Refine
Document Type
- Doctoral Thesis (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- Emerging insect model organisms (1)
- Entomologie (1)
- Evolutionary developmental biology (1)
- Genetics (1)
- Honigbiene (1)
- LTD (1)
- LTP (1)
- Light sheet-based fluorescence microscopy (1)
- Morphogenesis (1)
- Soziobiologie (1)
Institute
- Biowissenschaften (11)
In order to investigate the diversity of the western honeybee, Apis mellifera L., in West and Central Africa, a total of 204 colonies were sampled from 44 localities in four countries – Nigeria, Niger, Cameroon and Chad. 86 of these colonies, from 23 localities, were subjected to full morphometric analysis. In a principal component analysis (PCA) of the morphometric data, the colonies formed a single cluster. It also revealed that overall size of the body was the most important source of variation between the colonies. A hierarchical structure analysis, followed by a stepwise discriminant analysis, classified the colonies into three distinct morphoclusters; however, these clusters were not geographically demarcated. In another PCA carried out with the samples under investigation and reference samples of A. m. adansonii, A. m. jemenitica and A. m. scutellata, the colonies under investigation again formed one cluster which lying over and extended beyond the clusters of the reference subspecies. This is suggestive of a wider variation in size in the bees under investigation. In a stepwise DA, 94.2% of cross-validated grouped cases were correctly classified and the distances between group centroids were highly significant (p < 0.0005) according to F-statistic. 61 and 22 of the 83 colonies under investigation were assigned to A. m. jemenitica and A. m. adansonii, respectively. Mitochondrial DNA analysis was carried out on 148 colonies from 39 localities. Four mitochondrial haplotypes, previously reported from Africa and belonging to the African mitochondrial lineage, A, were detected: A1 (n = 62), A4 (n = 70), A4' (n = 15) and A14 (n = 1). The overall haplotype diversity was low (h = 0.478 ± S. E. 0.057). A chi-square test for association was conducted between haplotypes and type of vegetation, latitude, longitude, altitude, temperature and rainfall, severally. There was a statistically significant association between haplotype and each of the six variables and the association was strong with latitude, moderate with vegetation and rainfall and weak with the remaining variables. The neighbour-joining, maximum likelihood and maximum parsimony trees, obtained from sequence variation of the cytochrome b gene of mitochondrial DNA, showed that the samples, from the current study, unambiguously clustered with the reference sequences of A. m. scutellata from Kenya, but without showing further subdivision within this sub-Saharan cluster. 133 workers (one per colony) collected from 38 localities were subjected to microsatellite analysis. A total of 292 different alleles were recorded for the 15 microsatellite loci used. All microsatellite loci were polymorphic and the number of different alleles per locus ranged between 10, in locus At163, and 31, in locus A029. Heterozygosity (or gene diversity) was high in all loci. The unbiased expected heterozygosity, which is a better expression of gene diversity, was 0.861 ± S.E. 0.017. The overall FST value, which is a good estimate of genetic differentiation of populations, was very low: 0.007 ± S.E. 0.001 (0.001 - 0.014). AMOVA and Bayesian assignment showed no differentiation of the investigated populations. Based on morphometric analysis, the results of this study present the honeybees of western Africa as a single entity with an internal variation which lacks a geographical demarcation. Consequently the results do not support the splitting of the honeybees of the region into the two subspecies, A. m. adansonii and A. m. jemenitica, as reported in the literature. More morphometric, molecular, physiological and behavioural studies are required to confirm the taxonomic status of the honeybees of the region. Meanwhile, the use of A. m. adansonii, as the sole sub-specific name for the honeybees of West and Central Africa, is recommended.
Durch natürliche Selektion werden Funktionen, die dem Überleben und dem Fortpflanzungserfolg eines Organismus dienen, optimiert. Da die Struktur eines Organs dessen Funktion und umgekehrt die Funktion eines Organs dessen Struktur bestimmt, kann durch das Studium der Morphologie die Funktionsweise von Organen verstanden werden. Trotz des umfangreichen Wissens über die Struktur von Nervensystemen sowohl auf mikro- als auch auf makroskopischer Ebene, ist es weiterhin unklar, wie Bewusstsein und ein kohärentes Abbild der Umwelt im Gehirn erzeugt werden. Der Grund hierfür ist vor allem die gewaltige Komplexität neuronaler Netzwerke, die unmöglich geistig erfasst werden können. Eine Möglichkeit, das Gehirn ohne das detaillierte Wissen über all seine Bestandteile zu verstehen, bietet das Studium von Optimierungsprinzipien und deren Anwendung in theoretischen Modellen. So wie eingangs erwähnt die Funktion von Organen durch natürliche Selektion optimiert wird, sollte auch die Funktion neuronaler Netzwerke optimiert werden und neuronale Netzwerke sollten entsprechend solcher Optimierungsprinzipien aufgebaut sein. Ein wichtiges Prinzip, das essenziell für die Effizienz neuronaler Netzwerke ist, ist die Minimierung der Verbindungslänge zwischen Neuronen. Basierend auf diesem Prinzip wurde im Rahmen dieser Dissertation eine algorithmische Methode etabliert, die es ermöglicht Vorhersagen der relativen Position von Neuronen anhand ihrer Verbindungen zu treffen. Diese neuronale Platzierungsmethode beruht darauf, dass Neuronen mit ähnlicher Verbindungsnachbarschaft näher zueinander platziert werden als zu Neuronen mit weniger ähnlichen Verbindungsnachbarn, wodurch die durchschnittliche Verbindungslänge minimiert wird. Nach der Etablierung dieser Methode, wurde diese benutzt um Modelle zu erstellen, die es ermöglichen die Entstehung neuronaler Karten und kortikaler Faltungen im Zusammenhang mit der Konnektivität und der Anzahl der Neuronen zu untersuchen.
Neuronale Karten sind geordnete Muster auf der Oberfläche des Kortex, die durch die präferierte Aktivität einzelner Neuronen in Antwort auf Stimuli einer Modalität beobachtet werden können. Im visuellen Kortex existieren sogar mehrere Karten, je nachdem welche Qualität visueller Stimuli man betrachtet. Abhängig von der Präferenz für einen Sehwinkel, ein stimuliertes Auge oder der Orientierung eines Balken-Stimulus, können retinotopische Karten, Karten mit streifenartigen Mustern oder Karten mit sogenannten „Pinwheel“-Strukturen beobachtet werden. Pinwheels sind periodische Strukturen, die sichtbar werden indem man die Orientierungspräferenz von Neuronen für die spezifische Orientierung eines Balken-Stimulus mit der entsprechenden Farbe des Farbkreises visualisiert. Da diese Strukturen eine Ähnlichkeit mit bunten Windrädern haben, werde sie als Pinwheels bezeichnet. Die in dieser Dissertation erstellten Modelle sagen vorher, dass die Entstehung strukturierter neuronaler Karten im Allgemeinen von der Anzahl der Neuronen abhängt. In der Tat könnte diese Abhängigkeit auch für neuronale Karten im Kortex gelten. Während strukturierte Karten im visuellen Kortex in verschiedenen Säugerordnungen wie Primaten, Karnivoren und Huftieren existieren, sind sie in kleinen Nagern mit weniger Neuronen nicht vorhanden, trotz ähnlicher Verbindungsspezifizität. Folglich müssen Unterschiede in der Struktur neuronaler Karten im Kortex nicht zwangsläufig mit einer unterschiedlichen Funktionsweise zusammenhängen, sondern könnten auch durch allgemeine Optimierungsprinzipien beim Aufbau neuronaler Netzwerke bedingt werden. Eine weitere Gemeinsamkeit zwischen verschiedenen Säugetierordnungen ist, dass die relative Dichte der Pinwheels ziemlich genau bei der Zahl Pi liegt. Entsprechend der Ergebnisse dieser Dissertation könnte dies dadurch erklärt werden, dass für neuronale Karten ähnlicher Struktur die Anzahl der Neuronen pro Pinwheel relativ konstant ist. Unterschiede in der räumlichen Dichte der Pinwheels könnten dann einfach durch Unterschiede in der Dichte der Neuronen erklärt werden.
Neben den Modellen für neuronale Karten wurde im Rahmen dieser Dissertation auch ein Modell kortikaler Faltungen mit derselben neuronalen Platzierungsmethode erstellt. Die Existenz kortikaler Faltungen wird gemeinhin damit erklärt, dass der Kortex ohne Faltungen wegen seiner verhältnismäßig großen Oberfläche nicht in den Schädel gepackt werden könnte. Allerdings haben Experimente gezeigt, dass die Faltungen nicht durch eine Restriktion des wachsenden Kortex an der Schädeloberfläche entstehen, da auch mit mehr Platz für die Expansion des Kortex die gleichen Faltungsmuster exprimiert werden. Interessanterweise entstehen die kortikalen Faltungen erst, wenn die Proliferation der Neuronen während der Entwicklung größtenteils abgeschlossen ist und die Neuronen anfangen ihre Verbindungen auszubilden. Um kortikale Faltungen basierend auf der Konnektivität zwischen Neuronen im Modell vorherzusagen, genügt es das allgemeine Muster einer starken lokalen, aber schwachen globalen Konnektivität zwischen Neuronen nachzubilden. Abhängig von Variationen dieser Konnektivität, der Anzahl der kortikalen Kolumnen und der Neuronenanzahl innerhalb dieser Kolumnen, können im Modell viele Eigenschaften kortikaler Faltungsmuster in Säugetieren vorhergesagt werden. Ähnlich wie in Säugetieren ist der Faltungsgrad der vom Modell vorhergesagt wird von dem Verhältnis zwischen Parametern, die die Größe und Dicke des Kortex beschreiben, abhängig. Dementsprechend werden mehr und mehr Faltungen mit steigender Anzahl der Kolumnen, aber gleicher Anzahl von Neuronen pro Kolumne vorhergesagt. Wie in Säugetieren entstehen dabei auch die größeren primären Faltungen zuerst bevor es innerhalb der größeren Faltungen zu kleineren Faltungen höherer Ordnung kommt. Neben der Abhängigkeit des Faltungsgrads von der Größe des Kortex können Variationen in der Konnektivität erklären, wie es einerseits zu stereotypischen Faltungsmustern kommen kann, aber andererseits auch warum der Faltungsgrad zwischen verschiedenen Säugerordnungen unterschiedlich mit der Größe des Kortex skaliert. Letztlich könnten pathologische Veränderungen der Konnektivität zu den entsprechenden Änderungen im Faltungsmuster führen.
Insgesamt wurde in dieser Arbeit gezeigt, dass mittels einfacher Prinzipien, die die Verbindung zwischen Neuronen und deren relative Position zueinander beschreiben, komplexe neuroanatomische Strukturen vorhergesagt werden können. Da mit derselben Methode zur neuronalen Platzierung sowohl neuronale Karten als auch kortikalen Faltungen, also sehr unterschiedliche Strukturen vorhergesagt werden konnten, stellt sich die Frage, ob diese Strukturen durch einen gemeinsamen biologischen Mechanismus entstehen. Neuronale Zugkräfte sind ein möglicher Mechanismus, der die Entstehung kortikaler Faltungen erklären könnte. Auch wenn es eher unwahrscheinlich ist, dass die Entstehung neuronaler Karten von Zugkräften zwischen Neuronen abhängt, kann es nicht vollständig ausgeschlossen werden. Ob solche Kräfte an der Selbstorganisation neuronaler Netzwerke beteiligt sein könnten, ist eine interessante Fragestellung für zukünftige empirische Studien.
Effekte von Neonikotinoiden auf die Aktivität des Muskels M17 und das Lernverhalten der Honigbiene
(2015)
Im Rahmen dieser Arbeit wurden Untersuchungen zur Auswirkung von Neonikotinoiden auf die Muskelspikeaktivität des Muskels M17 und auf das Lernvermögen in einer komplexen Aufgabe an der Honigbiene (Apis mellifera carnica) durchgeführt. Dabei wurden drei verschiedene Substanzen verwendet: Clothianidin, Thiacloprid und Imidacloprid. Neonikotinoide stehen häufig im Verdacht, für das Sterben von Bienenvölkern verantwortlich zu sein, da die Bienen bei ihrer Nahrungssuche an behandelten Pflanzen den Substanzen ausgesetzt sind und diese möglicherweise damit auch an ihr Volk weitergeben. Die vorliegende Arbeit soll dazu beitragen, diese mögliche Gefährdung der Honigbiene durch Neonikotinoide weiter aufzuklären und deren Risiken zu beurteilen. Der Hintergrund für die Versuche zur Muskelspikeaktivität waren vorangegangene Versuche, die Auswirkungen von Neonikotinoiden auf die Motorik von sich frei bewegenden Individuen dokumentierten. In der vorliegenden Arbeit wurde untersucht, ob sich diese Effekte auch an der Spikeaktivität des Muskels M17 widerspiegeln. Dafür wurden Elektromyogramme des Muskels M17 zu verschiedenen Zeitpunkten nach der Gabe der Substanzen erstellt und deren mediane Anzahl mit einer Kontrollgruppe verglichen.
In einem ersten Versuch wurden Clothianidin (1 µM), Thiacloprid (1 µM), Imidacloprid (1 µM) oder eine Kontrollsubstanz (PBS) in die Kopfkapsel appliziert. Beim Vergleich mit der Kontrollgruppe zeigten sich für Imidacloprid keine Auswirkungen. Clothianidin verursachte eine deutlich erhöhte mediane Spikerate des Muskels M17, während Thiacloprid diese absenkte, beides im Vergleich zur Kontrollgruppe. Auch bei einer um 30 Minuten versetzten Doppelapplikation von Clothianidin (1 µM) und Thiacloprid (10 µM) stellten sich diese Effekte ein, wobei Clothianidin eine dominante Rolle einzunehmen scheint. Diese Ergebnisse stehen im Einklang mit Untersuchungen zur Laufaktivität, welche sich ebenfalls durch Clothianidin erhöhte und durch Thiacloprid absenkte.
Ein weiteres Experiment untersuchte die Auswirkung einer akuten Fütterung mit Clothianidin (1 ng in 1 µl) bzw. Thiacloprid (250 ng in 1 µl) auf die Anzahl der Muskelaktionspotenziale. Auch hier zeigt sich eine deutliche Erhöhung der Spikeanzahl durch Clothianidin und eine Absenkung der Spikeanzahl durch Thiacloprid, was die Ergebnisse des ersten Versuchs nochmals bestätigt.
Des Weiteren wurden Untersuchungen zur Auswirkung einer chronischen Fütterung mit Clothianidin (50 ppb) bzw. Thiacloprid (5000 ppb) auf die Anzahl an Spikes durchgeführt. Die Bienen wurden dabei über mehrere Wochen im Volk mit den jeweiligen Substanzen gefüttert. Dabei zeigte sich, dass auch eine chronische Fütterung der Bienen mit Clothianidin ihre Anzahl an Muskelaktionspotenzialen deutlich erhöht, während eine chronische Fütterung mit Thiacloprid diese absenkt. In einer Kombination der chronischen Fütterung mit einer zusätzlichen akuten Fütterung des jeweils anderen Neonikotinoids zeigte sich, dass auch hier Clothianidin eine dominante Rolle gegenüber Thiacloprid einnimmt und auch keine synergistischen oder Gewöhnungseffekte der beiden Substanzen eintreten. Die chronisch eingefütterten Völker entwickelten sich dagegen wie die Kontrollvölker, sodass die hier beschriebenen Auswirkungen auf die Einzelbiene keine sichtbaren Effekte auf ganze Völker zu haben scheinen.
Zusätzlich wurden Versuche zum Duftlernen in einer komplexen Lernaufgabe, dem positiven Patterning, unter Einfluss von Clothianidin durchgeführt. Die Bienen müssen dabei zwischen unbelohnten Einzeldüften und einem belohnten Duftgemisch, bestehend aus den beiden Einzeldüften, unterscheiden. In verschiedenen Versuchsdurchläufen wurden 0,25 ng oder 1 ng Clothianidin (jeweils 1 µl) in den Thorax injiziert, entweder vor der Akquisitionsphase oder vor dem ersten Abruftest nach drei Stunden. In keinem der Versuchsdurchläufe zeigten sich Effekte des Clothianidins auf den Lernvorgang, weder in der Akquisitionsphase noch in den Abruftests. Somit wurden weder das Lernen an sich, noch die Konsolidierung und damit die Überführung des Gelernten in das Langzeitgedächtnis durch das Clothianidin beeinflusst. Allerdings könnte die Immunabwehr der Bienen nach längerer Einwirkung des Clothianidins (24 h) in der höheren Konzentration herabgesetzt sein, da viele Bienen starben.
Insgesamt ergaben sich Effekte von Clothianidin und Thiacloprid auf die Anzahl der Aktionspotenziale des Muskels M17, die sich aber im gesamten Volk nicht widerspiegeln. Der Lernvorgang in der hier durchgeführten komplexen Lernaufgabe wird durch Clothianidin nicht beeinflusst. Möglicherweise entsteht dieser Unterschied in den Ergebnissen durch eine Bindung der Substanzen an verschiedene Rezeptorsubtypen, die pharmakologisch unterschiedliche Eigenschaften besitzen und somit auch unterschiedliche Auswirkungen zeigen.
In der vorliegenden dreiteiligen Studie werden Mongolische Wüstenrennmäuse untersucht, deren Hörspektren im tieffrequenten Bereich und deren Unterscheidungsfähigkeiten von Kommunikationsrufen denen des Menschen ähneln. Die extrazelluläre Aktivität im primären auditorischen Kortex (AI) der narkotisierten Versuchstiere, evoziert durch Reintöne und arteigene Kommunikationsrufe, wird in der linken (LH) und rechten Gehirnhemisphäre (RH) aufgenommen. Es werden Multikanalelektroden (16 Eingangskanäle) verwendet, welche eine simultane Aufnahme der neuronalen Aktivitäten aller kortikalen Schichten ermöglichen. Zur Analyse der neuronalen Mechanismen werden Wellenformen einzelner Elektrodenkanäle und Aktivitätsprofile, bestehend aus den Wellenformen aller Elektrodenkanäle in einem Zeitfenster von 600 ms, auf Ebene von Aktionspotentialen (MUA), lokalen Feldpotentialen (LFP) und Current-source-density (CSD) Analysen, untersucht. Während MUAs die neuronalen Aktionspotentiale im Nahfeld der Elektrode reflektieren, umfassen die LFPs die summierten Potentiale (inhibitorisch und exzitatorisch) von Neuronen eines größeren Areals. Die CSDs hingegen werden durch die Integration von LFP-Wellenformen benachbarter, linear angeordneter Elektrodenkanäle berechnet und ermöglichen so eine Lokalisation der Ursprünge geräuschspezifischer Aktivitätsflüsse.
Im ersten Teilprojekt werden CSD-Profile in Antwort auf unterschiedliche Reintöne untersucht, um die Aktivitätskomponenten, die so genannten Sinks, für weiterführende Analysen zu quantifizieren. Es können zwei primäre (s1 und s2), drei mittlere (s3-s5) und vier späte (s6-s9) Sinks in einem Zeitfenster von 600 ms definiert werden. Eine Veränderung der Stimulusfrequenz eine Oktave über und unter der charakteristischen Frequenz (CF), beziehungsweise des Lautstärkepegels = 24 dB über der minimalen Schwelle, führt zu qualitativen Veränderungen in der CSD-Profilstruktur. Die Sink s7 wird durch Stimuli mit niedrigem Lautstärkepegel weniger verlässlich evoziert, wohingegen die Sink s9 bei Stimuli eine Oktave über der CF verlässlicher evoziert wird. Die Ergebnisse weisen darauf hin, dass im AI die spektralen Informationen eine Oktave über und unter der CF asymmetrisch integriert werden.
Auf Einzelschichtebene konnte bereits gezeigt werden, dass spektrotemporale Eigenschaften von Stimuli durch MUAs schlechter reflektiert wurden als durch LFPs, was vermutlich eine direkte Konsequenz der unterschiedlichen Ursprünge der Signaltypen ist. Daher werden im zweiten Teilprojekt die spezifischen Unterschiede der MUA-, LFP- und CSD-Antworten auf Ebene kortikaler Schichten und kompletter laminarer Profile untersucht, um die Unterschiede und den Informationsgehalt der drei Signaltypen zu charakterisieren. Signifikante Unterschiede, welche durch zwei Reintöne und sieben Kommunikationssignale evoziert werden, können verstärkt im mittleren und späten Latenzbereich und in granulären und infragranulären Schichten vorgefunden werden. Der Grad der Rufspezifizität ist in LFP und CSD-Antworten im Vergleich zu demjenigen in MUA-Antworten größer. Die Segregationsleistung ist im Vergleich zu einzelnen kortikalen Schichten in den von kortikalen Kolumnen abgeleiteten laminaren Profilen um den Faktor 1,8-2,6 erhöht. Die Neuronenpopulationen einzelner kortikaler Kolumnen sind vermutlich wichtig für die Kodierung von Geräuschen, welche sich in ihren spektrotemporalen Eigenschaften unterscheiden.
Viele vorangegangene Studien konnten zeigen, dass die Gehirnhemisphären akustische Signale asymmetrisch verarbeiten. Daher werden im dritten Hauptteil die laminaren Profile der LH und RH quantitativ und statistisch verglichen. Die MUA-, CSD-Profile und im geringeren Maße auch die LFP-Profile zeigen systematische Unterschiede auf signifikantem Niveau in der Dauer, Onset Latenz und vertikalen Ausdehnung bestimmter Aktivitäten. Kommunikationsrufe evozieren in der LH, welche beim Menschen auf Sprachstimuli spezialisiert ist, im Vergleich zur RH komplexere CSD-Profile. Die neuronale MUA-, LFP- und CSD-Aktivitätsstärke ist in der RH für weniger komplexe Stimuli teilweise signifikant erhöht. Die Asymmetrie in der Auftrittsverlässlichkeit der Sink s6 lässt vermuten, dass sich die intrakolumnäre Vernetzung in Schicht VIa zwischen der LH und RH unterscheidet. Die wenigen, signifikanten und nicht systematischen Unterschiede zwischen den Sink-Parametern der LH und RH nach kortikaler Ausschaltung mit dem GABAA-Rezeptor Agonist Muscimol weisen darauf hin, dass die Hemisphärenasymmetrie durch Prozesse des ipsilateralen Kortex maßgeblich beeinflusst wird.
Im Rahmen der hier vorliegenden Arbeit wurde der Einfluss sowohl akuter als auch chronischer Aufnahme subletaler Mengen des Insektizids Thiacloprid auf Einzelbienen und Bienenvölker untersucht. Anlass für diese Art an Untersuchungen gibt ein seit Jahren in Nordamerika und Europa auftretendes unerklärliches Phänomen, „Colony Collapse Disorder“ genannt, bei dem Bienenvölker durch einen plötzlichen Verlust der Flugbienen zusammenbrechen. Als Ursache für das Völkersterben stehen neben anderen Faktoren wie Parasiten, Pathogenen und Umweltfaktoren die Insektizide aus der Gruppe der Neonikotinoide und deren Auswirkungen auf Bienen in subletalen Mengen im Verdacht. Basierend auf Studien der Europäischen Behörde für Lebensmittelsicherheit (EFSA) wurde der zugelassene Einsatz der drei Neonikotinoide Clothianidin, Imidacloprid und Thiamethoxam im Pflanzenschutz für zunächst zwei Jahre durch die EU-Kommission stark eingeschränkt.
Thiacloprid, ein weiteres Insektizid, welches zur Gruppe der Neonikotinoide gehört, ist weiterhin für den Einsatz im Pflanzenschutz zugelassen. Es wirkt in ähnlicher Weise wie die zuvor genannten Neonikotinoide als Agonist am nikotinischen Acetylcholinrezeptor, wobei es jedoch als weniger toxisch für Bienen gilt. Trotzdem sind subletale Auswirkungen dieses Neonikotinoids auf Bienen denkbar, die sich in Verhaltensänderungen der Bienen äußern und als Folge Einfluss auf das gesamte Bienenvolk nehmen könnten.
In der hier vorliegenden Arbeit wurden in chronisch mit Thiacloprid eingefütterten Völkern über mehrere Monate regelmäßige Populationsschätzungen durchgeführt, um die Entwicklung der Bienenvölker unter Aufnahme von Thiacloprid festzustellen. In einem weiteren Versuch wurde die Entwicklung der Brut unter chronischer Fütterung mit Thiacloprid beobachtet. Zusätzlich wurde eine große Zahl an Bienen mit RFID-Transpondern ausgestattet, um das Flugverhalten zu dokumentieren. Insbesondere wurden hier der Zeitpunkt des ersten Ausflugs und die Lebensdauer der Bienen zu Vergleichen herangezogen. Nach akuter Fütterung einer subletalen Einzeldosis Thiacloprid wurden Versuche zum Heimkehrvermögen von Bienen durchgeführt.
Unter feldrelevanten und bis zu zehnfach höheren Thiacloprid-Konzentrationen wurden keine beeinträchtigenden Einflüsse auf die Volksentwicklung beobachtet. Bei Konzentrationen, die um ein 25faches bzw. ein 40faches höher als die feldrelevante Konzentration waren, wurde festgestellt, dass die Brutzellenanzahl im Verhältnis zur Bienenanzahl verringert war. Bienen aus chronisch mit Thiacloprid eingefütterten Völkern starteten mit höherem Alter zu ihrem ersten Flug aus dem Bienenstock. Die Zeit, die die Bienen als Sammlerinnen verbrachten, änderte sich nicht. Durch Beobachtungen der Brutflächen konnte festgestellt werden, dass sich die Brut in Thiacloprid-gefütterten Völkern entsprechend der Brut in Kontrollvölkern entwickelte. Aufgrund weiterer Ergebnisse wurde eine Störung der olfaktorischen Wahrnehmung von Bienen aus Thiacloprid-gefütterten Völkern vermutet. Die akut verabreichte subletale Dosis an Thiacloprid führte zu einem erheblichen Verlust an heimkehrenden Bienen und deutet auf eine Beeinträchtigung des Orientierungs- bzw. Navigationsvermögens der Bienen hin.
In den durchgeführten Versuchen wurden sowohl direkte Auswirkungen von chronischer und akuter Aufnahme subletaler Mengen an Thiacloprid, als auch indirekte Auswirkungen auf Honigbienen beobachtet. Da teilweise erst bei hohen, nicht feldrelevanten Konzentrationen in den Versuchen Effekte beobachtet wurden, kann nur bedingt durch die Verhaltensänderung von Einzelbienen auf daraus resultierende Auswirkungen auf ein gesamtes Bienenvolk unter realistischen Bedingungen geschlossen werden.
Diese Dissertation befasst sich mit den Auswirkungen von nicht letalen Dosen von Neonikotinoiden auf Bienen. Neonikotinoide stellen eine Klasse von Insektiziden dar, die auf den nikotinischen Acetylcholin Rezeptor wirken. In dieser Dissertation wurden die Neonikotinoide Imidacloprid, Clothianidin und Thiacloprid benutzt. Die beiden erst genannten unterliegen zum Zeitpunkt des Verfassens dieser Arbeit einem temporären Verkaufs- und Ausbringungs-Stopp. Damit sind die Ergebnisse dieser Arbeit wichtig für die Bewertung der Gefahren von Neonikotinoiden. Neonikotinoide werden im großen Maße in der Landwirtschaft als Spritzmittel und Saatgutbeize eingesetzt. Dabei können sie in Rückständen von Bienen beim Sammeln von Nektar und Pollen aufgenommen und zum Stock gebracht werden. Um einen weiten Blick auf die Auswirkungen der Stoffe zu werfen wurden deshalb Experimente an einzelnen Sammlerinnen durchgeführt, ebenso wie an Bienenvölkern, bei denen die Substanzen verfüttert wurden. Als neuronal aktive Substanzen können sie die normale Funktion des Nervensystems von Bienen beeinflussen, was Veränderungen im Verhalten hervorrufen kann. Dies zeigt sich in Veränderungen in der Bewegung, Orientierung oder auch Interaktion mit anderen Bienen. Die Wirkung am Rezeptor variiert, trotz gleichen molekularen Ziels, stark zwischen den verwendeten Neonikotinoiden. Clothianidin wurde als Agonist beschrieben, der sogar stärkere Ströme als Acetylcholin bei gleicher Konzentration hervorrufen kann. Imidacloprid dagegen wurde bereits als partieller Agonist beschrieben, der geringere Ströme über den Rezeptor auslöst. In dieser Arbeit wurde ein erster Versuch durchgeführt um Thiacloprid ebenfalls als Agonist am nikotinischen Acetylcholin Rezeptor der Biene zu beschreiben. Hierbei wurde an einer Zelle in Kultur ein geringerer Strom ausgelöst.
Bienenvölker wurden unter kontrollierten Bedingungen gehalten, bei denen je eins der Neonikotinoide Clothianidin, Imidacloprid oder Thiacloprid in das Futter gemischt wurden. Hierfür wurden Dosen gewählt, bei denen davon ausgegangen werden konnte, dass keine akute Beeinflussung der Sammlerinnen bestand. Es konnte festgestellt werden, dass chronisches Füttern mit einer Zuckerlösung mit 8,876 mg/kg Thiacloprid zu einer verringerten Sammelleistung führte. Ebenso wurde die Entwicklung der Eier stark eingeschränkt, wobei die Königin weiterhin Eier legte. Es konnten nur vereinzelte verdeckelte Brutzellen, die ein spätes Entwicklungsstadium der Bienen darstellen, gefunden werden. Damit konnte gezeigt werden, dass geringe Dosen die Larval-Entwicklung von Bienen beeinflussen, eventuell durch Einflüsse auf die Kommunikation zwischen Ammenbienen und der Brut.
Um Auswirkungen auf einzelne Tiere zu zeigen, wurden unterschiedliche Parameter im Heimflug von Bienen nach Fütterung mit je einem der Neonikotinoide analysiert. Bienen mussten sich nach der Fütterung orientieren und von einer neuen Position den Heimweg zum Stock finden. Der Heimflug wurde per Radar verfolgt und so ein Flugprofil erstellt, das aus zwei Flugphasen bestand. Diese wurden durch die Navigation nach Vektorintegration und durch Landmarken unterteilt. Aus dem Flugprofil konnte abgelesen werden, wie lange die Bienen für die Phasen des Flugs benötigten, in welchem Hauptflugwinkel sie die erste Flugphase absolvierten, in welche Richtung sie am Ende der ersten Flugphase flogen und wie gerichtet der Flug war. Auch wurde erfasst, ob die Bienen überhaupt in der Lage waren zum Stock zurückzukehren. Hier zeigte sich, dass die Fütterung mit Zuckerwasser mit 0,6 µM und 0,9 µM Imidacloprid, ebenso wie mit 0,1 mM Thiacloprid zu einer verringerten Heimkehrwahrscheinlichkeit führte. In der ersten Flugphase konnte auch gezeigt werden, dass 0,2 µM Clothianidin im Zuckerwasser zu einem schnelleren Flug führte und dass der Flugwinkel im Vergleich zur Kontrolle in Richtung der wahren Position des Stocks verschoben war. Beide Imidacloprid-Gruppen zeigten eine ähnliche, signifikante Verschiebung des Flugwinkels, ebenso konnte im Flug selbst eine häufige Änderung der Richtung festgestellt werden. In der zweiten Flugphase zeigte sich, dass Bienen, welche mit Thiacloprid behandelt wurden häufiger eine inkorrekte Heimflugrichtung wählten, was in längeren Heimflügen resultierte. Die mit Clothianidin behandelten Bienen legten eine längere Flugstrecke zurück. Bienen, welche Imidacloprid beider Konzentrationen konsumierten, zeigten einen häufigen Wechsel ihrer Flugrichtung. Damit konnten bei allen drei gewählten Neonikotinoiden Einflüsse auf spezifische Komponenten der Navigation von Bienen gefunden und Einschränkungen im Heimkehr- und Orientierungsverhalten einzelner Sammlerinnen gezeigt werden. Somit konnten die eingehenden Fragen zumindest teilweise beantwortet werden und die Datenlage zur Frage der Schädlichkeit der, auch politisch umstrittenen, Substanzen erweitert werden.
The fruit fly Drosophila melanogaster is one of the most important biological model organisms, but only the comparative approach with closely related species provides insights into the evolutionary diversification of insects. Of particular interest is the live imaging of fluorophores in developing embryos. It provides data for the analysis and comparison of the threedimensional morphogenesis as a function of time. However, for all species apart from Drosophila, for example the red flour beetle Tribolium castaneum, essentially no established standard operation procedures are available and the pool of data and resources is sparse. The goal of my PhD project was to address these limitations. I was able to accomplish the following milestones:
- Development of the hemisphere and cobweb mounting methods for the non-invasive imaging of Tribolium embryos in light sheet-based fluorescence microscopes and characterization of most crucial embryogenetic events.
- Comprehensive documentation of methods as protocols that describe (i) beetle rearing in the laboratory, (ii) preparation of embryos, (ii) calibration of light sheet-based fluorescence microscopes, (iv) recording over several days, (v) embryo retrieval as a quality control as well as (vi) data processing.
- Adaption of the methods to record and analyze embryonic morphogenesis of the Mediterranean fruit fly Ceratitis capitata and the two-spotted cricket Gryllus bimaculatus as well as integration of the data into an evolutionary context.
- Further development of the hemisphere method to allow the bead-based / landmark-based registration and fusion of three-dimensional images acquired along multiple directions to compensate the shadowing effect.
- Development of the BugCube, a web-based computer program that allows to share image data, which was recorded by using light sheet-based fluorescence microscopy, with colleagues.
- Invention and experimental proof-of-principle of the (i) AGameOfClones vector concept that creates homozygous transgenic insect lines systematically. Additionally, partial proof-of-principle of the (ii) AClashOfStrings vector concept that creates double homozygous transgenic insect lines systematically, as well as preliminary evaluation of the (iii) AStormOfRecords vector concept that creates triple homozygous transgenic insect lines systematically.
- Creation and performance screening of more than fifty transgenic Tribolium lines for the long-term imaging of embryogenesis in fluorescence microscopes, including the first Lifeact and histone subunit-based lines.
My primary results contribute significantly to the advanced fluorescence imaging approaches of insect species beyond Drosophila. The image data can be used to compare different strategies of embryonic morphogenesis and thus to interpret the respective phylogenetic context. My technological developments extend the methodological arsenal for insect model organisms considerably.
Within my perspective, I emphasize the importance of non-invasive long-term fluorescence live imaging to establish speciesspecific morphogenetic standards, discuss the feasibly of a morphologic ontology on the cellular level, suggest the ‘nested linearly decreasing phylogenetic relationship’ approach for evolutionary developmental biology, propose the live imaging of species hybrids to investigate speciation and finally outline how light sheet-based fluorescence microscopy contributes to the transition from on-demand to systematic data acquisition in developmental biology.
During my PhD project, I wrote a total of ten manuscripts, six of which were already published in peer-reviewed scientific journals. Additionally, I supervised four Master and two Bachelor projects whose scientific questions were inspired by the topic of my PhD work.
The neural crest gives rise to the neurons and glial cells of the peripheral nervous system (PNS) (Bronner-Fraser and Fraser, 1989; Frank and Sanes, 1991). Self-renewing neural crest-derived stem cells (NCSCs) are present in migratory neural crest and various postmigratory locations, including peripheral ganglia (Duff et al., 1992; Morrison et al., 1999; Kruger er al., 2002). It is demonstrated that NCSCs from embryonic mouse dorsal root ganglia (DRG) are reprogrammed in neurosphere (NS) cultures in the presence of EGF and FGF. Reprogrammed NCSCs (rNCSCs) generate exclusively central nervous system (CNS) progeny, both in vitro and upon transplantation into the mouse brain (Binder et al., 2011). In this study the timing and mechanisms underlying the reprogramming were addressed. Most of the cells acquire CNS characteristics at passage 2, reaching a stable proportion of >90% of Olig2-positive cells at passage 3, which is maintained at least up to passage 10. The PNS marker p75 is completely lacking from passage 3 onwards. Furthermore, it was shown that the reprogramming does not involve a transient pluripotency state. This suggests a direct reprogramming of NCSCs to cells with CNS identity. The reprogramming leads to a stable CNS identity as shown by delayed BMP4 application. This result is in agreement with the previous observation that rNCSCs only generate CNS progeny, in particular mature myelinating oligodendrocytes, upon transplantation into embryonic, postnatal and lesioned adult mouse brains (Binder et al., 2011). Genome wide gene expression profiles of rNCSC NS demonstrates already in culture a complete switch to a (spinal cord stem cell) SCSC CNS identity. These results demonstrate a complete reprogramming of PNS progenitors to CNS identity without genetic modification and imply PNS cells as a source for stem cell-based CNS therapy.
The reprogramming of NCSCs is completely blocked in the presence of BMP4 in NS cultures, as shown by the expression of neural crest markers p75 and Sox10. In addition, BMP4 NCSCs generate PNS neurons (Tuj1/Phox2b- and Peripherin/Tuj1-coexpressing cells) and Schwann cells (O4/p75-coexpressing cells). Genome wide gene expression profiles of BMP NCSCs demonstrate that BMP NCSCs express genes at high levels which are characteristic for neural crest/neural crest derivatives, mesenchymal derivatives of neural crest and perivascular pericytes/MSCs. On the other hand CNS marker genes are restricted to rNCSCs and are only expressed at background or undetectable levels in BMP NCSCs. These findings imply that the CNS versus PNS identity is controlled by antagonistic functions of FGF and BMP4.
The use of rNCSCs for cell therapies requires an accessible source of these cells in the adult organism. Since the DRG is not an easily approachable tissue source, the adult mouse palate, containing NCSCs, was chosen. These results suggest that pNCSCs arise from Sox10-positive neural crest-derived stem cells, that downregulate PNS marker gene expression, such as Sox10 and p75, in NS culture. Contrary to rNCSCs, CNS marker upregulation was not observed. Notably, genome wide gene expression profiles of pNCSCs demonstrate an enrichment of genes expressed by mesenchymal derivatives and perivascular pericytes/mesenchymal stem cells. Since the cranial crest gives rise, besides PNS neural progeny and melanocytes, to mesenchymal derivatives, the results demonstrate that pNCSCs have a restricted developmental potential in comparison to rNCSCs and acquire mostly normal fates of the cranial neural crest.
Taken together, the results demonstrate that rNCSCs acquire a SCSC identity in the presence of EGF and FGF and that the reprogramming can be efficiently blocked by BMP4. On the other hand, NCSCs derived from adult palate rather acquire mesenchymal fates and do not acquire a CNS identity under the conditions used.
Der Gyrus dentatus ist eine anatomische Region im Hippocampus und besitzt die einzigartige Fähigkeit auch im adulten Gehirn lebenslang neue Nervenzellen zu generieren. Dieser Prozess wird als adulte Neurogenese bezeichnet, stellt eine besondere Form struktureller Plastizität dar und es wurde gezeigt, dass adult neugebildete Körnerzellen im Gyrus dentatus essentiell am Prozess des hippocampalen Lernens und der Gedächtnisausbildung beteiligt sind. Es wird vermutet, dass neue Körnerzellen aufgrund ihrer charakteristischen Eigenschaften verstärkt auf neue Informationsmuster reagieren können und darauf spezialisiert sind Muster, die eine hohe Ähnlichkeit zueinander haben zu separieren und diese Unterschiede zu kodieren. Obwohl bereits eine Vielzahl von wissenschaftlichen Studien zum Verständnis der Entwicklung und Funktion adult neugebildeter Körnerzellen beitragen konnte, bestehen immer noch Unklarheiten darin, wie sich diese neuen Nervenzellen strukturell entwickeln, wann es zu einer funktionellen Integration kommt und wie diese beiden Prozesse miteinander zusammenhängen. In den vorliegenden Arbeiten wurde die strukturelle Entwicklung und synaptische Integration adult neugebildeter Körnerzellen in das bestehende hippocampale Netzwerk der Ratte und Maus unter in vivo Bedingungen untersucht. Zur Beantwortung dieser Fragen wurden Methoden aus der Anatomie, Histologie und in vivo Elektrophysiologie kombiniert. Der Nachweis neuer Körnerzellen erfolgte entweder durch immunhistologische Färbungen gegen spezifische Marker für unreife und reife Körnerzellen, Markierungen mit Bromdesoxyuridin oder retro- bzw. adenovirale intrazerebrale Injektionen und Expression von GFP. Es wurde eine in vivo Stimulation des Tractus perforans in der anästhesierten Ratte zur Langzeitpotenzierung der Körnerzellsynapsen und anschließend eine immunhistologische Analyse der Expression von synaptischen Aktivitäts- und Plastizitätsmarkern in neugebildeten und reifen Körnerzellen nach der Stimulation durchgeführt. Zusätzlich wurden detaillierte drei-dimensionale Rekonstruktion dendritischer Bäume erstellt und dendritische Dornenfortsätze an retroviral markierten Zellen analysiert.
Die vorliegenden Daten belegen den generellen Verlauf der Entwicklung neugeborener Körnerzellen in zwei unterschiedliche Phasen: eine frühe dendritische Reifung und eine späte funktionelle und synaptische Integration. Neugeborene Körnerzellen zeigten ein rasches dendritisches Auswachsen, dass innerhalb der ersten drei bis vier Wochen abgeschlossen war. Während dieses Wachstumsprozesses passieren Dendriten nacheinander die Körnerzellschicht und anschließend die innere, mittlere und äußere Molekularschicht. Dadurch sind sie innerhalb ihrer morphologischen Entwicklungsphasen anatomisch auf spezifische präsynaptische Partner limitiert. In der wissenschaftlichen Literatur wird eine transiente kritische Phase beschrieben, in der neugeborene Körnerzellen eine starke Plastizität und sensitivere synaptische Erregbarkeit aufweisen. Obwohl die vorliegenden Resultate keine direkten Hinweise auf eine stärkere bzw. sensitivere Plastizität neugeborener Körnerzellen liefern, konnte eine Phase zwischen vier und fünf Wochen identifiziert werden, in der neue Körnerzellen einen sprunghaften Anstieg in ihrer Fähigkeit zur Expression synaptischer Aktivitätsmarker (z.B. Arc und c-fos) und Ausbildung struktureller Plastizität (Dendriten und Dornenfortsätze) zeigten. Die präsentierten Resultate machen deutlich, dass Dornenfortsätze neuer Körnerzellen nach elf Wochen eine vergleichbare Dichte, Größenverteilung und Plastizität aufzeigen, die vergleichbar mit denen vorhandener Körnerzellen sind. Die Fähigkeit zur dendritischen Plastizität nach synaptischer Aktivierung zeigten jedoch nur neugeborene Körnerzellen zwischen der vierten und fünften Woche. Diese Ergebnisse implizieren, dass die Integration neugebildeter Körnerzellen kontinuierlich verläuft und obwohl die vorliegenden Daten die Existenz einer dendritischen Plastizität und einen sprunghaften Anstieg synaptischer Plastizität in der vierten und fünften Woche belegen, wurden keine weiteren Hinweise auf eine transiente kritische Phase gefunden. Des Weiteren zeigten dendritische Bäume von gereiften adult neugeborenen und reifen Körnerzellen Unterschiede, die daraufhin deuten, dass neue Körnerzellen eine eigene Subpopulation darstellen.