Refine
Year of publication
Document Type
- Doctoral Thesis (146)
Has Fulltext
- yes (146)
Is part of the Bibliography
- no (146)
Keywords
- Paracoccus denitrificans (7)
- Cytochromoxidase (6)
- Ubihydrochinon-Cytochrom-c-Reductase (6)
- Membranproteine (4)
- ABC-Transporter (3)
- Elektronentransfer (3)
- Protonentransfer (3)
- Apoptosis (2)
- Atmungskette (2)
- Biochemie (2)
Institute
- Biochemie und Chemie (125)
- Biowissenschaften (11)
- Pharmazie (8)
- Georg-Speyer-Haus (3)
- Biochemie, Chemie und Pharmazie (1)
- MPI für Biophysik (1)
- Medizin (1)
Während der letzten Jahrzehnte hat sich die Totalreflexions-Röntgenfluoreszenzanalyse (TXRF) als eine tragende Methode in der Elementanalytik etabliert. Sie ist eine universelle, auf vielen Gebieten einsetzbare, ökonomische Multielementmethode zur Mikro- und Spurenanalyse. Die Vorteile der TXRF mit ihrer hohenEmpfindlichkeit kombiniert mit einer einfachen Quantifizierung und einem geringen Probenverbrauch prädestinieren sie für Elementbestimmungen in verschiedenen biologischen Matrices - besonders auf dem Gebiet der Protein- und Enzymanalytik. Das Potential der TXRF für die Bestimmung von Übergangsmetallen in diesenMatrices wurde schon in der Literatur beschrieben. Eine bedeutende Rolle kommt hier auch der Analyse leichter Elemente zu, insbesondere der des Schwefels. Als Bestandteil der beiden Aminosäuren Cystein und Methionin erlaubt die quantitative Bestimmung des Schwefelgehaltes eine zur Metall-Cofaktoren-Bestimmung einfache und simultane Bestimmung der Enzym- oder Proteinkonzentration. Die Evaluation dieses Verfahrens mit seinen Möglichkeiten und Grenzen für die TXRF, sowie die Weiterentwicklung von Anwendungsgebieten auf diesem Gebiet waren die vorrangigen Ziele dieser Arbeit. Zuvor erfolgte eine Überprüfung der für die quantitative Auswertung notwendigen und wichtigen relativen Empfindlichkeitsfaktoren (Kalibrierfaktoren). Für die beiden untersuchten leichteren Elemente Schwefel und Phosphor ließen sich im Gegensatz zu den höheren Elementen Abweichungen von > ± 10 % zu den in der Spektrometer-Software bereits vorinstallierten Faktoren feststellen. Die Betrachtung der Matrix- und Konzentrationsabhängigkeit des relativen Empfindlichkeitsfaktors von Schwefel zeigte eine starke Matrixabhängigkeit des Faktors bei höheren Konzentrationen. Hier spielen vorrangig Absorptionseffekte der induzierten Fluoreszenzstrahlung des Schwefels in den unterschiedlich massiven Rückständen der untersuchten Verbindungen Al2(SO4)3, MgSO4 und Na2SO4 eine entscheidende Rolle. Im Zuge der Probenvorbereitung für die Analyse der Protein- und Enzymproben erwies sich die Trocknung an Luft bei Raumtemperatur als eine gut geeignete Methode im Vergleich zu herkömmlichen Verfahren (Trocknung unter Wärmezufuhr). Bei letzterem Verfahren besteht die Gefahr möglicher Elementverluste von flüchtigen Verbindungen z. B. beim Vorhandensein sulfidischer Bestandteile. Der Einfluss der Matrixbestandteile (Puffer/bio-organische Matrix der Enzyme selbst) und ihre systematischen Zusammenhänge auf die ausgebildeten Trocknungsrückstände zeigten sich deutlich in den zur Evaluation der Schwefelbestimmung durchgeführten Konzentrationsreihen mit schwefelhaltigen anorganischen Standardlösungen. Bei den beiden untersuchten Enzymen Diisopropylfluorophosphatase (DFPase) undCytochrom c Oxidase wurden über die durchgeführten Konzentrationsbereiche sehr gute Wiederfindungen dokumentiert. Bei der Cytochrom c Oxidase trägt vor allem der im Vergleich zur DFPase deutlich höhere Anteil an Pufferkomponenten zur Ausbildung massiverer Trocknungsrückstände (max. 5 μm Dicke) bei. Dennoch traten erst bei der NADH:Q Oxidoreduktase (Komplex I) deutliche, reproduzierbare Minderbefunde bei der Schwefelbestimmung im Verlauf der Konzentrationsreihe auf. Anhand der topologischen Untersuchungen ließen sich hier für die Minderbefunde Schichtdickeneinflüsse und eine damit verbundene Absorption der emittierten Fluoreszenzstrahlung verantwortlich machen. Der Einsatz von sogenannten Filmbildnern zur Minimierung der Schichtdicken von Trocknungsrückständen und der damit verbundenen besseren Elementwiederfindungen brachte dagegen keine deutlichen und reproduzierbaren Verbesserungen, insbesondere nicht für den Schwefel. Eine Erhöhung der Anregungseffizienz durch die Verwendung einer Cr-Kα-Strahlung zeigte in den untersuchten Proben (wässrige Matrix/Enzymmatrix: DFPase) keine deutlichen Vorteile in der Bestimmung des leichten Elementes. Die beiden, in herkömmlichen Spektrometern zur Verfügung stehenden, AnregungsmodenW-Lα und Mo-Kα, sind für die Anlayse von Enzymproben und einer vergleichenden Bestimmung der Enzymkonzentration gut geeignet. Dies zeigten auch Vergleiche mit den biochemisch bestimmten Protein- bzw. Enzymkonzentrationen. Kritische Schichtdicken im Rahmen von Schwefel-Bestimmungen wurden für die verwendeten Anregungsmoden auf etwa 20 μm (Mo-Kα), 3 μm (W-Lα) und rund 2 μm (Cr-Kα) kalkuliert. Eine Beeinträchtigung der Zuverlässigkeit der TXRF-Messungen für die höheren Elemente durch die Matrixbestandteile konnte nicht festgestellt werden. Somit wird in den meisten Fällen die einfache Probenpräparation auf hydrophoben oder hydrophilen (siliconisierten/unsiliconisierten) Probenträgern, ohne die Notwendigkeit eines Verfahrens zur vorherigen Matrixabtrennung, möglich sein. Jedoch muss bei allen künftig zu untersuchenden Protein- oder Enzymproben mit hohen Matrixanteilen mit dem Auftreten von Schichtdickeneffekten und damit verbundenen Absorptionseffekten von leichten Elementen (Schwefel, Phosphor) gerechnet werden. Die in der Arbeit vorgestellten, unterschiedlichen Projekte zeigen deutlich das Potential der TXRF als eine Standardmethode auf diesem Anwendungsgebiet.
Als Ergebnisse der vorliegenden Arbeit kann man folgendes festhalten: • Die zuverlässige Bestimmung der leichten Elemente Phosphor und Schwefel mit TXRF ist im Konzentrationsbereich 30 mg/l bis 0,1 mg/l (600 ng bis 2 ng) grundsätzlich möglich. • Die Bestimmung von Schwefel in Proben, die dazu tendieren dicke, dichte Probenrückstände zu bilden (z.B. Alkalimetallsulfate) erfordert eine spezielle Probenpräparation. Hier können durch den Einsatz von geeigneten Glättungsmitteln gute Ergebnisse erzielt werden. • Für die Detektion von Phosphor ist die Verwendung von Saphirprobenträgern notwendig, da die Lage der Absorptionskante von Silizium, als Hauptbestandteil der üblicherweise verwendeten Quarzglasprobenträger, diese negativ beeinflußt. • Für Schwefelkonzentrationen ≤ 0,5 mg/l (≤ 10 ng) sollte mit dem dünnen Filter (Filter 1) gemessen werden. • Die berechneten Erfassungsgrenzen liegen für Schwefel, je nach Zusammensetzung der Probe, bei 0,29 bis 0,76 ng. Für Phosphor erhält man in anorganischen Proben auf Saphirträgern 0,34 ng und bei biologischen Proben 0,70 ng. Die erhaltenen Ergebnisse zeigen klar, daß die zuverlässige Bestimmung der Elemente Phosphor und Schwefel mit TXRF möglich ist. Die Möglichkeit diese leichten Elemente zu bestimmen, eröffnet der TXRF verschiedene neue Forschungsgebiete, wie beispielsweise Biologie und Biochemie. Durch den großen Vorteil der TXRF, der geringen Probenverbrauch kombiniert mit niedrigen Nachweisgrenzen, sind Screening von Proteinen, Enzymen oder auch von anderen Makromolekülen die Phosphor und Schwefel enthalten, möglich. Hier können Strukturfragen oder Mutagenese Schritte in Proteinen, Enzymen und Nucleinsäuren geklärt werden. Eine weitere Anwendung der TXRF ist die quantitative Proteinbestimmung. Die genaue Schwefelbestimmung macht es möglich ältere Methoden wie beispielsweise die Bestimmung nach Lowry zu ersetzen. Durch Kombination der TXRF mit weiteren analytischen Methoden (z.B. AAS) und oberflächenabbildenden Methoden (z.B. REM oder AFM) kann die Probenvorbereitung verbessert werden und somit die TXRF für weitere Gebiete der Elementanalytik in Zukunft als zuverlässige Standardmethode etabliert werden.
Survivin wird in einer Vielzahl von Tumoren überexprimiert, während es in normalem Gewebe bis auf einige Ausnahmen kaum detektierbar ist. In den Krebszellen vermittelt Survivin eine erhöhte Resistenz gegenüber der Apoptose-Induktion, was eine Therapie jedoch meist bezweckt. Durch sein differenzielles Expressionsprofil wird Survivin mittlerweile als ein interessanter Angriffspunkt in der Entwicklung einer neuen, zielgerichteten Behandlung von Krebs betrachtet. Aus diesem Grund wurde zu Beginn der vorliegenden Arbeit die Eignung des anti-apoptotischen und Zellzyklus-regulierenden Proteins Survivin als Zielstruktur für eine Krebstherapie im Vergleich zu den veröffentlichten Publikationen verifiziert. Die Analyse der Survivin-Expression in unterschiedlichen Zelllinien ergab, dass sich in Tumorzellen eine charakteristische Überexpression des Survivin-Proteins zeigte im Vergleich zu gesunden, nicht-transformierten Zelllinien. Eine Inhibition der Survivin-Proteinexpression wurde mittels der Methode der RNA-Interferenz erzielt, bei der die Zielzellen mit shRNA-kodierenden Lentiviren infiziert wurden, welche eine gegen die Survivin-mRNA gerichtete Sequenz beinhalteten. Während Survivin-positive Tumorzelllinien und gesunde Endothelzellen eine starke Reduktion in der Lebend-Zellzahl in vitro aufwiesen, waren die Survivin-negativen Kontrollzelllinien von einem Verlust der Survivin-Expression nicht beeinträchtigt. Anschließend erfolgten eine Analyse der Survivin-Abhängigkeit etablierter Tumorzelllinien und die Untersuchung eines Survivin-Verlusts auf die murine Brustdrüsenentwicklung in vivo. Bei einer Inhibition der Survivin-Expression in Krebszellen in einem Transplanationsmodell konnte ein deutlich verzögertes Tumorwachstum beobachtet werden. Dagegen hatte Survivin in der Entwicklung der murinen Brustdrüse keinen Einfluss auf die Rekonstitution des Gewebes und die Proliferation bzw. Differenzierung der Brustepithelzellen. Um einen direkten protein-basierenden Inhibitor des Survivin-Proteins zu entwickeln und das Repertoire an allgemeinen Survivin-Interventionsstrategien zu erweitern, wurde im zweiten Teil der Arbeit mittels des Hefe-Zwei-Hybrid-Systems ein neues Survivin-bindendes Protein isoliert. Nach dem Optimierungsprozess bestehend aus einer Fusion mit einem Trägerprotein zur erleichterten Proteinexpression, der Mutagenese eines Cysteins gegen Serin und der Fusion mit einer Proteintransduktionsdomäne konnte das Protein rekombinant in Bakterien hergestellt und durch Affinitätschromatographie in monomerer Form aufgereinigt werden. Anschließend wurde der Einfluss des artifiziellen, rekombinanten Survivin-inhibierenden Proteins (rSip) auf die Funktionen von Survivin bestimmt. rSip zeigte eine Stabilität von bis zu 14 Stunden im Zellkulturmedium und konnte durch seine C-terminale Proteintransduktionsdomäne in das Zytoplasma der Zielzellen aufgenommen werden. In einer Co-Immunpäzipitation konnte die Bindung von rSip an endogenes Survivin bestätigt werden. In Brustkrebszellen führte rSip in einer Konzentration von 1,5 µM zu einem schnellen Verlust des Survivin-Proteins, was möglicherweise auf eine proteosomale Degradation von Survivin zurückzuführen war. Die Analyse der Konsequenzen einer rSip-Behandlung auf die Funktionen von Survivin in der Apoptose-Inhibition und der Zellzyklus-Progression wurde im letzten Abschnitt der Arbeit durchgeführt. Eine viertägige Inkubation mit 1,5 µM rSip bewirkte eine deutliche Reduktion der Lebend-Zellzahl von bis zu 50% im Falle der Survivin-abhängigen Krebszelllinien. Bei den Survivin-negativen Zelllinien trat dagegen kein veränderter Phänotyp auf. Durch einen TUNEL-Test in Brustkrebszellen konnte gezeigt werden, dass die Ursache für die Abnahme der Zellzahl die Apoptose-Induktion durch rSip ist. In den Zellzyklus-Profilen von rSip-behandelten Krebszellen konnte ebenfalls ein starker Anstieg in der apoptotischen Zell-Population beobachtet werden. Abschließend lässt sich sagen, dass in der vorliegenden Arbeit neben der Methode der lentiviralen Applikation von Survivin-spezifischen shRNA-Sequenzen eine neue Möglichkeit der Interferenz mit der Survivin-Funktion in Krebszellen vorgestellt wurde. Die Entwicklung des Survivin-inhibierenden Proteins rSip steht zugegebenermaßen erst am Anfang. Die ersten hier präsentierten Ergebnisse zeigen jedoch klar ein Potential dieses vielversprechenden direkten Survivin-Inhibitors als ergänzende Wirkstoffklasse auf dem Gebiet der therapeutischen Proteine zu den bereits existierenden niedermolekularen Substanzen bzw. antisense-Oligonukleotiden, die auf Ebene der Transkription bzw. der Translation von Survivin wirken.
In jüngster Zeit werden vom humanen Immundefizienzvirus-1-abgeleitete lentivirale Vektoren auch in der Gentherapie eingesetzt. Obwohl diese Vektoren nicht-mitotische Zellen transduzieren können, sind sie für einen Gentransfer in primäre ruhende Zellen oft nicht geeignet. In der Abteilung „Medizinische Biotechnologie“ des Paul-Ehrlich-Insituts wurde ein vom simianen Immundefizienzvirus SIVsmmPBj-abgeleiteter lentiviraler Vektor entwickelt, welcher im Gegensatz zu HIV-1-abgeleiteten Vektoren effizient in der G0-Phase des Zellzyklus arretierte humane Fibroblasten und humane primäre Monozyten transduzieren kann (Mühlebach et al., 2005). Im dieser Arbeit wurde das Potenzial dieses neuen Vektors für mögliche Anwendungen in der Gentherapie untersucht, indem seine Transduktionsfähigkeit für weitere primäre Zellen bestimmt wurde. Dabei waren humane hämatopoetische Stammzellen von besonderem Interesse, da sie die Vorläuferzellen aller Zellen des Blutes sind und die Eigenschaft zur Selbsterneuerung besitzen. Die Effizienz des Gentransfers in unstimulierten Stammzellen mit dem SIVsmmPBj-Vektor war jedoch nicht höher als mit anderen lentiviralen Vektoren. Interessanterweise konnte aber ein Einfluss der lentiviralen Vektoren auf das in vitro-Differenzierungspotenzial der transduzierten Stammzellen in die verschiedenen Vorläuferzellen beobachtet werden: Nach Transduktion mit dem SIVsmmPBj- und einem HIV-2-abgeleiteten Vektor differenzierten die Stammzellen bevorzugt in granulozytäre Vorläuferzellen, während die Transduktion mit einem HIV-1-abgeleiteten Vektor die Anzahl aller Vorläuferzellen deutlich reduzierte und insbesonders die Differenzierung in Makrophagenvorläuferzellen verminderte. Zur Untersuchung ihres Differenzierungs-potenzials in vivo wurden transduzierte hämatopoetische Stammzellen zur Repopulierung des Knochenmarks von NOD/SCID-Mäusen eingesetzt. Hierbei wurde jedoch kein Einfluss der verschiedenen lentiviralen Vektoren auf die Differenzierung der Stammzellen beobachtet. Allerdings konnte nur in einem sehr geringen Anteil der transplantierten Zellen eine Expression des übertragenen Gens nachgewiesen werden, so dass nicht ausgeschlossen werden kann, dass die transduzierten Zellen die Fähigkeit zur Repopulierung verloren hatten. Insgesamt ist jedoch zu sagen, dass entgegen der Erwartungen der neue Vektor keinen Vorteil gegenüber HIV-1-Vektoren zur Transduktion von hämatopoetischen Stammzellen aufweist. Weiter wurde die Transduktionsfähigkeit des SIVsmmPBj-Vekors für humanen B-Lymphozyten, Makrophagen und dendritische Zellen untersucht. Auf ruhenden B-Lymphozyten besaß der SIVsmmPBj-Vektor keinen Transduktionsvorteil gegenüber einem HIV-1-abgeleiteten Vektor, während Makrophagen und dendritische Zellen mit signifikant höherer Effizienz transduziert werden konnten. Die hohe Transduktionseffizienz des SIVsmmPBj-Vektors für Monozyten und dendritische Zellen eröffnet die Möglichkeit einer Anwendung in der Immuntherapie, da dendritische Zellen die professionellsten und effektivsten Antigen-präsentierenden Zellen sind. Daher wurde die generelle Eignung des SIVsmmPBj-Vektors für immuntherapeutische Anwendungen untersucht. Ein Tumor-assoziiertes Antigen (Mart-1) wurde in Monozyten übertragen und die transduzierten Zellen zu reifen dendritischen Zellen maturiert. Diese Zellen besaßen die Fähigkeit, Antigen-spezifische zytotoxische T-Zellen zu generieren, deren Funktion durch Sekretion von Zytokinen, in Einzelfällen auch durch spezifische Lyse von Mart-exprimierenden Tumorzellen nachgewiesen wurde. Weiterhin wurde gezeigt, dass nach Transduktion von Monozyten und deren Differenzierung zu Makrophagen auch diese prinzipiell in der Lage sind, Antigen-spezifische zytotoxische T-Zellen zu generieren. Obwohl hier keine vergleichenden Untersuchungen zur Effizienz des T-Zell-Primings durchgeführt werden konnten, ist die prinzipielle Eignung des SIVsmmPBj-abgeleiteten Vektors für eine Immuntherapie damit nachgewiesen. Schließlich wurde untersucht, ob die Maus oder nicht-menschliche Primaten als Tiermodelle für eine mögliche Weiterentwicklung des Vektors in Frage kommen. Murine Monozyten konnten jedoch nicht effizient transduziert werden. Hingegen erwies sich der SIVsmmPBj-Vektor als gut geeignet zur Transduktion von simianen Monozyten, so dass ein Affenmodell für Anwendungen des SIVsmmPBj-Vektors, wie beispielsweise zur Tumor-Immuntherapie oder für Vakzinierungsstudien, in Frage kommt.
In Nervensystemen werden zahlreiche Informationen wahrgenommen und verarbeitet um ein adäquates Verhalten hervorzurufen. Für die Untersuchung der funktionellen Zusammenhänge hierbei wurden verschiedene Methoden entwickelt, die eine gezielte Manipulation neuronaler Prozesse ermöglichen. Durch Analyse der resultierenden Effekte können dabei synaptische Proteine, einzelne Neuronen oder neuronale Netzwerke funktionell charakterisiert werden. Bisherige Ansätze verfügen jedoch nur über eine geringe zeitliche und räumliche Auflösung oder erlauben lediglich eine eingeschränkte Anwendung im frei beweglichen Tier.
Diese Nachteile können durch die heterologe Expression von lichtgesteuerten, mikrobiellen Rhodopsinen zur gezielten Manipulation des Membranpotentials umgangen werden. So induziert die Photoaktivierung des Kationenkanals Channelrhodopsin 2 (ChR2; (Nagel et al., Curr Biol 2005)) eine Depolarisation, während die Chloridpumpe Halorhodopsin (NpHR; (Zhang et al., Nature 2007)) für die Hyperpolarisation verwendet werden kann. Dabei ermöglichen die schnellen Kinetiken der Rhodopsine eine zeitlich präzise Steuerung des Membranpotentials. Durch Auswahl geeigneter Promotoren ist zudem oftmals eine zell spezifische Expression möglich. Dieser Ansatz wird daher allgemein als Optogenetik bezeichnet.
In der vorliegenden Arbeit wurden zunächst konventionelle Techniken genutzt, um die Funktion von zwei assoziierten Proteinen eines Acetylcholin Rezeptors in C. elegans zu untersuchen. Des Weiteren wurden verschiedene Methoden für den Fadenwurm entwickelt und angewendet, die die Vorteile optogenetischer Techniken für die funktionelle Charakterisierung synaptischer Proteine und neuronaler Netzwerke nutzbar machen. Hierbei erlaubt die Transparenz von C. elegans die optogenetische Stimulation im lebenden Organismus unter nicht invasiven Bedingungen. Weitere Vorteile von C. elegans als neurobiologischem Modellorganismus liegen in seiner einfachen Handhabung (Hope, 1999) und der stereotypen Entwicklung seines Nervensystems mit bekannten anatomischen Ausprägungen (Sulston and Horvitz, Dev Biol 1977; Varshney et al., PLoS Comput Biol 2011; White et al., Philos Trans R Soc Lond B Biol Sci 1986). Durch ihre Häufigkeit und die experimentelle Zugänglichkeit wird hierbei die neuromuskuläre Synapse oftmals zur Erforschung der synaptischen Reizweiterleitung genutzt (Von Stetina et al., Int Rev Neurobiol 2006). Durch pharmakologische (Lewis et al., Neuroscience 1980; McIntire et al., Nature 1993; Miller et al., Proc Natl Acad Sci U S A 1996; Richmond and Jorgensen, Nat Neurosci 1999) und elektrische Stimulation (Richmond and Jorgensen, Nat Neurosci 1999) können dabei Defekte der Transmission hervorgehoben werden, während Verhaltensexperimente oder elektrophysiologische Messungen der post synaptischen Ströme in Muskelzellen eine quantitative Analyse ermöglichen (Richmond and Jorgensen, Nat Neurosci 1999).
Diese Methoden wurden für die funktionelle Charakterisierung von NRA 2 und NRA 4 verwendet, die beide als akzessorische Proteine zusammen mit dem Levamisol sensitiven Acetylcholin Rezeptor der Körperwandmuskelzellen aufgereinigt wurden (Gottschalk et al., EMBO J 2005). Dabei konnte gezeigt werden, dass NRA 2 und NRA 4 im Endoplasmatischen Retikulum (ER) der Muskelzellen einen Komplex bilden, der die Sensitivität von beiden nikotinischen Acetylcholin Rezeptoren gegenüber verschiedenen cholinergen Agonisten verändert. In diesem Zusammenhang wurde auch nachgewiesen, dass die Oberflächenexpression einzelner Untereinheiten der beiden Rezeptoren durch NRA 2/4 beeinflusst wird. Diese Resultate legen die Vermutung nahe, dass beide Proteine die Zusammensetzung der Rezeptoren und somit ihre pharmakologischen Eigenschaften modulieren. Denkbar ist dabei eine regulatorische Funktion bei der Assemblierung verschiedener Untereinheiten zu einem funktionellen Rezeptor oder bei der Kontrolle des ER Austritts von Rezeptoren mit bestimmter Zusammensetzung. In dieser Hinsicht konnte jedoch keine Interaktion von NRA 2/4 mit der Notch Signalkaskade nachgewiesen werden, wie sie für die homologen Proteine nicalin und NOMO in Vertebraten gezeigt wurde (Haffner et al., J Biol Chem 2007; Haffner et al., EMBO J 2004).
Für die Untersuchung synaptischer Proteine durch optogenetische Techniken wurde ChR2(H134R) selektiv in cholinergen oder GABAergen Motorneuronen exprimiert, um die akute und lichtgesteuerte Freisetzung des jeweiligen Neurotransmitters zu ermöglichen. Die resultierende Stimulation bzw. Inhibition von Muskelzellen wurde hierbei durch elektrophysiologische Messungen der post synaptischen Ströme und durch Analyse von Kontraktionen respektive Relaxationen untersucht. Dabei wurde gezeigt, dass Störungen der synaptischen Reizweiterleitung die Ausprägung und Dynamik dieser lichtinduzierten Effekte beeinflussen und dadurch charakterisiert werden können. So zeigten beispielsweise Mutanten von Synaptojanin und Endophilin nachlassende Effekte bei anhaltender oder wiederholter Stimulation, was durch die gestörte Regeneration synaptischer Vesikel erklärt werden kann (Harris et al., J Cell Biol 2000; Schuske et al., Neuron 2003; Verstreken et al., Neuron 2003).
Die hohe Sensitivität dieser Methode wurde im Nachfolgenden dazu verwendet, die Inhibition cholinerger Motorneuronen durch den metabotropen GABAB Rezeptor zu untersuchen, der in C. elegans aus den beiden Untereinheiten GBB 1 und GBB 2 gebildet wird (Dittman and Kaplan, J Neurosci 2008; Vashlishan et al., Neuron 2008). Dabei konnte zunächst gezeigt werden, dass diese heterosynaptische Inhibition verschiedene lokomotorische Verhaltensweisen der Tiere beeinflusst. Für die mechanistische Untersuchung wurden anschließend cholinerge Motorneuronen durch ChR2(H134R) photoaktiviert, während resultierende Kontraktionseffekte in Abhängigkeit von GBB 1/2 analysiert wurden. Um hierbei die Funktion von GBB 1/2 durch erhöhte GABA Konzentrationen hervorzuheben, wurden zusätzlich GABAerge Motorneuronen optogenetisch stimuliert oder die Wiederaufnahme von GABA aus dem synaptischen Spalt durch Mutation des Membran ständigen GABA Transporters blockiert. So konnte gezeigt werden, dass GBB 1/2 eine akute Inhibition der cholinergen Motorneuronen bewirken, was vermutlich für die Regulation von Bewegungsabläufen eine wichtige Rolle spielt. Die geringe Dynamik der GBB 1/2 induzierten Effekte deutet allerdings darauf hin, dass die synaptische Aktivität durch den metabotropen Rezeptor kaum nachhaltig moduliert wird.
In nachfolgenden Versuchen wurde die optogenetische Stimulation von Motorneuronen außerdem mit der elektronenmikroskopischen Analyse der präsynaptischen Feinstruktur kombiniert. Dadurch konnte die Dynamik der Exozytose und Endozytose synaptischer Vesikel (SV) in Abhängigkeit von neuronaler Aktivität untersucht werden. So wurde gezeigt, dass synaptische Vesikel nahe der aktiven Zone während einer 30 sekündigen Hyperstimulation nahezu komplett aufgebraucht waren. Die vollständige Regeneration der SV Pools benötigte anschließend etwa 12 Sekunden und erfolgte zunächst in der Peripherie der aktiven Zone, was auf eine laterale Heranführung der Vesikel schließen lässt. Nach etwa 20 Sekunden erholte sich ebenfalls die Wirksamkeit der Stimulation von Muskelzellen durch die Motorneuronen, was durch elektrophysiologische Messungen der photo induzierten post synaptischen Ströme gezeigt wurde. Während der Hyperstimulation bildeten sich außerdem große vesikuläre Strukturen, die sich anschließend nach etwa acht Sekunden wieder aufgelöst hatten. In Analogie zu vergleichbaren Experimenten in anderen Organismen liegt die Vermutung nahe, dass es sich dabei um Zwischenprodukte der so genannten Bulk Phase Endozytose handelt, die das Clathrin abhängige Recycling von synaptischen Vesikeln bei starker neuronaler Aktivität ergänzt (Heuser and Reese, J Cell Biol 1973; Miller and Heuser, J Cell Biol 1984; Richards et al., Neuron 2000). Bemerkenswerterweise war der Abbau der vesikulären Strukturen in Synaptojanin und Endophilin defizienten Tieren stark verzögert. Denkbar ist, dass beide Proteine für die Synthese von synaptischen Vesikeln aus den vesikulären Zwischenprodukten der Bulk Phase Endozytose wichtig sind, analog zur ihrer Funktion bei der Clathrin abhängigen Endozytose an der Plasmamembran.
Durch die zielgerichtete Manipulation der Zellaktivität ermöglichen optogenetische Techniken außerdem die funktionelle Charakterisierung von Neuronen und neuronalen Netzwerken. Um die zelluläre Spezifität dieses Ansatzes zu erhöhen, wurde ein Tracking System entwickelt das die Position frei beweglicher Tiere in Echtzeit bestimmt und nachverfolgt. Dadurch konnte die Photoaktivierung optogenetischer Proteine auf definierte Bereiche der Fadenwürmer und somit auf ausgewählte Neuronen innerhalb der Expressionsmuster von verwendeten Promotoren eingeschränkt werden. Des Weiteren ermöglichte hierbei die Auswertung translatorischer Parameter die Analyse verschiedener lokomotorischer Merkmale wie Geschwindigkeit, Bewegungsbahn oder Ausprägung der Körperbiegungen. Dieses System wurde beispielhaft für die konzertierte Photoaktivierung durch ChR2(H134R) bzw. Photoinhibition durch MAC von zwei verschiedenen Gruppen von Neuronen angewendet, um die Integration mechanosensorischer Informationen durch Command Interneuronen zu untersuchen. In diesem Zusammenhang wurde zudem eine Rekombinase basierte Methode für optogenetische Proteine adaptiert, die die Transkription auf die zelluläre Schnittmenge von zwei verschiedenen Promotoren einschränkt und somit die Spezifität der Expression erhöht. Idealerweise kann dieser Ansatz außerdem mit der gezielten Photoaktivierung kombiniert werden, um die zelluläre Selektivität optogenetischer Anwendungen weiter zu verbessern.
Weiterhin ist die Anwendung optogenetischer Techniken bisher durch intrinsische Eigenschaften der verwendeten Rhodopsine auf die relativ kurzzeitige Manipulation des Membranpotentials von Zellen beschränkt. So benötigt ChR2 durch die schnelle Schließung seines offenen Kanals eine kontinuierliche Photoaktivierung, um eine andauernde Depolarisation hervorzurufen. Dies ist jedoch potentiell mit phototoxischen und – besonders bei C. elegans – phototaktischen Nebeneffekten verbunden. Deswegen wurden diverse Mutanten von ChR2 mit stark verlangsamter Inaktivierung (Berndt et al., Nat Neurosci 2009) für ihren Nutzen zur Langzeit Stimulation von erregbaren Zellen im Nematode getestet. Dabei wurde gezeigt, dass ChR2(C128S) durch einen kurzen Photostimulus mit vergleichsweise niedriger Intensität eine anhaltende Depolarisation über mehrere Minuten auslösen kann. Die wiederholte Stimulation in ASJ Neuronen ermöglichte zudem eine langzeitige Depolarisation über mehrere Tage, wodurch die genetisch veranlagte Entwicklung von Tieren manipuliert werden konnte. Durch gezielte Punktmutation konnten außerdem relevante Eigenschaften von ChR2(C128S) für die Langzeit Stimulation weiter verbessert werden.
Als weiteres optogenetisches Werkzeug wurde zudem die Photoaktivierbare Adenylatzyklase alpha (PACa) aus Euglena gracilis (Iseki et al., Nature 2002; Ntefidou et al., Plant Physiol 2003; Schroder-Lang et al., Nat Methods 2007) für die akute und lichtgetriebene Synthese des sekundären Botenstoffs cAMP in C. elegans etabliert. Die Photoaktivierung von PACa in cholinergen Motorneuronen verstärkte dabei die Neurotransmitterfreisetzung und induzierte hyperlokomotorische Phänotypen, vergleichbar zu Mutanten mit erhöhten cAMP Konzentrationen.
Zusammengefasst wurden diverse optogenetische Techniken für C. elegans entwickelt und optimiert, die die zellspezifische und nicht invasive Manipulation des Membranpotentials beziehungsweise die Synthese des sekundären Botenstoffs cAMP durch Licht im frei beweglichen Tier ermöglichen. Diese Methoden können zur gezielten Störung neuronaler Aktivität angewendet werden, um dadurch neurobiologische Fragestellungen im Fadenwurm zu untersuchen. Dies wurde beispielhaft für die Erforschung der synaptischen Reizweiterleitung und die funktionelle Analyse neuronaler Netzwerke demonstriert. Denkbar ist außerdem, diese für C. elegans etablierten Methoden vergleichbar in anderen Modellorganismen anzuwenden. So sind die Fruchtfliege ebenso wie der Zebrafisch Embryo bereits für optogenetische Techniken erprobt (Arrenberg et al., Proc Natl Acad Sci U S A 2009; Schroll et al., Curr Biol 2006). Für Säugetiere wie die Maus, die Ratte und den Makaken wurden zudem bereits Ansätze entwickelt, die die gezielte Photostimulation in lebenden und frei beweglichen Tieren ermöglichen (Han et al., Neuron 2009; Wentz et al., J Neural Eng 2011; Yizhar et al., Nature 2011; Zhang et al., Nat Rev Neurosci 2007).
Tumorerkrankungen, insbesondere solche im metastasierenden Stadium, erfordern effiziente Therapien. Krebstherapien wie Bestrahlung oder Chemotherapie wirken über die Induktion von Apoptose. Resistenz gegen diese Behandlungsansätze geht einher mit der Blockierung relevanter apoptotischer Signalwege. Dennoch haben Tumorzellen nicht grundsätzlich die Fähigkeit verloren, apoptotischen Zelltod zu sterben, d. h. mit einem geeigneten Stimulus kann in jeder Tumorzelle Apoptose induziert werden. In dieser Arbeit wurden Proteine entwickelt, die Enzyme apoptotischer Signalkaskaden selektiv in Tumorzellen einschleusen. Um Spezifität für transformierte Zellen zu erlangen, wurden diese Proteine mit Zellbindungsdomänen gekoppelt, die an tumorassoziierte Antigene binden. Als Zielstrukturen auf der Oberfläche von Krebszellen dienten die Rezeptoren der ErbB Familie „epidermal growth factor receptor“ (EGFR) und ErbB2. Überexpression dieser Rezeptoren wird auf einer Vielzahl von Tumoren epithelialen Ursprungs beobachtet und ist ursächlich beteiligt an der malignen Transformation. Als Apoptoseinduktoren wurden die Serinprotease Granzym B (GrB) sowie das Protein „apoptosis inducing factor“ (AIF) eingesetzt. GrB induziert Apoptose durch direkte Aktivierung von Caspasen und Spaltung zentraler Caspasen-Substrate. Damit greift die Protease am unteren Effektorende apoptotischer Signalwege ein und umgeht so die meisten Resistenzmechanismen transformierter Zellen. Um GrB in Tumorzellen einzuschleusen, wurde die Protease mit dem ErbB2 spezifischen Antikörperfragment scFv(FRP5) gekoppelt. Zunächst wurde eine biotinylierte Variante der Protease (bGrB) über die hochaffine Streptavidin/ Biotin Interaktion mit einem Fusionsprotein komplexiert, das aus dem scFv(FRP5) und Streptavidin besteht (SA-5). Komplexe aus enzymatisch aktivem bGrB und SA-5 wiesen selektive cytotoxische Aktivität gegenüber ErbB2 exprimierenden Zellen auf, die allerdings von der Präsenz des endosomolytischen Reagenz Chloroquin abhing. Dies zeigt die Notwendigkeit einer Translokation vom endosomalen Kompartiment, um internalisiertem GrB Zugang zu seinen cytosolischen Substraten zu ermöglichen. Aufbauend auf diesen Ergebnissen, die grundsätzlich nachweisen, daß das Einbringen von GrB in Tumorzellen ausreichend ist, um in diesen Zellen Apoptose zu induzieren, wurden Fusionsproteine abgeleitet, in denen GrB direkt mit Zellbindungsdomänen fusioniert ist. Neben dem scFv(FRP5) wurde auch der EGFR-Ligand TGFalpha eingesetzt. Fusionsproteine bestehend aus reifem GrB und scFv(FRP5) (GrB-5) bzw. TGFalpha (GrB-T) wurden in der Hefe Pichia pastoris exprimiert und mit hohen Ausbeuten gereinigt. GrB-5 und GrB-T zeigten enzymatische Aktivität und wiesen Affinität zu ErbB2 bzw. EGFR auf. In Gegenwart von Chloroquin zeigten GrB-5 und GrB-T selektive cytotoxische Aktivität gegenüber Zellen, die den jeweiligen Zielrezeptor exprimieren. Die IC50 Werte der Proteine lagen im pico- bis nanomolaren Bereich und sind damit vergleichbar mit denen rekombinanter Immun- bzw. Wachstumsfaktortoxine, die Exotoxin A (ETA) aus Pseudomonas aeruginosa als Effektor nutzen. Induktion von Apoptose erfolgte durch GrB-5 und GrB-T allerdings deutlich schneller (3 h) als durch ETA Fusionsproteine (72 h), da GrB im Gegensatz zu ETA direkt in apoptotische Signalkaskaden eingreift. Um die weitere Charakterisierung von GrB-5 und GrB-T zu erleichtern, wurden in der vorliegenden Arbeit Möglichkeiten für eine Optimierung der Expression dieser Fusionsproteine in Hefe untersucht. Dazu wurde eine Strategie entwickelt, die auf der Beobachtung beruht, daß die Löslichkeit und Stabilität von Proteinen durch Fusion mit solchen Domänen erhöht werden kann, die selbst eine hohe Löslichkeit und Stabilität besitzen. Ein Protein mit diesen Eigenschaften ist das Maltose Bindungsprotein (MBP) aus E. coli. In dieser Arbeit wurde MBP bei der Expression rekombinanter Proteine in P. pastoris eingesetzt, um die Ausbeute löslicher Proteine zu steigern. Es wurde eine Strategie entwickelt, die es erlaubt, MBP posttranslational in vivo vom Fusionspartner zu trennen. Hierzu wurde eine Erkennungssequenz der Protease Furin (furS) zwischen MBP und Fusionspartner eingefügt. Zunächst wurde untersucht, ob GrB als MBP Fusionsprotein in enzymatisch aktiver Form exprimiert werden kann, was eine Grundvoraussetzung für die Expression tumorspezifischer GrB Fusionsproteine in diesem System darstellt. Die Ausbeute von GrB konnte durch diese Strategie erheblich gesteigert werden. Daneben war eine vollständige Prozessierung der Fusionsproteine innerhalb der Furin-Erkennungssequenz nachweisbar. Als MBP Fusionsprotein exprimiertes GrB wies allerdings keine enzymatische Aktivität auf. Weitere Untersuchungen zeigten, daß das terminale Serin der furS-Sequenz, das nach Spaltung durch Furin am N-Terminus von GrB zurückbleibt, die enzymatische Aktivität der Serinprotease inhibiert. Im Rahmen dieser Arbeit wurde daher nicht weiter versucht, die Ausbeute an tumorspezifischen GrB Fusionsproteinen durch Fusion mit löslichen Proteindomänen zu erhöhen. Für Proteine, die ein N-terminales Serin tolerieren, stellt das hier entwickelte System allerdings eine neuartige Strategie dar, um die Ausbeute in P. pastoris um ein Vielfaches zu steigern. Dies wurde anhand von rekombinantem ErbB2 als Modellprotein bestätigt. Als alternativer Effektor in tumorspezifischen Fusionsproteinen wurde AIF als caspasenunabhängig agierendes proapoptotisches Signalmolekül eingesetzt. In apoptotischen Zellen bewirkt die Freisetzung von AIF aus dem mitochondrialen Intermembranraum die nachfolgende Translokation des Proteins in den Zellkern, woraufhin DNA-Fragmentierung induziert wird. Zum Einschleusen von AIF in Tumorzellen wurde das Flavoprotein mit dem scFv(FRP5) fusioniert (5-AIF). Um eine cytosolische Translokation von AIF zu erreichen, wurde ein Konstrukt abgeleitet, das zusätzlich die Translokationsdomäne von Exotoxin A enthält (5-E-AIF). Diese Domäne ist beim Wildtyp-Toxin notwendig für dessen retrograden Transport vom Endosom über den Golgi Apparat und das ER in das Cytosol. Innerhalb der Translokationsdomäne findet zudem eine Prozessierung durch die endosomale Protease Furin statt. AIF Fusionsproteine wurden in E. coli exprimiert, gereinigt und renaturiert. Die Proteine wiesen Affinität für ErbB2 auf und interagierten mit DNA, eine Eigenschaft, die essentiell für die proapoptotische Aktivität von AIF ist. 5-E-AIF zeigte gegenüber ErbB2 exprimierenden Zellen cytotoxische Aktivität, die vergleichbar mit der des Immuntoxins scFv(FRP5)-ETA war. Diese Aktivität war allerdings nur in Gegenwart von Chloroquin gegeben. Das Protein 5-AIF, in dem die Translokationsdomäne fehlt, zeigte auch in Kombination mit Chloroquin keine Cytotoxizität. Eine mögliche Folgerung hieraus ist, daß die N-terminale Antikörperdomäne der Fusionsproteine die proapoptotische Aktivität der AIF Domäne blockiert. 5-E-A wird sehr wahrscheinlich durch die endosomale Protease Furin „aktiviert“, die den scFv(FRP5) durch proteolytische Spaltung innerhalb der ETA-Domäne entfernt haben könnte. Für die eigentliche Translokation reicht der ETA-Anteil allerdings nicht aus, wahrscheinlich, weil in dem hier abgeleiteten Konstrukt ein für die Funktionsweise des Wildtyp-Toxins essentielles ER Retentionssignal fehlte. Die Ergebnisse dieser Arbeit zeigen, daß durch Einsatz apoptotischer Signalmoleküle in tumorzellspezifischen Fusionsproteinen hohe und selektive cytotoxische Aktivitäten erzielt werden können. Eine weitere Entwicklung dieser Proteine als mögliche Tumortherapeutika erscheint daher sinnvoll.
In dieser Arbeit sollte die Bindung von Tetrahydromethanopterinderivaten an zwei Enzyme des methanogenen, CO2-reduzierenden Energiestoffwechselweges strukturell charakterisiert werden. In jenem Stoffwechselweg verläuft die schrittweise Reduktion von CO2 über die Bindung an den C1-Carrier Tetrahydromethanopterin (H4MPT), ein Tetrahydrofolat-Analogon, welches unter anderem in methanogenen Archaeen zu finden ist. Die thermophilen bzw. hyperthermophilen Ursprungsorganismen der untersuchten Enzyme, Methanothermobacter marburgensis, Methanocaldococcus jannaschii und Methanopyrus kandleri, sind aufgrund ihrer Anpassung an extreme Habitate durch spezielle genomische, strukturelle und enzymatische Eigenschaften von strukturbiologischem Interesse. Beim ersten in dieser Arbeit untersuchten Enzym handelte es sich um den aus acht Untereinheiten bestehenden membrangebundenen N5-Methyl-H4MPT:Coenzym M-Methyltransferasekomplex (MtrA-H). Dieser katalysiert in einem zweistufigen Mechanismus den Methyltransfer von H4MPT zum Co(I) der prosthetischen Gruppe 5’-Hydroxybenzimidazolylcobamid (Vitamin B12a), um die Methylgruppe dann auf Coenzym M zu übertragen. Gleichzeitig findet ein der Energiekonservierung dienender vektorieller Natriumtransport über die Membran statt. Für den Mtr-Komplex aus M. marburgensis (670 kDa) lag bereits ein Protokoll zur Reinigung unter anaeroben Bedingungen vor. Dieses wurde im Rahmen dieser Arbeit verbessert, für die Isolierung und Reinigung unter aeroben Bedingungen vereinfacht und für die Erfordernisse der zur Strukturbestimmung verwendeten elektronenmikroskopischen Einzelpartikelmessung optimiert. Neben der Präparation des kompletten Komplexes MtrA-H wurde als Alternative die Präparation des Enzymkomplexes MtrA-G unter möglichst vollständiger Abtrennung der hydrophilsten Untereinheit MtrH gewählt. Mit der zu diesem Zweck entwickelten Methode konnte das Abdissoziieren von MtrH besser als im etablierten Protokoll kontrolliert und somit die Homogenität der Probe deutlich verbessert werden. Dies schafft zum einen die Vorraussetzungen für eine Kristallisation zur Röntgenstrukturanalyse, zum anderen war auch in bei der elektronenmikroskopischen Einzelpartikelmessung erkennbar, dass mit dem Mtr-Komplex ohne MtrH bessere Ergebnisse zu erzielen sind. Parallel zu den Untersuchungen am Gesamtkomplex sollten die den Cobamid-Cofaktor bindende Untereinheit MtrA sowie die H4MPT-bindende Untereinheit MtrH in für die Kristallisation und röntgenkristallographische Untersuchung ausreichender Menge und Qualität gereinigt werden. Hierfür wurden MtrA und MtrH aus oben genannten Organismen für die heterologe Expression in E. coli kloniert, die Expressionsbedingungen optimiert und Reinigungsprotokolle etabliert. Anschließend wurden die Untereinheiten umfangreichen Kristallisationsversuchen unterzogen. Die Untereinheit MtrA aus M. jannaschii konnte ohne die C-terminale Transmembranhelix als lösliches Protein in E. coli produziert und als Holoprotein bis zur Homogenität gereinigt werden. Bei M. kandleri MtrA gelang die Herstellung von geringen Mengen teilweise löslichen StrepII-Fusionsproteins ohne C-terminale Transmembranhelix in E. coli. Eine Produktion der Untereinheit MtrH in E. coli als lösliches Protein war bei keiner der in dieser Arbeit getesteten Varianten möglich. Mit dem in Einschlusskörperchen exprimierten Protein aus M. marburgensis wurde eine Reinigung und Rückfaltung versucht. Auch eine Co-Expression der Untereinheiten MtrA und MtrH, durch welche eine bessere Faltung und Löslichkeit erreicht werden sollte, war nur in Einschlusskörperchen möglich. Das zweite in dieser Arbeit untersuchte Enzym, die F420 abhängige N5,N10 Methylen-H4MPT-Dehydrogenase (Mtd), katalysiert den reversiblen, stereospezifischen Hydrid-Transfer zwischen reduziertem F420 (F420H2) und Methenyl-H4MPT+, welches hierbei zu Methylen-H4MPT reduziert wird. Die Reaktion verläuft über einen ternären Komplex bestehend aus Protein, Substrat (Methylen-H4MPT) und Cosubstrat (F420), welcher strukturell charakterisiert werden sollte. Das gereinigte, rekombinante Enzym aus M. kandleri wurde mit verschiedenen H4MPT- und F420-Derivaten co-kristallisiert, die Struktur des ternären Komplexes röntgenkristallographisch bestimmt und die Bindung von H4MPT und F420 analysiert. Methenyl-H4MPT+ und F420H2 sind in der in dieser Arbeit gelösten Kristallstruktur in katalytisch aktiver Konformation gebunden, jedoch kann bei einer Auflösung von 1,8 Å nicht beurteilt werden, ob Methylen-H4MPT und F420 oder Methenyl-H4MPT+ und F420H2 vorlagen. Ein Vergleich mit der Struktur von M. kandleri-Mtd (KMtd) ohne Substrat und Cosubstrat ergab nur äußerst geringe Abweichungen in der Proteinkonformation, sodass sich KMtd überraschenderweise als Beispiel für ein Enzym mit ungewöhnlich starrer, vorgegebener Bindetasche erwies.
Der mitochondriale Apoptose-Signalübertragungsweg spielt nicht nur bei der Death Rezeptor-induzierten Apoptose in Typ II-Zellen eine Rolle, sondern z.B. auch bei Bestrahlung und Behandlung mit Chemotherapeutika. Über Cytochrom-c Freisetzung, Apoptosombildung und Caspase-9 Aktivierung kommt es zur Spaltung und Aktivierung der Effektorcaspase-3. Die durch Bindung von dATP und zytosolischem Cyt-c induzierte Konformationsänderung von APAF-1 führt nach anschließender ATP-Hydrolyse zur Oligomerisierung von insgesamt sieben APAF-1-Molekülen unter gleichzeitiger Rekrutierung von Caspase-9 über die in beiden Molekülen vorhandene N-terminale Caspase-Rekrutierungsdomänen (CARD). Es entsteht der so genannte Apoptosomkomplex. Die autoproteolytische Prozessierung und Aktivierung von Caspase-9 mit anschließender Spaltung von Caspase-3 im Apoptosomkomplex führt zum Auslösen der apoptotischen Caspasekaskade und zur Spaltung wichtige zellulärer Substrate. Eine wichtige Rolle bei der Regulation der Apoptosom-vermittelten Caspase-9-Aktivierung spielen u.a. die Mitglieder der Bcl-2 Proteinfamilie, die IAPs und Hitzeschockproteine. Die Blockade des intrinsischen Apoptose-Signalübertragungsweges führt in Tumoren zur Resistenzentwicklung gegenüber Chemo- und Strahlentherapie. Deshalb wurde mit Hilfe des Hefe-Two-Hybrid Systems ein Screen nach neuen regulatorischen Proteinen, die an der Apoptosomkomplex-Bildung beteiligt sind, durchgeführt und dabei ein neuer APAF-1 Interaktionspartner entdeckt, den wir CABY („CED-4 and APAF-1 binding protein found in yeast“) genannt haben. CABY ist ein 160 Aminosäuren großes, pro-apoptotisches Protein, das eine so genannte DUF59 Domäne enthält, für die bisher noch keine Funktion beschrieben wurde. Es konnte nachgewiesen werden, daß CABY ein evolutionär hoch konserviertes Protein darstellt und daß die humane CABY cDNA zwei alternative Translations-Initiationsregionen enthält, die zu der Expression der CABYL bzw. der um 32 Aminosäuren verkürzten CABYS Isoformen führen. Im Rahmen dieser Arbeit sollte darüber hinaus eine detaillierte molekulare und funktionelle Analyse von CABY durchgeführt werden. Als Hilfsmittel für die molekularbiologische Analyse wurden sowohl CABY-spezifische polyklonale Antiseren als auch Hybridoma-Zelllinien hergestellt, die monoklonale anti-CABY Antikörper produzieren. Mit biochemischen Untersuchungen wie in vitro GST Pulldown und in vivo Ko-Immunpräzipitationsexperimenten, sowie durch Ko-Lokalisationsstudien mit überexprimierten und endogenen Proteinmengen konnte die Bindung von CABY an APAF-1 verifiziert werden. Mit Hilfe von APAF-1-Deletionsmutanten wurden die Aminosäuren 412-420 der zentralen Linkerdomäne als verantwortlicher Bereich für die Interaktion mit CABY identifiziert. Interessanterweise bindet CABY in vitro zusätzlich sowohl an die N-terminale CARD Domäne von APAF-1 als auch an Pro-Caspase-9. Ko-Immunpräzipitationsexperimente mit endogenen Proteinen konnten zeigen, daß CABY in gesunden Zellen nicht nur mit dem vollständigen APAF-1 Protein, sondern auch mit der verkürzten 84 kDa großen APAF-1-Isoform in einem Komplex assoziiert vorliegt. Zudem konnte nachgewiesen werden, daß CABY-Proteine homophile Interaktionen eingehen und Dimere ausbilden können. Neben den Untersuchungen zur Interaktion von CABY mit APAF-1 wurden auch funktionelle Analysen mit Hilfe dominant negativer CABY Deletionsmutanten sowie mit siRNA Zellkulturexperimenten durchgeführt, um die Bedeutung von CABY für den intrinsischen mitochondrialen Apoptose Signalübertragungsweg untersuchen zu können. Es wurde festgestellt, daß bei Überexpression von CABY die Zellen für Mitomycin C-induzierte Apoptose sensitisiert werden. Die Überexpression einer C-terminal um 20 Aminosäuren deletierten CABY Mutante wie auch der N-terminal verkürzten CABYS Isoform inhibieren jedoch Mitomycin C-induzierte Apoptose. Die Ergebnisse aus CABY siRNA-Knockdown-Experimenten lassen vermuten, daß CABY-ähnliche funktionell redundante Proteine existieren. In den mit CABY siRNA stabil transfizierten K562- und RKO-Zelllinien konnte festgestellt werden, daß der Verlust endogener CABY-Expression in diesen Zelllinien nur einen geringen Einfluss auf das Apoptoseverhalten ausübt, und zwar unabhängig von der Art des eingesetzten apoptotischen Stimulus. Einen Hinweis auf einen möglichen kompensatorischen Mechanismus liefert die Existenz des ribosomalen Proteins S28e, dessen DUF59-Domäne zu über 90% identisch ist mit der CABY-DUF59-Domäne. S28e könnte potentiell CABY-Funktionen ausüben. Ausgehend von mit der pro-apoptotischen Funktion von CABY wurde nach Tumortypen gesucht, in denen die CABY-Expression im Vergleich zum Normalgewebe signifikant herunterreguliert wird. Die Analyse endogener CABY Expressionsmengen in humanen Tumoren konnte dabei einen Verlust an CABY Expression in GIST-Tumoren nachweisen. Dieses Ergebnis weist auf eine mögliche Rolle von CABY als Tumorsuppressorprotein hin.
The N-terminal domain (matrix protein or MA) of a retroviral Gag polyprotein precursor plays a critical role in several stages of the retrovirus life cycle. MA is involved in the effective membrane targeting, assembly and release of the immature viral particles from the infected cell. In order to understand the structural basis of these functions, the full length MA from Moloney Murine Leukemia Virus (MoMuLV) was purified and the solution structure of the MA MoMuLV was determined by means of heteronuclear high-resolution NMR spectroscopy and compared with that of the X-ray diffraction analysis as well as with the structures of several MA proteins from geterologous viruses. Structural features were also obtained from CD spectroscopy, dynamic light scattering, sedimentation velocity, differential scanning calorimetry and other methods. It was found that the MA MoMuLV globular core (residues 8-98) is comprised of 7 well-defined helices (five alpha-helices and two 310 helices), with the general fold typical for MA proteins from other retroviral species. The N-terminus (residues Met1-Leu7) and the C-terminal proline-rich part (residues Pro103-Tyr131) are not structured in solution. Although MA MoMuLV has a low sequence identity compared with other matrix proteins for which the three-dimensional structure is known, it was shown that its overall topology and pattern of secondary structural units is similar to other retroviral matrix proteins. The monomeric state is observed for the correctly folded MA MoMuLV in a variety of external conditions and protein concentrations, indicating that virion assembly starts with the plasma membrane targeting of the nascent Gag precursor. The denaturation of MA MoMuLV is irreversible and is connected with protein aggregation. For Moloney Murine Leukemia Virus (MoMuLV) a proteolytic processing of the R-peptide (last 16 amino acids from the C-terminus of the Envelope protein (Env)) has been described as a second mode of fusion and activation preceding the receptor contact between the viral particle and the cellular membrane. An interaction between the R-peptide and MA MoMuLV has been proposed, since the R-peptide and MA are localized at the inner part of the membrane. Therefore the interaction between 15N labelled purified MA MoMuLV and synthesized R-peptide has been investigated using high-resolution NMR. It was found that in water solution MA MoMuLV and R-peptide do not form a tight complex, but in a mature virion in the presence of membranes or other protein factors it might be possible. In the case of HIV-1 the cytoplasmic part (EnvC) of the Env protein is much longer than in other retroviruses and again as for MoMuLV little is known about the interaction between EnvC and HIV MA. Hence, the full length HIV MA, and the last 150 amino acids from HIV Env have been subcloned with suitable expression vectors, purified and analysed by native gel electrophoresis, a pull down assay and by high resolution NMR for the purpose to detect the complex formation of EnvC and HIV MA. Finally, after all those experiments, it was found that a stable complex is not formed, but a weak interaction between the two proteins can not be excluded.
Für den mitochondrialen ABC-Transporter MDL1 (multidrug resistance like) aus Saccharomyces cerevisiae wurde eine Funktion als intrazellulärer Peptidexporter vorhergesagt. MDL1 ist wahrscheinlich am Export von Degradationsprodukten der m-AAA (matrixoriented ATPases associated with a variety of cellular activities) Protease in den Intermembranraum beteiligt (Young et al., 2001). Das MDL1-Homodimer besteht aus zwei Transmembrandomänen mit jeweils sechs potentiellen α-Helices und zwei Nukleotidbindedomänen. Eine Überexpression des ABC-Transporters in E. coli und L. lactis ist nicht möglich. Nur im homologen Expressionssystem kann eine bis zu 100-fach gesteigerte MDL1-Konzentration in Anwesenheit des induzierbaren GAL1-Promotors gegenüber dem endogenen Protein erreicht werden. Differentielle Zentrifugation, Immunogold-Markierungen und Proteasezugänglichkeitsexperimente zeigen, dass MDL1 ausschließlich in der mitochondrialen Innenmembran lokalisiert ist und die Nukleotidbindedomänen zur Matrix orientiert vorliegen. Mit Hilfe von Edman Sequenzierung des gereinigten His-getaggten MDL1 wurde eine 59 Aminosäuren lange mitochondriale Leitsequenz identifiziert. Die Deletionsvariante MDL1(60-695) wird ausschließlich in den Membranen des Endoplasmatischen Retikulums exprimiert. Ihre Motordomänen liegen zytosolisch orientiert vor. Beide MDL1-Varianten bilden homooligomere Komplexe vergleichbarer Größe und weisen ähnliche ATPase Aktivitäten auf. Die physiologischen Konsequenzen der Lokalisation in unterschiedlichen Membranen wurden in Zellen näher untersucht, deren mitochondrialer ABC-Transporter ATM1 (ABC transporter of mitochondria) deletiert ist. ATM1 ist von essentieller Bedeutung für die Biogenese zytosolischer Eisen/Schwefel-Proteine (Lill und Kispal, 2000). Der mitochondriale MDL1-Komplex kann zum Teil die ATM1-Funktion übernehmen, wohingegen ER-ständiges MDL1, als auch ATP Binde- und Hydrolyse inaktive Mutanten, den Δatm1 Wachstumsphänotyp nicht komplementieren können. Die physiologische Funktion von MDL1 ist somit eng mit der mitochondrialen Innenmembran und der Funktionalität des Proteins verbunden. Durch in vivo Komplementationsstudien wurden zwei mitochondriale ABC-Transporter ABCB10 und Pa_2_9660 aus H. sapiens bzw. P. anserina als funktionelle MDL1-Homologe identifiziert.