- (35) und tri nuklearen (36) Ferrocenkomplexen haben gezeigt, dass diese Verbindungen extrem empfindlich gegenüber Luft und Feuchtigkeit sind. Auch mussten cyclovoltammetrische Messungen an 35 bzw. 36 bei tiefen Temperaturen (-78 Oe) durchgeführt werden, um zu verhindern, dass es zu einer Zersetzung der Moleküle im Zuge der Fe{fI)Oxidation kam. Im Rahmen dieser Arbeit sind Systeme dargestellt worden, bei denen die labilen BMe2-Gruppen durch BPh2- bzw. Borafluorenylbrücken ersetzt sind. An mononuklearen Verbindungen konnten (Diphenylboryl)ferrocen 57, 1, 1'MBis(diphenylboryl) ferrocen 58 und 9-Ferrocenyl-9-borafluoren 61 isoliert und voIlständig charakterisiert werden (Abb. 53). ....
Übergeordnetes Ziel der Arbeit war die Synthese von Molekülen, die zur gezielten Funktionalisierung von Oberflächen dienen sollten. Dazu mussten jeweils Synthesewege inklusive geeigneter Schutzgruppenchemie sowie Reinigungsstrategien entwickelt werden. Im Rahmen dieser Zielsetzung wurde zunächst eine Anlage zur Gradientensublimation aufgebaut, mit der sich die Substanzen in sehr hoher Reinheit erhalten ließen.
This thesis primarily covers a systematic assessment of quantum chemical methods to predict accurate 19F NMR shifts for fluoroarenes and magnetic exchange coupling constant (J) in organic spin dimers which are basic building blocks for rational designing of organic magnetic materials.
One of the most important goals in chemistry is to design and synthesize molecules with optimum properties. This thesis is divided into two parts: the first part comprises of a systematic effort to find an inexpensive quantum chemical method to predict accurate 19F NMR chemical shifts (within an accuracy of 2 ppm) for perfluoraromatics. Essentially, these strenuous efforts have been devoted to find best DFT functional and basis set combination to predict accurate 19F shifts. In addition,the influence of geometrical parameters, solvents, chemical environment was also analyzed. Various correction approaches were tested to correct the calculated shifts. The influence of various functionals and basis sets was also analyzed on the correction efficiency of an individual scheme. All the NMR calculation methods already being used and correction approaches were verified to predict shifts of three different fluorine-substituted molecular sets. These structure sets include fluorobenzenes, substituted benzenes and fluorine substituted aromatic fused rings (e.g. fluorine substituted anthracene).
In the second part of this thesis, we investigated the accurate prediction of magnetic exchange couplings (J) for organic spin dimers using quantum chemical methods. We analyzed the performance of various DFT methods and various post-HF methods, such as the CASSCF, CASPT2, MSTDISD, DDCI1, DDCI2, DDCI3, and FCI to predict magnetic exchange couplings (J).
Overview of the Chapters:
Chapter 1, presents a brief theoretical introduction to the Schrödinger equation and its application in quantum mechanical calculations, the Hartree-Fock approximation, basis sets, electron correlation energy, and density functional theory (using pure and hybrid functionals).
In chapters 2 and 3, an introduction is given for quantum chemical approaches used to calculate NMR parameters and magnetic exchange coupling constants. We discuss an effective spin Hamiltonian, the Breit-Pauli Hamiltonian (BPH), chemical shielding tensor and total energy relationship, measuring of the NMR spectra, and different techniques to deal with gauge origin problem. In addition, the theoretical background of magnetic exchange coupling constant calculation for spin dimers, the Heisenberg-Dirac-van-Vleck Hamiltonian (HDVV) and the Noodelman's broken-symmetry approach for calculating J values are briefly discussed.
Chapter 4, presents a benchmark study of various DFT functionals and basis sets to calculate accurate C-F bond lengths and 19F chemical shifts. High-resolution NMR spectral data of complex molecules are often difficult to interpret. Great scientific efforts have been devoted to search for a computational approach to interpret experimental NMR data. Quantum chemical methods such as the CCSD(T) method offer high accuracy in calculation of NMR parameters but being computationally too demanding they cannot be applied to large chemical systems. On the other hand, density functional theory (DFT) is achieving a steady progress among diversity of computational techniques. An accuracy within 2 ppm deviation from the experimental values in 19F chemical shifts can be achieved if the NMR calculation is performed using accurate equilibrium geometries, GIAO is used to tackle gauge origin problem and electron correlation is properly treated by employing a high level of theory (e.g. CCSD (T)/cc-pVQZ). We found that the calculation of 19F shielding tensors with the density-functional theory does not provide any noticeable improvement over the HF method. Post-HF theory demands too much computational resources that makes them impossible to use for large systems [35] .
We found that a quantitative prediction of NMR shifts can be made as the errors introduced by theoretical methods are cancelled out while calculating shifts. Various benchmark studies in this thesis show that 19F chemical shifts calculated for perfluoraromatics with the M06-L, BHandH, BHandHLYP in combination with the 6-311+G (2d,p) basis set are within 4 ppm deviation from the experiments. Furthermore, we noted that NMR calculations on accurate
C-F (e.g. PBE/6-311G (d, p)) bond lengths does not show any improvement if the NMR calculation and optimization are performed at the same level of theory. A significant improvement can be achieved on calculated 19F NMR shifts, if some correction schemes are used.
In chapter 4 we discuss various correction schemes applied to correct the calculated 19F chemical shifts. A multi-standard approach (MSTD) was used to minimize the error that may occur due to the difference in the nature of the reference compound and test molecules [122]. We propose another approach to correct shielding constants which is the reference corrected approach. This approach makes a correction similar to the MSTD. We also tested a Linear Regression Correction Approach and we noted that this is the best approach amongst all. This is found to be less dependent on the theoretical method. We use conformation averaging corrections to correct the calculated shifts[126].
...