Refine
Year of publication
Document Type
- Doctoral Thesis (26)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- microRNA (2)
- sRNA (2)
- 5-Lipoxygenase (1)
- 5-lipoxygenase (1)
- Angiogenese (1)
- Angiogenesis (1)
- Aptamer (1)
- Cyclooxygenase-2 (1)
- EMSA (1)
- Endothelial cells (1)
Institute
- Biowissenschaften (22)
- Biochemie und Chemie (4)
- Georg-Speyer-Haus (1)
Riboswitche – Vorbilder für die Konstruktion synthetischer RNA Schalter Riboswitche sind natürliche RNA Regulatorelemente. Sie sind in den nicht kodierenden Regionen von messenger RNAs (mRNAs) lokalisiert und beeinflussen die Expression nachfolgender Gene. Riboswitche bestehen aus zwei Domänen. Die Binde- oder Aptamerdomäne bildet eine Bindetasche, die einen Liganden ohne die Hilfe zusätzlicher Faktoren hoch spezifisch und affin binden kann. Die zweite Domäne, die sogenannte Expressionsplattform, interpretiert den Bindestatus der Aptamerdomäne und beeinflusst die Expression der nachfolgenden Gene. Liganden sind meist kleine, organische Moleküle wie Nukleotide, Aminosäuren oder Vitamine. Riboswitche regulieren Gene, die für die Synthese oder Verwertung ihres jeweiligen Liganden in der Zelle von Bedeutung sind. Kontrolliert wird die Genexpression meist durch Transkriptionstermination oder durch Maskierung der ribosomalen Bindestelle (SD = Shine Dalgarno Sequenz). Auch Eukaryoten nutzen das Prinzip der direkten RNA-Ligand-Interaktion zur Genregulation, wenn gleich in geringerem Ausmaß. In Pilzen und Pflanzen wird durch Ligandenbindung alternatives Spleißen von prä-mRNAs induziert, was entweder zur mRNA Degradation durch alternative Polyadenylierung oder der Repression der Translation durch alternative Leserahmen (uORFs) führt. Charakteristisch für eine Regulation über Riboswitche ist die direkte Wechselwirkung des niedermolekularen Liganden mit der RNA. In trans kodierte Proteinfaktoren sind aufgrund dieser direkten Bindung nicht notwendig. Dies macht natürliche Riboswitche zu geeigneten Vorbildern für die Entwicklung künstlicher RNA Schalter. Synthetische Riboswitche Aptamere sind kleine, synthetisch hergestellte, einzelsträngige RNA oder DNA Moleküle, die hochaffin und sehr spezifisch ein Zielmolekül binden können. Man kann Aptamere gegen nahezu jedes Molekül der Wahl über einen Prozess der in vitro Selektion gewinnen (SELEX = systematic evolution of ligands by exponential enrichment). Eine Eigenschaft der meisten Aptamere ist, dass sie ihre endgültige Struktur erst in Gegenwart des spezifischen Liganden ausbilden („induced fit“). Dies kann ausgenutzt werden, um RNA Aptamere als regulatorische Elemente einzusetzen. Hierzu inseriert man Aptamere in nicht translatierte Regionen einer mRNA. In Abwesenheit des Liganden bildet sich die Struktur nur teilweise aus und interferiert nicht mit zellulären Funktionen. Erst im Komplex mit einem Liganden kommt es zur effizienten Beeinflussung der Genexpression. Inseriert man ein regulatorisch aktives Aptamer in den 5’ nicht translatierten Bereich (5’UTR) einer eukaryotischen mRNA, erlaubt das Aptamer in der nicht ligandengebundenen Form die Translation nachfolgender Gene. Erst der Aptamer-Ligand-Komplex interferiert mit der Translationsinitiation. Ist das Aptamer nahe der cap-Struktur positioniert, behindert es die initiale Bindung des Ribosoms an die mRNA. Bei einer weiter stromabwärts gelegenen Insertion interferiert es mit dem Scannen der kleinen ribosomalen Untereinheit nach dem Startcodon. Die beste Regulationseffizienz wird hierbei bei einer Insertion direkt vor dem Startcodon erreicht. Es zeigte sich jedoch, dass nur eine sehr geringe Anzahl an Aptameren in der Lage ist, als RNA Schalter aktiv zu sein. Dies führte dazu, dass bis heute nahezu alle Systeme entweder auf dem Theophyllin oder dem Tetrazyklin Aptamer basieren. Ziele dieser Arbeit In dieser Arbeit sollte untersucht werden, warum nur wenige Aptamere regulatorisch aktiv sind und was diese von inaktiven Varianten unterscheidet. Dafür wurden ein Tetrazyklin und ein Neomycin Aptamer detailliert charakterisiert. Desweiteren wurden neue RNA-basierte Regulationssysteme aufgebaut und ihr regulatorischer Mechanismus analysiert. Innerhalb dieser Arbeit wurde dabei ein System zur aptamerabhängigen Regulation des prä-mRNA Spleißens in Hefe etabliert. Außerdem konnte das bekannte Translationssystem für die Regulation essentieller Gene in Hefe weiter entwickelt werden. Folgende Ergebnisse wurden in dieser Arbeit erhalten: 1.Das Tetrazyklin Aptamer – In vitro Charakterisierung eines synthetischen Riboswitches. Das Tetrazyklin Aptamer ist 69 Nukleotide lang. Es besteht aus drei Stämmen (P1, P2 und P3) sowie drei einzelsträngigen Bereichen (J1/2, J2/3 und die Schleife L3; siehe Abbildung 1, links). Die Domäne oberhalb von P2 ist nicht an der Ligandenbindung beteiligt und kann ausgetauscht werden. Die Stämme P1-P3 sind bereits vor Ligandenbindung ausgebildet. Tetrazyklin wird über die drei einzelsträngigen Bereiche gebunden (siehe Abbildung 1, rechts). Durch fluorimetrische und kalorimetrische Methoden wurde eine Bindekonstante von Tetrazyklin an das Aptamer von 770 pM ermittelt. Diese Affinität ist außergewöhnlich hoch. Vergleichbare Aptamere und natürliche Riboswitche binden niedermolekulare Liganden 10- bis 1000-fach schlechter. Wir konnten zeigen, dass hohe Affinität eine Grundvoraussetzung für die regulatorische Aktivität ist, da Aptamermutanten mit verschlechterten Bindekonstanten keine in vivo Aktivität mehr aufweisen sind (Seiten 19-29). Durch Größenausschlußchromatographie konnte gezeigt werden, dass das Tetrazyklin Aptamer durch Ligandenbindung keine größeren globalen Konformationsänderungen erfährt. Dies weist auf eine weitgehende Vorformung der Bindetasche bereits ohne Tetrazyklin hin. Bei Ligandenbindung nimmt das Aptamer eine pseudoknotenähnliche Tertiärstruktur an, welche wahrscheinlich für die inhibitorische Wirkung auf das Ribosom verantwortlich ist (Seiten 19-29). Im Laufe dieser Arbeit wurde die Kristallstruktur des Aptamers im Komplex mit Tetrazyklin in der Arbeitsgruppe von A. R. Ferré-D’Amaré gelöst. Die Struktur zeigt, dass die Stämme P1 und P3 aufeinander gestapelt sind (Abbildung 1, rechts). Stamm P2 bildet die Verlängerung einer irregulären Helix, die aus den einzelsträngigen Bereichen J1/2 und J2/3 gebildet wird. Nukleotide der Schleife L3 interagieren mit dieser irregulären Helix und bilden mit ihr zusammen die Bindetasche für Tetrazyklin. Diese hochauflösende Struktur diente uns in weiteren Arbeiten als Ausgangspunkt für die detaillierte Charakterisierung von ligandeninduzierten Änderungen (siehe 6.). 2. Das Tetrazyklin Aptamer ist in der Lage, prä-mRNA Spleißen in Hefe zu inhibieren. Der Aptamer-Tetrazyklin-Komplex kann nicht nur mit der Translationsinitiation, sondern auch mit dem Spleißen der prä-mRNA in Hefe interferieren (Seiten 31-37). Dazu wurde ein Hefe-Intron in den Leserahmen von GFP inseriert. Nur bei korrektem prä-mRNA Spleißen wird die reife mRNA aus dem Kern transportiert und GFP exprimiert. Für eine RNA-basierte Regulation des Spleißens wurde die Konsensussequenz der 5’ Spleißstelle in den Stamm P1 des Tetrazyklin Aptamers integriert. Dieser ist nicht an der Ligandenbindung beteiligt und seine Sequenz daher variabel. Es konnte gezeigt werden, dass in Abwesenheit von Tetrazyklin das Intron vom Spleißosom erkannt und entfernt wird. Die Expression des Gens ist dann möglich. Durch die Zugabe von Tetrazyklin wird das Spleißen inhibiert und GFP nicht länger exprimiert. Biochemische Strukturkartierungen der RNA in An- und Abwesenheit von Tetrazyklin zeigten, dass der Stamm P1 durch Ligandenbindung verfestigt wird. Die Ligandenbindung beeinflusst also nicht nur die Struktur der Bindetasche, sondern wird auch auf angrenzende Stammbereiche übermittelt. Durch Stabilisierung des Stammes P1 wird die 5’ Spleißstelle für das Spleißosom maskiert. Somit konnten wir den Mechanismus für die Aptamer basierte Regulation des prä-mRNA Spleißens aufklären. 3. Die Tetrazyklin Aptamer basierte Inhibition der Translationsinitiation ermöglicht die Regulation essentieller Gene in Hefe. Frühere Arbeiten zeigten, dass die Insertion mehrerer Aptamerkopien in den 5’UTR zu einem effizienten Abschalten der Genexpression führt. Dies wurde genutzt, um ein neuartiges System für die konditionale Expression essentieller Gene in Hefe zu etablieren. In Zusammenarbeit mit der Arbeitsgruppe von Prof. K.-D. Entian wurden Insertionskassetten für eine PCR-basierte chromosomale Integration von Tetrazyklin Aptameren unter Kontrolle verschieden starker Promotoren konstruiert. Dafür wurden 1-3 Kopien des Tetrazyklin Aptamers unter Kontrolle des hoch exprimierenden TDH3-Promoters und des etwas schwächeren ADH1-Promoters gestellt. Außerdem wurde eines HA-tag angefügt, um die Genexpression mittels Westernblot verfolgen zu können. Zur Überprüfung der chromosomalen Insertion diente eine Kanamycin-Resistenz. Das neue System wurde erfolgreich an von fünf essentiellen Genen getestet. Es zeigte sich, dass die Zugabe von Tetrazyklin zu einem schnellen und effizienten Abschalten aller getesteten Gene führt. Die Vorteile dieses neuartigen konditionalen Genexpressionssystems in Hefe liegen in der einfachen Handhabung und der Unabhängigkeit vom verwendeten Stamm. Es müssen keine in transkodierten Proteinfaktoren coexprimiert werden. Durch dieses System konnte zum ersten Mal die Aptamer-basierte Regulation endogener, essentieller Gene gezeigt werden (Seiten 49-57). 4. Die Kombination von in vitro Selektion und in vivo Screening ermöglicht die Identifikation neuer regulatorisch aktiver Aptamere – ein Neomycin Riboswitch. Nur wenige in vitro selektierte Aptamere sind als synthetischer Riboswitch aktiv. In unserer Arbeitsgruppe wurde daher ein in vivo Screeningsystem zur Identifizierung neuer Aptamere in Hefe entwickelt. Eine Bibliothek in vitro selektierter Aptamere wurde hierzu in den 5’UTR des GFP Gens kloniert und die Aktivität einzelner Kandidaten durch Vergleich der Fluoreszenz in An- und Abwesenheit des Liganden überprüft. Wir verwendeten eine Bibliothek aus Neomycin-bindenden Aptameren und analysierten 5000 Hefeklone. Hierbei konnten zehn Sequenzen isoliert werden, die abhängig von Neomycin die Initiation der Translation inhibieren. Das 33 Nukleotid lange Aptamer N1 zeigt eine 7,5-fache Regulation und wurde näher charakterisiert. Es besteht aus einer internen asymmetrischen und einer terminalen Schleife, die durch zwei GC Basenpaare getrennt sind. Enzymatische Strukturkartierung und Mutationsanalyse zeigten, dass beide einzelsträngigen Bereiche für die Ligandenbindung wichtig sind. Der abschließende Stamm ist nicht an der Ligandenbindung beteiligt und hat geringen Einfluss auf die regulatorische Aktivität. N1 kann außerdem gegen andere Aminoglykosidantibiotika diskriminieren (Seiten 39-47). Interessanterweise sind die regulatorisch aktiven Aptamere in der in vitro selektierten Bibliothek stark unterrepräsentiert und konnten durch zufälliges Sequenzieren nicht identifiziert werden. Dieses Beispiel verdeutlicht eindrucksvoll die Notwendigkeit eines Screenings in vivo. 5. Regulatorisch aktive Neomycin Aptamere unterscheiden sich von inaktiven durch eine größere thermische Stabilisierung bei Ligandenbindung. Durch weitere Mutationsanalysen von N1 konnte ein aktivitätsvermittelndes Element im Neomycin Riboswitch identifiziert werden. Dazu wurde entweder die terminale oder die interne asymmetrische Schleife mutiert. Es konnte gezeigt werden, dass die Sequenz der terminalen Schleife nur einen modulierenden Einfluss auf die Aktivität hat, wobei die Asymmetrie der internen Schleife (aber nicht deren exakte Sequenz) ausschlaggebend für die regulatorische Aktivität ist. Für weitere Analysen wurde N1 mit fünf mutierten Varianten und dem inaktiven Neomycin bindenden Aptamer R23 verglichen. Alle sieben Aptamer haben eine ähnliche Sekundärstruktur und Ligandenaffinität, zeigen aber unterschiedliche Aktivität in vivo. Durch Bestimmung des Schmelzpunktes der verschiedenen Aptamere in An- und Abwesenheit von Neomycin zeigte sich, dass aktive Aptamere thermisch deutlich mehr durch Ligandenbindung stabilisiert werden als inaktive. Dabei ist die thermische Stabilität der Aptamer-Neomycin-Komplexe ähnlich. Jedoch ist die Stabilität ohne Ligand bei aktiven Aptameren gegenüber inaktiven Varianten deutlich erniedrigt. Durch NMR spektroskopische Untersuchungen in Zusammenarbeit mit Prof. J. Wöhnert konnte bestätigt werden, dass aktive Aptamere weniger stark vorgeformt sind als inaktive. Das in den Mutationsanalysen identifizierte Element nimmt nicht an der Ligandenbindung teil, sondern dient als Schalter, der den freien Zustand das Aptamers destabilisiert. Damit sorgt es für den großen Unterschied in der thermischen Stabilität des freien und des gebundenen Zustandes aktiver Aptamere. Dies zeigt, dass Unterschiede in der Stabilität die regulatorische Aktivität vermitteln (Seiten 73-102). Laufende Arbeiten sollen nun klären, ob thermische Stabilisierung durch Ligandenbindung ein allgemeingültiger Vermittler von regulatorischer Aktivität ist. Dazu werden weitere Aptamere überprüft, welche in Abwesenheit des Liganden unterschiedlich stark strukturiert sind und eventuell durch Ligandenbindung unterschiedlich stabilisiert werden. Außerdem werden wir testen, ob es die gewonnen Erkenntnisse erlauben, durch rationelles Design synthetische Riboswitche zu verbessern oder inaktive Aptamere in aktive zu verwandeln. 6. Was macht ein Aptamer zu einem regulatorisch aktiven Riboswitch? Für das Tetrazyklin Aptamer konnten wir zeigen, dass zum einen eine extrem hohe Bindekonstante und zum anderen eine hoch komplexe Bindetasche für die regulatorische Aktivität entscheidend sind. Dabei ist die Bindetasche in Abwesenheit des Liganden stark vorstrukturiert und erfährt keine globalen strukturellen Änderungen (Seiten 19-29). In Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Wachtveitl untersuchen wir den Einfluss von Bindekinetik und Lebensdauer des Aptamer-Tetrazyklin-Komplexes auf die regulatorische Aktivität. Dafür vergleichen wir das Tetrazyklin Aptamer mit drei regulatorisch inaktiven Mutanten. Für die Messungen nutzen wir die Eigenfluoreszenz des Tetrazyklins. Diese ist in wässriger Lösung geqenched und steigt bei Bindung an die RNA deutlich an. Erste Ergebnisse zeigen große Unterschiede zwischen den Aptameren in der Geschwindigkeit der Ligandenbindung. Außerdem zeigen sich geringe Unterschiede in der Lebensdauer der verschiedenen Komplexe. Durch NMR spektroskopische Untersuchungen in der Arbeitsgruppe von Prof. J. Wöhnert können die Veränderungen einzelner Basen bei Ligandenbindung untersucht werden. Hierbei zeigen erste Messungen am Tetrazyklin Aptamer, unterschiedliches Verhalten einzelner an der Bindung beteiligter Nukleotide. Eine detaillierte Aufklärung der ligandeninduzierten Veränderungen gewährt uns weitere Einblicke, warum das Tetrazyklin Aptamer als Riboswitch aktiv ist. Die regulatorische Aktivität Neomycin abhängiger Riboswitche wird durch thermische Stabilisierung bei Ligandenbindung vermittelt. Dabei zeigte sich, dass durch Neomycin neue Basenpaare und Basenstapelungen entstehen. Durch weiterführende strukturelle Untersuchungen sollen nun ligandeninduzierte Veränderungen in N1 detailliert geklärt werden. Größere globale Änderungen konnten bereits durch EPR Spektroskopie in Zusammenarbeit mit der Arbeitsgruppe von Prof. T. F. Prisner ausgeschlossen werden. Hierzu wurden in der Arbeitsgruppe von Prof. J. W. Engels spinmarkierte Neomycin Aptamere hergestellt und die Abstände der Sonden in An- und Abwesenheit von Neomycin bestimmt. Es zeigte sich, dass sich der Abstand der Spinmarkierungen durch Zugabe von Neomycin (oder anderen Aminoglykosiden) nicht ändert (Seiten 59-72). Dies weist auf eher lokale Änderungen in der Bindetasche hin. Durch NMR Spektroskopie in Zusammenarbeit mit der Arbeitsgruppe von Prof. J. Wöhnert werden im Moment die Strukturen verschiedener N1-Aminoglykosid-Komplexe gelöst. Dabei zeigt sich, dass in vivo aktive und inaktive Liganden eine ähnliche Struktur im Aptamer induzieren. Was die einzelnen Komplexe unterscheidet und damit die verschiedene Aktivität begründet ist Ziel der Analyse. Insgesamt konnte in dieser Arbeit ein Regulationssystem für die Aptamer-basierte Kontrolle des prä-mRNA Spleißens in Hefe entwickelt und das bestehende Translationssystem für die Applikation auf essentielle Gene angewendet werden. Außerdem wurden wichtige Punkte, warum Aptamere als Riboswitch funktionieren aufgeklärt. Damit legt diese Arbeit einen wertvollen Grundstein für die Weiterentwicklung RNA-basierter Genregulationselemente für die Anwendung in der synthetischen Biologie.
Dicer and Drosha are the major enzymes involved in microRNA processing. Using siRNA targeting Dicer and Drosha, thereby downregulating a substantial number of microRNAs in EC, we demonstrate a crucial role of both enzymes in angiogenic processes. Interestingly, Dicer inhibition exerts more profound effects on processes like migration and viability of EC in comparison to Drosha inhibition. Moreover, Dicer effects in vivo angiogenesis, a process which is unaffected by Drosha. This discrepancy might be partially due to the involvement of Dicer in other cellular processes like heterochromatin formation and to the fact that Dicer and Drosha target mainly different subsets of microRNAs. In addition, we identified miR-92a as a novel endogenous repressor of the angiogenic program in EC, which impairs their angiogenic functions in vitro and in vivo. Consistent with these data, blocking miR-92a by systemic infusion of antagomirs enhances neovascularization and functional recovery after ischemia in vivo. At first sight, the anti-angiogenic function of miR-92a in EC appears to contradict the previously identified anti-apoptotic and pro-angiogenic activities of the miR-17~92 cluster in tumor cells. However, this apparent discrepancy might be well rationalized by a predominant function of miR-18a and miR-19a in tumor cells, which are responsible for the tumorigenic and non-cell autonomous pro-angiogenic functions of the miR-17~92 cluster. Instead, miR-92a expression is specifically upregulated in ischemic tissues and appears to cell-autonomously repress the angiogenic potential of EC. Among the various targets and verified regulated genes identified by microarray, we confirmed the downregulation of Integrin a5 in vitro and in vivo. The relevance of this miR-92a target is evidenced by severe vascular defects in the absence of Integrin a5. In addition, endothelial miR-92a interferes with the expression pattern of genes controlling key EC functions at various levels, some of which, e.g. eNOS, might be secondarily affected by directly targeted genes. Obviously, our data do not formally exclude effects of antagomir-92a on perivascular and other cell types, but surely include effects on EC. Regardless of this, the capacity of miR-92a to target various downstream effectors might be an advantage of miRNA-based therapeutic strategies and may overcome the limited therapeutic capacity of single growth factor or single gene therapies in ischemic diseases, since the highly organized process of vessel growth, maturation and functional maintenance is well known to require the fine-tuned regulation of a set of genes.
RNA interference (RNAi) is triggered by recognition of double-stranded RNA (dsRNA), and elicits the silencing of gene(s) complementary to the dsRNA sequence. RNAi is thought to have emerged as a way of safeguarding the genome against mobile genetic elements and viral infection, thus maintaining genomic integrity. dsRNA is first processed into small interfering RNAs (siRNA) by the enzyme Dicer. siRNAs are ~21 to 25 -nt long, and contain a signature 5’ phosphate group and a two nucleotide long 3’ overhang (Bernstein et al., 2001). The siRNA is then loaded into the RNA-induced si-lencing complex (RISC), of which Argonaute is the primary catalytic component (Liu et al., 2004). Energetic asymmetry of the siRNA ends allows for its directional loading into RISC (Khvorova et al., 2003; Schwarz et al., 2003). Argonaute cleaves the passen-ger strand of the siRNA, leaving the guide strand of the siRNA bound to RISC (Gregory et al., 2005; Matranga et al., 2005; Rand et al., 2005). This single-stranded guide strand siRNA bound to Argonaute is able to recognize target mRNA in a sequence-specific manner, and cleaves the mRNA. Argonaute 2 in complex with single-stranded siRNA is sufficient for mRNA recognition and cleavage, thus forming a minimal RISC (Rivas et al., 2005). miRNAs, endogenously expressed small RNA genes which typically contain mismatches and non-Watson-Crick base pairing, are processed by this general pathway, although typically modulate gene expression by translational repression as opposed to cleavage of their target mRNA. The number of Argonaute genes is highly variable between species, ranging from one in S. pombe to twenty-seven in C. elegans. Earlier crystal structures of Argonaute apoen-zymes show the architecture of Argonaute to be a multidomain protein composed of N terminal, PAZ, MID, and PIWI domains (Song et al., 2004; Yuan et al., 2005). These multi-domain proteins are present in both prokaryotic and eukaryotic organisms. The role of Argonaute proteins in prokaryotes is still unknown, but based similarity to eu-karyotic Argonautes, they may also be involved in nucleic acid-directed regulatory pathways. These proteins have served as excellent models for learning about the struc-ture and function of this family of proteins. RNAi has found a widespread application for the simple yet effective knockdown of genes of interest. The catalytic cycle of RISC requires the binding of a number of different nucleotide structures to Argonaute, and we expect Argonaute to undergo a number of conforma-tional changes during the cycle of mRNA recognition by RISC (Filipowicz, 2005; Tom-ari and Zamore, 2005). Nevertheless, it remains unclear how the multi-domain ar-rangement of Argonaute recognizes and distinguishes between single-stranded and dou-ble-stranded oligonucleotides, which correspond to the Dicer-processed siRNA product, guide strand siRNA, and the guide strand / mRNA duplex. The Argonaute protein from Aquifex aeolicus was cloned, expressed, crystallized and solved by molecular replacement. Relative to earlier Argonaute structures, a 24° reorientation of the PAZ domain in this structure opens a basic cleft between the N-terminal and PAZ domains, exposing the guide strand binding pocket of PAZ. A 5.5-ns molecular dynamics simulation of Argonaute showed a strong tendency of the PAZ and N-terminal domains to be mobile. Binding of single-stranded DNA to Argonaute was monitored by total internal reflection fluorescence spectroscopy (TIRFS). The experi-ments showed biphasic kinetics indicative of large conformational changes, and re-vealed a hotspot of binding energy corresponding to the first 9 nucleotides, the so-called “seed region” most crucial for sequence-specific target recognition. As RNAi may have evolved as a way of safeguarding the genome viral infection, it is not surprising that viruses have evolved different strategies to suppress the host RNAi response in the form of viral suppressor protein. (Hock and Meister, 2008; Lecellier and Voinnet, 2004; Rashid et al., 2007; Song et al., 2004; Vastenhouw and Plasterk, 2004). These viral suppressors are widespread, having been identified in a number of different viral families. Not surprisingly, they generally share little sequence homology with one another, although they appear to exist as oligomers built upon a ~ 100-200 amino acid protomer. Tomato aspermy virus, a member of the Cucumoviruses, encodes for protein 2B (TAV 2B, 95 a.a., ~11.3 kDa) that acts as an RNAi suppressor. Intriguingly, a similar genomic arrangement is seen in RNAi suppressors in the Nodaviruses, a family of viruses that can infect both plants and animals, such as Flock house virus b2 (FHV b2). The 2B and b2 proteins are both derived from a frameshifted ORF within the RNA polymerase gene (Chao et al., 2005). In spite of this genomic similarity, the 2B and b2 proteins share little sequence identity, and it is not well understood how the Cucumovirus 2B proteins suppress RNAi. To address how TAV 2B suppresses RNAi, the oligonucleotide-binding properties of TAV 2B were studied. TAV 2B shows a preference for double-stranded RNA oligonucleotides corresponding to siRNAs and miRNAs, and also binds to single-stranded RNA oligonucleotides. A stretch of positively charged residues between amino acids 20-30 are critical for RNA binding. Binding to RNA oligomerizes and induces a conformational change in TAV 2B into a primarily helical structure. These studies sug-gest that suppression of RNAi by TAV 2B may occur by targeting different stages of the RNAi pathway. TAV 2B falls under the category of more general RNAi suppres-sors, with potentially multiple targets for suppression.
Obwohl zahlreiche zelluläre Funktionen von RNAs in direktem Zusammenhang mit Proteinen stehen, wurde auch eine Vielzahl von, unter anderem regulatorischen, RNA-Motiven identifiziert, die ihre Funktion ohne eine initiale Beteiligung von Proteinen ausüben. Das detaillierte Verständnis der zu Grunde liegenden Regulationsmechanismen beinhaltet die Charakterisierung von beteiligten RNA-Architekturen und deren funktionaler Stabilitäten, von dynamischen Aspekten der RNA-Faltungsprozesse sowie die Korrelation dieser Charakteristika mit zellulären Funktionen. Im Rahmen dieser Arbeit wurden strukturelle, thermodynamische und kinetische Aspekte der Ligand-bindenden Guanin Riboswitch-RNA Aptamerdomäne des xpt-pbuX Operons aus B. subtilis und eines Cofaktor-abhängigen katalytischen RNA-Motivs, des 'Adenin-abhängigen Hairpin Ribozyms', untersucht. ...
RNA hat neben der Rolle als Informationsüberträger wichtige Aufgaben in regulatorischen Prozessen. Sie kann komplexe Strukturen ausbilden und ähnlich wie Proteine Liganden binden oder enzymatische Reaktionen katalysieren. Im Rahmen dieser Arbeit sollten zwei Beispiele von RNA-Liganden-Interaktionen untersucht werden. Im ersten Abschnitt wurde die Interaktion des TetR-bindenden Aptamers 12-1 mit dem Tetracyclin-Repressorprotein (TetR) biochemisch charakterisiert. Über Gelverzögerungs- experimente wurde gezeigt, dass das Aptamer 12-1K delta A TetR mit hoher Affinität und Spezifität bindet. Es wurde ein KD von 22 nM bestimmt. Die Bindung ist dabei ebenso stark wie die Bindung von TetR an die Operatorsequenz tetO. In Anwesenheit von Tetracyclin (Tc) nimmt die Affinität des TetR/Aptamer-Komplexes um das sechsfache ab. Des Weiteren konnten die Bindeepitope des Aptamers durch eine Analyse von verschiedenen TetR-Mutanten im DNA-Bindebereich bestimmt werden. Die Aminosäuren T27, N47 und K48 sind dabei essentiell für die RNA-Bindung und führen bei einem Austausch zum Verlust der RNA-Bindung. Der Bindebereich des Aptamers überlappt mit Aminosäureresten, die für die tetO-Bindung essentiell sind. Die Stöchiometrie der TetR/Aptamer-Bindung wurde durch LILBID-Messungen auf eine molare Verteilung von 2:1 festgelegt. Ein TetR-Dimer bindet dabei ein Aptamermolekül. Durch die umfassende biochemische Analyse der TetR/Aptamer-Bindung kann das Aptamer 12-1 nun als Expressionssonde für RNAs in bakteriellen Zellen genutzt werden. Des Weiteren kann das Aptamer als alternativer, artifizieller Transkriptionsregulator im tet on / tet off-System verwendet werden. Im zweiten Teil der Arbeit sollten miRNAs identifiziert werden, die an der posttrans- kriptionellen Regulation der 5-Lipoxygenase (5-LO) und der Cyclooxygenase-2 (COX-2) beteiligt sind. Mit bioinformatischen Vorhersageprogrammen wurden die 3’-UTR- Bereiche von 5-LO und COX-2 nach putativen Bindestellen abgesucht. Im Fall der 5-LO wurden durch eine zusätzliche Microarray-Expressionsanalyse miRNAs ausgewählt, welche in 5-LO positiven Zellen hoch exprimiert sind und Bindestellen im 3’-UTR aufweisen. Es konnten verschiedene miRNAs detektiert werden, jedoch keine Regulation der 5-LO Aktivität beobachtet werden. Für COX-2 wurde neben der Suche nach putativen miRNA-Bindestellen zudem die Stabilität des 3’-UTR untersucht. Mit Hilfe des auf Perl basierenden Programms SignificanceScoreAssignment (Florian Groher, Diplomarbeit 2011) konnte der 3’-UTR von COX-2 als generell destabilisierend analysiert werden. In Colonkarzinom- spezifischen HT-29-Zellen wurden miRNAs untersucht, welche Bindestellen im 3’-UTR von COX-2 aufweisen. In diesem Kontext sollte der Einfluss einer Interaktion von HT- 29-Zellen mit aktivierten Thrombozyten sowie daraus isolierten Bestandteilen wie Mikropartikeln und PDGF analysiert werden. MiR-16, miR-26b, miR-199a und miR- 199a* konnten in HT-29-Zellen nachgewiesen werden. Bei einer Stimulation von HT-29- Zellen mit PDGF-BB werden miR-16 und miR-26b konzentrationsabhängig stärker exprimiert, während die Expression von miR-199a und miR-199a* signifikant abnimmt. Eine direkte Regulation von COX-2 durch die untersuchten miRNAs konnte durch Überexpressions- und Reportergenanalysen jedoch nicht festgestellt werden. Die Analysen der 5-LO- und COX-2-Regulation durch miRNAs stellen Vorarbeiten dar. Die etablierten Methoden können nun für eine detaillierte Betrachtung weiterer miRNAs verwendet werden.
Die Chemokinrezeptoren CXCR3 und CXCR4 sowie deren spezifische Liganden, CXCL9, -10 und -11 bzw. CXCL12, sind in bedeutender Weise an den pathologischen Prozessen der Th1-/Th17-vermittelten (Typ1- und Typ17-T-Helferzelle) Autoimmunerkrankungen beteiligt. Die dabei auftretenden chronischen Entzündungen sind gekennzeichnet durch eine massive Infiltration von Th1-Gedächtniszellen. Ergebnisse sowohl von tierexperimentellen Studien als auch von in vitro Experimenten weisen deutlich auf eine spezifische Wechselwirkung zwischen den proentzündlichen CXCR3- und dem homöostatischen CXCR4-Liganden hin. Weiterführenden Ergebnisse zu der molekularen Wechselwirkung von CXCR3 und -4 wurden jedoch bislang nicht veröffentlicht. Die Untersuchungen dieser Dissertation konzentrierten sich auf die Kooperation der beiden Chemokinrezeptoren in murinen Th1-Gedächtniszellen. Dabei sollte insbesondere der potentielle Einfluss dieser Interaktion auf die einzelnen Teilprozesse der Extravasation der T-Lymphozyten in vitro analysiert werden. Eingesetzt wurden hierfür statische Chemotaxis- und dynamische Flusskammerexperimente, die zum einen sensitiv genug und zum anderen für einen hohen Probendurchsatz geeignet sein mussten. Die verwendeten Techniken wurden dazu im Rahmen der Dissertation etabliert und validiert. Zunächst musste die Präzision des statischen Migrationssytems mit einer hohen Standardabweichung von durchschnittlich ± 40% deutlich verbessert werden. Ein Wechsel auf ein Kammersystem der Firma Corning verringerte die Abweichung auf ± 25%, und sogar auf ± 9,9% bei einer optimierten Auswertung mittels Durchflusszytometrie. Als weitere Methode wurde ein dynamisches Flusskammersystem mit automatischer Videoanalyse zur Bestimmung der Geschwindigkeit von Zellen etabliert. Zur Validierung der neu entwickelten Analysesoftware Imagoquant® wurden identische Filmaufnahmen von Flusskammerexperimenten hinsichtlich Zellrollen und Zellgeschwindigkeit ausgewertet und mit den Ergebnissen von zwei etablierten Methoden, der Handzählung und einem halbautomatischen Tracking-Programm, verglichen. In der gesamten Validierung stimmten die Berechnungen von Imagoquant® mit Ergebnissen der verschiedenen Auswertemethoden qualitativ überein, wobei die Filme um ein Vielfaches (16- bzw. 20-fach) schneller analysiert werden konnten als mit den bisher verwendeten Methoden. Somit konnte erfolgreich eine computergestützte Analysemethode validiert und etabliert werden, die schnell und benutzerunabhängig arbeitet und folglich objektive Daten im Hochdurchsatz generiert. Die Untersuchungen in den statischen und dynamischen Migrationssystemen ergaben, dass die Stimulation von Th1-Zellen mit CXCL9 zu einer heterologen Desensitivierung verschiedener CXCL12-vermittelter Effekte führt. In statischen Migrationsexperimenten wurde sowohl durch eine synchrone als auch eine sequentielle Stimulation mit CXCL9 eine CXCL12-vermittelte Chemotaxis signifikant vermindert. Der auftretende Effekt war dabei lang anhaltend und konnte noch bei einer Stimulationsdauer von 20 h beobachtet werden, ohne an Intensität zu verlieren. Weitere funktionelle Experimente erfolgten in dynamischen Flusskammerexperimenten, um die desensitivierende Wirkung von CXCL9 auf CXCL12-abhängige Interaktionen der Adhäsionskaskade von Th1-Zellen zu untersuchen. In mit E-Selektin und ICAM-1 Fc-Chimära) beschichteten Flusskammern führte immobilisiertes CXCL12 zu vermehrtem integrinabhängigen Rollen, welches durch eine Vorinkubation der Th1-Zellen mit CXCL9 reduziert wurde. In Flusskammern mit murinen Endothelzellen bewirkte immobilisiertes CXCL12 eine rasche integrinabhängige Adhäsion der Zellen und verkürzte dadurch deren Rollphase signifikant. Eine Vorbehandlung der Zellen mit CXCL9 verminderte dagegen die CXCL12-vermittelte Adhäsion und führte damit zu längeren Rollphasen. Deutliche Effekte zeigte CXCL12 bezüglich einer gesteigerten intravasalen und transendothelialen Migrationsrate von T-Lymphozyten, die durch eine Vorstimulation mit CXCL9 aufgehoben wurden. Um die beteiligten Mechanismen dieser Desensitivierung zu entschlüsseln, wurde die Oberflächenexpression von CXCR3 und CXCR4 in dem Th1-Zellklon durchflusszytometrisch analysiert. Dabei zeigte sich, dass eine Stimulation mit CXCL9 neben der ligandenspezifischen Internalisierung von CXCR3 auch eine Kreuzregulation der CXCR4-Oberflächenexpression bewirkte. Im Weiteren wurde die Phosphorylierung bekannter Signalmoleküle der CXCR4-Signalwege analysiert. Eine Vorbehandlung der Zellen mit CXCL9 desensitivierte die CXCL12-induzierte Phosphorylierung von Akt signifikant und führte zu einer zeitlichen Modulation des Signals. Ferner verzögerte eine Vorbehandlung der Th1-Zellen mit CXCL9 das CXCL12-induzierte Calciumsignal erheblich, während dabei eine 3,5-fach höhere maximale Ca2+-Konzentration gemessen wurde. Ein abgeleiteter Mechanismus der CXCL9-abhängigen Desensitivierung von CXCR4-Signalwegen beeinflusst insbesondere die Signaltransduktion über den T-Zellrezeptor und dadurch auch die Regulation von Rac1. Des Weiteren führt CXCL9 zur Gi- oder ZAP-70-vermittelten Aktivierung der PKC, welche darauffolgend den CXCR4-Rezeptor phosphoryliert und damit zu dessen Internalisierung führt. Die in vitro beobachtete Desensitivierung verschiedener CXCL12/CXCR4-vermittelter Effekte durch CXCL9 wirkt potentiell in der in vivo Situation von Autoimmunerkrankungen auf unterschiedliche Weise proinflammatorisch. Zum einen wird die Mobilisierung von Th1-Zellen aus CXCL12 exprimierenden peripheren Gewebe gefördert und gleichzeitig verhindert, dass Th1-Zellen in nicht entzündetes peripheres Gewebe rekrutiert werden. Zum anderen wird im Entzündungsgebiet die Affinität der Th1-Zellen zu den CXCL12-exprimierenden Endothelzellen verringert und die Migration in tieferliegende Gebiete der Entzündung begünstigt. Ferner vermindern CXCR3-Liganden auch antiinflammatorische Effekte des CXCL12s, wie z.B. die Polarisierung der Th1-Zellen in regulatorische T-Zellen.
Streptomyces coelicolor ist der Modellorganismus der GC reichen, Gram+ Actinomyceten, die mehr als zwei Drittel aller bekannten Antibiotika produzieren. Phänotypisch zeichnet er sich durch die Bildung eines Substrat- und eines Luftmyzels aus, welches im Laufe der weiteren Differenzierung Sporen bildet. Streptomyceten produzieren neben Antibiotika noch eine Vielzahl biotechnologisch interessanter Metaboliten. Der komplexe Lebenszyklus und Stoffwechsel erfordern eine genaue Regulation der Genexpression. Die letzten Jahre haben gezeigt, dass neben Proteinen auch die RNA eine regulatorische Funktion hat. Verschiedene regulatorisch aktive RNA Elemente wie Riboswitche, RNA-Thermometer und kleine nicht kodierende RNAs (small noncoding RNAs – sRNAs) wurden identifiziert. sRNAs wirken meist als antisense Riboregulatoren, indem sie ihre Ziel-mRNA binden und dadurch die Translation hemmen oder fördern. In dieser Arbeit wurden verschiedene bioinformatische Methoden verwendet, um sRNAs im Genom von S. coelicolor vorherzusagen. Es wurden Terminatorstrukturen und konservierte Sekundärstrukturen in den intergenen Regionen vorhergesagt, die keinem Gen zuzuordnen waren. In einem weiteren Ansatz wurden Bindestellen des Regulatorproteins DasR vorhergesagt, um DasR kontrollierte sRNAs zu identifizieren. Zusätzlich wurde mittels 454 Sequenzierung erstmalig das Transkriptom von S. coeliocolor analysiert. Auf diese Weise konnten etwa 500 sRNAs vorhergesagt werden. Eine der beiden charakterisierten sRNAs, sc32, ist 139 nt lang. Ihr Promoter liegt im kodierenden Bereich des Gens bldC und sie wird spezifisch durch Kälteschock induziert. Die zweite charakterisierte sRNA, sc1, ist 159 nt lang und in allen sequenzierten Streptomyceten konserviert. Ihre Expression wird nur bei Stickstoffmangel in der Stationärphase reprimiert. Durch molekularbiologische Analysen konnte ein Zielgen von sc1 identifiziert werden, die extrazelluläre Agarase DagA. Es konnte gezeigt werden, dass sc1 an die dagA-mRNA bindet und dadurch die Translation inhibiert. Als zweites mögliches Ziel von sc1 konnte die Histidinkinase SCO5239 identifiziert werden. Hier wurde gezeigt, dass Koexpression von sc1 die Expression einer SCO5239 Reportergenfusion um den Faktor acht steigert. Durch Analyse des Proteoms von sc1 Mutanten, konnte die differenzierte Expression von elf weiteren Proteinen gezeigt werden. Sc1 scheint als Regulator zu agieren, indem es auf die Stickstoffversorgung der Zelle reagiert und den Sekundärmetabolismus deaktiviert.
Die anaerobe Atmung mit Nitrat und Nitrit als terminalen Elektronenakzeptoren bildet einen wichtigen Teil des biologischen Stickstoff-Zyklus. Beispiele sind Denitrifikation und respiratorische Nitrat-Ammonifikation, wobei in beiden Fällen in einem ersten Schritt Nitrat zu Nitrit reduziert wird. In der Denitrifikation entstehen dann verschiedene gasförmige Produkte (NO, N2O, N2), wogegen Nitrit in der Ammonifikation ohne die Freisetzung weiterer Zwischenprodukte direkt zu Ammonium reduziert wird. Während die terminalen Reduktasen dieser Atmungsketten gut untersucht sind, ist das Wissen über die Zusammensetzung kompletter Elektronentransportketten sowie die Interaktion einzelner Proteine als auch zwischen den Proteinen und Chinonen in der Membran begrenzt. Ziel dieser Arbeit war die Charakterisierung der membranständigen Chinol-Dehydrogenasen NapGH und NrfH in der respiratorischen Nitrat-Ammonifikation von Wolinella succinogenes. Dieses Epsilonproteobakterium ist ein etablierter Modellorganismus der anaeroben Atmung und wächst durch respiratorische Nitrat-Ammonifikation mit Formiat oder H2 als Elektronendonoren. Als terminale Reduktasen werden dabei die periplasmatische Nitratreduktase NapA und die Cytochom c-Nitritreduktase NrfA benötigt. Die Genomsequenz weist keine weiteren typischen Nitrat- und Nitritreduktasen auf, und napA- und nrfA-defiziente Mutanten sind nicht in der Lage durch Nitrat- bzw. Nitritatmung wachsen. Das Operon des Nap-Systems (napAGHBFLD) von W. succinogenes kodiert Proteine, die an der Nitrat-Reduktion durch Menachinol beteiligt sind (NapA, -B, -G und -H) und Proteine, die für die Reifung und Prozessierung von NapA benötigt werden (NapF, -L und –D). Im Gegensatz zu vielen anderen Bakterien läuft die Nitrat-Atmung unabhängig von einem NapC-ähnlichen Protein ab, das als membrangebundenes Tetrahäm-Cytochrom c für die Chinol-Oxidation zuständig ist und Elektronen über den Elektronenüberträger NapB an die terminale Reduktase NapA liefert. Zwar sind im Genom zwei NapC-Homologe kodiert (FccC und NrfH), doch die Deletion beider Gene hatte keinen Einfluss auf die Nitrat-Atmung. Es wurde vermutet, dass die Funktion von NapC in W. succinogenes stattdessen durch die beiden Fe/S-Cluster Proteine NapG und NapH übernommen wird. Die Reduktion von Nitrit zu Ammonium wird durch den NrfHA-Komplex katalysiert. Das Pentahäm-Cytochrom c NrfA bildet dabei die katalytische Untereinheit, die über das membranständige Tetrahäm-Cytochrom c auf der periplasmatischen Seite der Membran gebunden ist. NrfH gehört zur NapC/NirT-Familie und überträgt Elektronen von Menachinol auf NrfA. Mittels gerichteter Mutagenese von nrfH wurden in früheren Arbeiten bereits Aminosäure-Reste identifiziert, die essentiell für die Elektronentransportaktivität von Formiat zu Nitrit sind.
Der programmierte Zelltod (Apoptose) ist ein wichtiger Mechanismus zur Eliminierung von beschädigtem Gewebe und entarteten Zellen. Die Deregulierung der Apoptose führt zu zahlreichen Erkrankungen wie neuro-degenerativen Störungen und Krebs. Insbesondere in Tumoren wird der programmierte Zelltod mit Hilfe von hochregulierten, anti-apoptotischen Proteinen umgangen und es entstehen Resistenzen gegen Chemotherapien. Um innovative therapeutische Ansätze zu finden, wurden in diesem Projekt mit Hilfe eines Hefe-Survival-Screens neue, potentiell anti-apoptotische Proteine im Pankreaskarzinom identifiziert. Von den insgesamt 38 identifizierten Genprodukten wurden zwei für eine weiterführende Analyse ausgewählt.
Eins der näher untersuchten Proteine ist die Pyruvoyl-tetrahydrobiopterin-Synthase (PTS), ein wichtiges Enzym für die Biosynthese von Tetrahydrobiopterin (BH4). BH4 ist ein Kofaktor, der von mehreren Enzymen der Zelle für ihre Funktionen benötigt wird. In Zellkultur-Experimenten konnte gezeigt werden, dass eine Überexpression von PTS die Zellen vor Apoptose schützen kann, während eine Herunterregulation durch genetischen knockdown die Zellen gegenüber Apoptose-Stimuli sensibilisiert und ihr Wachstum beeinträchtigt. In Xenograft-Experimenten mit NOD/SCID-Mäusen konnte zudem gezeigt werden, dass Tumore mit einem PTS-Knockdown signifikant langsamer wachsen als die der Kontrollgruppe. Zusammengenommen deuten diese Ergebnisse auf eine Rolle von PTS bei der Apoptose-Regulation und beim Tumorwachstum hin, was das Protein zu einem attraktiven Target für die Krebstherapie macht.
Als zweites wurde ein Protein analysiert, das eine Untereinheit des respiratorischen Komplex I bildet: NDUFB5 (NADH-Dehydrogenase 1 beta Subcomplex, 5). Das besondere an diesem Protein sind die verschiedenen Isoformen, die durch alternatives Splicing zustandekommen. Eine Isoform, der die Exone 2 und 3 fehlen, wurde im Hefe-Survival-Screen identifiziert. Bei Überexpression in Zelllinien konnte sie im Gegensatz zum Volllänge-Protein die Apoptoserate reduzieren. Und auch Ergebnisse aus Versuchen mit Isoformen-spezifischem knockdown deuten an, dass hauptsächlich die verkürzte Isoform sNDUFB5 für die Regulation von Apoptose und Proliferation verantwortlich ist. Diese Beobachtungen konnten mit denselben Zellen im Xenograft-Tiermodell jedoch nicht bestätigt werden. Die Ursachen dafür blieben unklar. Zusätzlich wurden immunhistochemische Analysen von Pankreaskarzinomen und normalem Pankreasgewebe durchgeführt. Sie ergaben, dass die kurze Isoform sNDUFB5 im Tumor stark überexpremiert ist, während die Expression des Volllänge-Proteins in normalem und Tumorgewebe ähnlich hoch ausfällt. Dieser Befund macht NDUFB5 zu einem interessanten therapeutischen Target.
Die näher untersuchten Kandidaten-Gene zeigen beide Potential als neue Angriffspunkte für eine molekulare Krebstherapie. Andere in dem Hefe-Survival-Screen identifizierte Proteine wurden bereits als anti-apoptotisch und/oder in Krebszellen überexprimiert beschrieben. Diese Ergebnisse demonstrieren, dass ein funktionelles, Hefe-basiertes Screeningsystem geeignet ist, neue bisher unbekannte Proteine mit anti-apoptotischer Funktion zu identifizieren. Auch zeigen die Befunde, dass bereits bekannte Proteine weitere bisher unbekannte Funktionen wie z.B. die Inhibition von Apoptose aufweisen können. Basierend auf solchen mehrfachen Proteinfunktionen lassen sich weitere therapeutische Möglichkeiten ableiten.