Refine
Document Type
- Doctoral Thesis (4)
Language
- German (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Akustik (1)
- Aufmerksamkeit (1)
- Awake recording (1)
- Cochlea (1)
- DPOAE (1)
- Elektroencephalogramm (1)
- Hören (1)
- Hörrinde (1)
- Hörzelle (1)
- Mongolische Rennmaus (1)
Institute
Das Gehirn weist in mehreren Bereichen anatomische Asymmetrien zwischen beiden Hemisphären auf, so auch in Bereichen der Hörrinde. Zudem ist bereits langjährig bekannt, dass menschliche Sprache vorrangig in der linken Gehirnhälfte, d.h. linksseitig lateralisiert, verarbeitet wird. Daraus folgend stellt sich die Frage, ob dies eine besondere Spezialisierung ist, oder ob es noch weitere lateralisierte Hirnfunktionen gibt. Viele akustische Signale haben dabei frequenzmodulierte (FM) Komponenten, die im Hörsystem für die Erkennung nach Parametern wie Richtung und Dauer der Modulation analysiert werden müssen. Ob die Analyse von FM-Komponenten oder einzelner Reizparameter im Gehirn lateralisiert stattfindet, wurde in der Literatur meist mit bildgebenden Verfahren untersucht.
Für das Erkennen und Unterscheiden der Modulationsrichtung weist eine Vielzahl von Studien auf eine erhöhte Aktivität in der rechten Hörrinde hin. Für die Analyse von Stimulusdauern ist es bisher allerdings noch unklar bzw. umstritten, ob diese lateralisiert erfolgt. Für die Untersuchung der Lateralisierung einfacher Sprachkomponenten werden häufig Konsonant-Vokal-Silben (CV-Silben) verwendet. In einer Vielzahl von Studien konnte eine linkslastige Lateralisierung, wie bei der Spracherkennung, gezeigt werden.
In der vorliegenden Arbeit wurde nun untersucht, ob ein eindeutigeres Muster von Lateralisierung zu finden ist, wenn diese in Wahrnehmungsexperimenten, untersucht wird. Dabei wurde ein zu untersuchender Teststimulus (FM-/CV-Stimulus) auf einem Ohr mit einem kontralateralen breitbandigen Rauschen auf dem anderen Ohr gleichzeitig präsentiert. Durch die Struktur der Hörbahn kann dabei davon ausgegangen werden, dass in einer Hemisphäre des Vorderhirns vorrangig Informationen aus dem kontralateralen Ohr verarbeitet und Informationen aus dem ipsilateralen Ohr unterdrückt werden und sich somit Rückschlüsse auf die Funktion/Beteiligung einer Hemishpäre ziehen lassen. Das Rauschen diente dabei zur unspezifischen Aktivierung der gegenüberliegenden Hemisphäre.
Die Lateralisierung wurde systematisch für unterschiedlich komplexe Reize untersucht. Dazu wurden in zwei Versuchsreihen Unterscheidungsexperimente durchgeführt, die sich in mehrere Messungen (mit mehreren Durchläufen) mit unterschiedlichen Parametereinstellungen gliederten. Pro Durchlauf musste sich die Versuchsperson immer zwischen zwei Antwortmöglichkeiten entscheiden (2-AFC-Verfahren). Der Schalldruckpegel des Rauschens war dabei für alle Messungen konstant. Der Schalldruckpegel der Teststimuli blieb zwar während einer Messung konstant, wurde jedoch innerhalb eines Experimentes von Messung zu Messung reduziert.
In einer gemeinsamen Analyse wurden jeweils die Fehlerraten und Reaktionszeiten beider Ohren, getrennt nach Seite und FM-/ CV-Stimulus, miteinander verglichen, um so auf eine mögliche Lateralisierung schließen zu können. Damit die Daten der Versuchspersonen bei vergleichbarer Schwierigkeit analysiert werden konnten, wurde als Vergleichswert zwischen allen Versuchspersonen der Schalldruckpegel der ersten Messung mit einer Fehlerrate von mindestens 15,0 % gewählt (15 %-Kriterium). Um auszuschließen, dass das Hörvermögen der Versuchspersonen Unterschiede zwischen beiden Ohren aufweist, wurde vor jeder Messung der „Punkt subjektiver Gleichheit“ für die Lautstärke-wahrnehmung zwischen linkem und rechten Ohr bestimmt.
In der ersten Versuchsreihe wurde dabei die Verarbeitung der Modulationsrichtung und der Stimulusdauer von FM-Stimuli untersucht. Es zeigte sich für beide Experimente, dass ein sinkender Schalldruckpegel des FM-Stimulus zu einer steigenden Fehlerrate führte. Unter Anwendung des 15 %-Kriteriums waren die Fehlerraten für die Unterscheidung der Modulationsrichtung signifikant geringer, wenn der FM-Stimulus auf dem linken Ohr präsentiert wurde. Dies ist ein deutlicher Hinweis für eine rechtslastige Lateralisierung.
Für die Unterscheidung der Stimulusdauer gab es dagegen keinen signifikanten Unterschied zwischen den Fehlerraten beider Ohren. Somit muss davon ausgegangen werden, dass beide Hemisphären für diese Aufgabe benötigt werden und eine bilaterale Verarbeitung stattfindet. In den Reaktionszeiten konnten in beiden Experimente keine signifikanten Unterschiede gezeigt werden. Die Unterscheidung der Modulationsrichtung wurde dabei von allen Versuchspersonen als einfacher eingestuft als die Unterscheidung der Stimulusdauer, was sich auch in niedrigeren Antwortschnelligkeit und Fehlerraten bei vergleichbaren Schalldruckpegeln zeigte.
In der zweiten Versuchsreihe wurde als Referenzmessung nochmals die Unterscheidung der Modulationsrichtungen von FM-Stimuli durchgeführt. Anschließend wurde die Unterscheidung von „da“ und „ga“ untersucht. Diese CV-Silben differieren ausschließlich in der FM-Komponente. Die Untercheidung von CV-Silben ohne Unterschied in der FM-Komponente wurde mittels „ta“ und „ka“ getestet. Für alle drei Experimente zeigte sich, dass ein geringerer Schalldruckpegel des FM- oder CV-Stimulus zu einer steigenden Fehlerrate führte. Unter Anwendung des 15 %-Kriteriums zeigte sich für die Unterscheidung der Modulationsrichtung ein Trend zu niedrigeren Fehlerraten bei der Präsentation des FM-Stimulus auf dem linken im Vergleich mit dem rechten Ohr. In den Reaktionszeiten konnten keine signifikanten Unterschiede gezeigt werden.
Für die Unterscheidung von „da“ und „ga“ ließ sich unter Anwendung des 15 %-Kriteriums in den Fehlerraten und Reaktionszeiten kein Vorteil eines Ohres nachweisen. Dagegen zeigten sich klare Unterschiede bei einzelnen Versuchspersonen. So waren die Fehlerraten für Versuchspersonen, die vorwiegend „da“ erkannt bzw. gehört hatten signifikant höher, wenn der CV-Stimulus auf dem rechten Ohr präsentiert wurde, für „ga“-Hörer war das Gegenteil der Fall. In den Reaktionszeiten konnte kein signifikanter Zusammenhang nachgewiesen werden. Somit ließ sich zeigen, dass je nach Strategie der Versuchsperson bzw. deren individueller Wahrnehmung der CV-Silben, Unterschiede in der Lateralisierung erreicht werden können.
Für die Unterscheidung von „ta“ und „ka“ zeigten sich unter Anwendung des 15 %-Kriteriums signifikant niedrigere Fehlerraten und Reaktionszeiten, wenn der CV-Stimulus auf dem linken Ohr präsentiert wurde. Dies weist deutlich auf eine rechtslastige Lateralisierung hin. Vergleicht man alle drei Experimente ließ sich zudem zeigen, dass die Unterscheidung der Modulationsrichtung einfacher war als die Unterscheidung verschiedener CV-Stimuli. Dabei war die Unterscheidung von „da“ und „ga“ für die Versuchspersonen schwieriger als die Unterscheidung von „ta“ und „ka“. Allerdings konnte in den Lateralisierungsdaten kein direkter Zusammenhang zwischen den FM- und „da“-/„ga“-Stimuli gezeigt werden.
Zusammenfassend konnte in allen fünf Experimenten eine verschieden stark lateralisierte Verarbeitung von akustischen Stimuli bei gleichzeitigem kontralateralen Rauschen gezeigt werden. Der Vorteil eines Ohres (bzw. einer Hemisphäre) war sowohl von der Aufgabe als auch vom Stimulustyp abhängig. Dabei gab es zum Teil starke Unterschiede in der Effektstärke und dem Grad der Lateralisierung zwischen den einzelnen Versuchspersonen. Insgesamt konnte gezeigt werden, dass sich die hier angewendete psychophysische Methode gut eignet, um Ergebnisse zur Lateralisierung von akustischen Stimuli zu gewinnen und somit die Verhaltensrelevanz von Ergebnissen aus Studien mit bildgebenden Verfahren zu überprüfen.
Die Haarzellen des Innenohrs setzen durch Schallreize ausgelöste Schwingungen der Basilarmembran in elektrische Impulse um, die über Nerven an das Gehirn geleitet werden und dort nach komplexer neuronaler Verarbeitung die Hörwahrnehmung auslösen. Gleichzeitig erhalten die äußeren Haarzellen über absteigende Nervenverbindungen, die olivo-cochleären Neurone, auch Informationen vom Gehirn, durch die ihre Empfindlichkeit verändert werden kann. Über die Mechanismen dieser efferenten Beeinflussung der Reizverarbeitung im Innenohr ist noch wenig bekannt und auch ihre biologische Funktion ist noch nicht geklärt. Diskutiert wird eine Rolle bei der Verbesserung des Signal-Hintergrundrausch-Verhältnisses und im Zusammenhang mit selektiver Aufmerksamkeit, durch die relevante Anteile der akustischen Umwelt gezielt „herausgehört“ werden können. Ziel dieser Promotionsarbeit ist die Untersuchung der efferenten Beeinflussung der Vorgänge im Innenohr mithilfe der nicht-invasiven Messung von akustischen Beiprodukten der aktiven Reizverstärkung durch die äußeren Haarzellen, den otoakustischen Emissionen. Bei dieser Methode werden mit einem empfindlichen Mikrophon im Gehörgang Schallereignisse aufgenommen, die das Ohr selbst produziert. Die olivo-cochleären Efferenzen können experimentell durch Applikation von Rausch-Stimuli auf dem kontralateralen Ohr aktiviert werden und ihre Wirkung auf die Empfindlichkeit des Innenohrs anhand der Veränderungen der otoakustischen Emissionen auf dem anderen, ipsilateralen Ohr gemessen werden. In Messungen unterschiedlicher Typen von otoakustischen Emissionen am Menschen und an der Mongolischen Wüstenrennmaus konnten deutliche Veränderungen der otoakustischen Emissionen bei gleichzeitiger Beschallung des kontralateralen Ohrs gezeigt werden, die als Modulation der Haarzelleigenschaften und Beeinflussung der cochleären Verstärkung durch Aktivierung der absteigenden Nervenbahnen interpretiert werden können: Spontane otoakustische Emissionen (SOAE), die ohne jegliche akustische Stimulation vom Innenohr generiert werden, zeigten bei kontralateraler akustischer Stimulation eine Verminderung ihres Pegels und eine Erhöhung ihrer Frequenz. Die Pegelverminderung deutet auf eine Dämpfung der cochleären Verstärkungsmechanismen und die Frequenzerhöhung auf eine Erhöhung der Steifigkeit im Corti-Organ und hierdurch veränderte Resonanzeigenschaften nach Aktivierung der efferenten Neurone hin. Distorsionsprodukt-otoakustische Emissionen (DPOAE), die bei Stimulation mit zwei Reintönen (f1 und f2) in Folge der nichtlinearen Verstärkung durch die äußeren Haarzellen entstehen, waren durch kontralaterale akustische Stimulation ebenfalls klar in ihrem Pegel beeinflusst. Die Effekte, sowohl auf SOAE als auch auf DPOAE, waren abhängig vom Pegel des kontralateralen Stimulus und traten bereits bei niedrigen kontralateralen Stimuluspegeln, deutlich unter der Schwelle des Mittelohrreflexes, auf. Durch ihren Zeitverlauf konnten die Effekte den in der Literatur beschriebenen efferenten Vorgängen zugeschrieben werden. Bei anhaltender akustischer Stimulation traten Adaptationsphänomene auf. Weiterhin zeigte sich in Experimenten mit kontralateralem Schmalbandrauschen und Reintönen, dass die efferente Modulation selektiv auf bestimmte Bereiche des tonotop organisierten Innenohrs zielt, also frequenzspezifisch agiert, wobei Reintöne mit Frequenzen, die etwas tiefer als die Stimulationsfrequenz lagen, die größten Effekte erzielten. Dies steht in guter Übereinstimmung zu anatomischen Daten. Besonders interessant an den DPOAE-Messungen war, dass das quadratische Distorsionsprodukt der Frequenz f2-f1 wesentlich empfindlicher reagierte als das kubische Distorsionsprodukt der Frequenz 2f1-f2. Bisher gibt es kaum Daten zu Veränderungen der f2-f1-DPOAE durch efferente Mechanismen. Die beiden DPOAE-Typen sind durch unterschiedliche Parameter der dem Verstärkungsprozess zu Grunde liegenden Transferfunktion beeinflusst, und die experimentell nachgewiesenen Unterschiede deuten darauf hin, dass die Aktivierung der olivo-cochleären Efferenzen ihre dämpfende Wirkung auf die Schallverarbeitung im Innenohr durch eine Verschiebung des Arbeitspunktes der Transfercharakteristik des cochleären Verstärkers entfaltet. Diese Hypothese wurde an der Wüstenrennmaus durch einen ergänzenden methodischen Ansatz unterstützt, bei dem zusätzlich zur Evozierung und Messung von DPOAE mit und ohne gleichzeitiger kontralateraler Aktivierung der Efferenzen ein sehr tieffrequenter „Bias“-Ton mit hohem Pegel appliziert wurde, der das Corti-Organ und damit den Arbeitspunkt des cochleären Verstärkers periodisch auslenkte. Diese Tieftonstimulation hatte eine sehr starke, von der Phase des Bias-Tons abhängige Modulation des f2-f1-Pegels zur Folge, während 2f1-f2 kaum beeinflusst wurde. Das Muster der f2-f1-Pegelmodulation änderte bei zusätzlicher kontralateraler Schallapplikation deutlich seinen Charakter. Entsprechende Veränderungen in den Verzerrungsmustern konnten mithilfe eines einfachen Modells zur DPOAE-Generation, das auf der Beschreibung des Verstärkungsmechanismus durch eine Boltzman-Funktion basierte, simuliert werden. Die Befunde der vorliegenden Arbeit zeigen, dass die Schallverstärkung im Innenohr durch efferente Mechanismen moduliert wird und dies anhand der nicht-invasiven Messung von otoakustischen Emissionen nachweisbar ist. Dabei deuten die Ergebnisse auf eine Verschiebung des Arbeitspunktes der Transfercharakteristik des cochleären Verstärkers als Mechanismus der olivo-cochleären Modulation der Reizverarbeitung im Innenohr hin.
Veränderungen in der akustischen Umwelt sind häufig mit Ereignissen verbunden. Diese wiederum können für ein Tier eine besondere Verhaltensrelevanz haben, im Gegensatz zu einem gleichbleibenden akustischen Hintergrund, der mit keinem positiven oder negativen Ereignis verbunden ist. Es ist also naheliegend zu spekulieren, dass Veränderungen oder neue akustische Reize im zentralen Nervensystem anders repräsentiert werden als der kontinuierliche Hintergrund und dass diese Repräsentation sowohl von der Häufigkeit der Stimuli als auch vom Unterschied zum akustischen Hintergrund abhängt. In Elektroenzaphalografie-Messungen (EEG) am Menschen wurde eine besondere Aktivitätsänderung bei auditorischen Abweichungen erstmals 1978 nachgewiesen. Dabei wurde ein akustischer Reiz über einen längeren Zeitraum regelmäßig wiederholt (Standard) und in einigen, seltenen Fällen durch einen anderen Reiz (Deviant) ersetzt. Dieser Deviant löste eine zusätzliche negative Komponente im EEG aus (Mismatch negativity), die bei den Standard-Stimuli nicht vorhanden war. Eine Voraussetzung, um MMN auszulösen, ist die Präsentation von einigen Standard-Stimuli, sodass eine neuronale Repräsentation des Stimulus aufgebaut werden kann, gegen die jeder weitere Reiz abgeglichen wird. Die zelluläre Basis von MMN und des zugrunde liegenden Mechanismus zur Detektion von auditorischen Veränderungen ist nur wenig erforscht. Als möglicher zellulärer Detektionsmechanismus akustischer Veränderungen wurde die Stimulus-spezifische Adaptation (SSA) vorgeschlagen, die zugleich der Ursprung von MMN im primären auditorischen Kortex sein könnte. SSA beschreibt die Eigenschaft von Neuronen der Hörbahn, auf die Wiederholung von identischen Reizen mit abnehmender Aktivität zu antworten und zugleich die Fähigkeit beizubehalten, andere Stimuli weiterhin mit hoher Aktivität zu repräsentieren. Die veränderte neuronale Repräsentation von Tönen mit niedriger Auftrittswahrscheinlichkeit, im Vergleich zu Tönen mit hoher Auftrittswahrscheinlichkeit, wurde bereits sehr eindrücklich im auditorischen Kortex der anästhesierten Katzen demonstriert. Die vorliegende Arbeit hat es sich zum Ziel gesetzt, bei der Repräsentation von auditorischen Abweichungen die Lücke zwischen der Ebene aufsummierter Potenziale (EEG beim Menschen) und der Ebene einzelner kortikaler Neurone zu schließen. Gleichzeitig sollte dabei erstmalig SSA im auditorischen Kortex des wachen Tieres nachgewiesen und so eine pharmakologische Interaktion der normalerweise eingesetzten Anästhetika mit SSA ausgeschlossen werden. Der experimentelle Ansatz basierte auf elektrophysiologischen Messungen mit chronisch implantierten Mikroelektroden im wachen Tier. Die Elektroden waren im auditorischen Kortex positioniert und ermöglichten eine gleichzeitige Messung der lokalen aufsummierten Potenziale (lokale Feldpotenziale, LFP) und der Aktionspotenziale einzelner Neurone als extrazelluläre Potenzialveränderungen. Das Stimulationsparadigma bestand aus Folgen zweier Reintöne, die mit unterschiedlicher Auftrittwahrscheinlichkeit präsentiert wurden. Der Ton mit hoher Auftrittwahrscheinlichkeit bildete den akustischen Hintergrund, der Ton mit niedriger Auftrittswahrscheinlichkeit (Deviant) die akustische Abweichung. In dieser Arbeit konnte erstmalig nachgewiesen werden, dass Neurone im auditorischen Kortex der wachen Ratte akustische Abweichungen mit einer höheren Aktivität repräsentieren als den auditorischen Hintergrund (bis zu 19,5% Aktivitätsunterschied). Stimulusspezifische Adaptation ist somit auch im wachen Tier Teil der neuronalen Codierung der akustischen Umwelt. Mithilfe der Signalentdeckungstheorie konnte des Weiteren gezeigt werden, dass die unterschiedliche neuronale Repräsentation von häufigen und seltenen Stimuli auch zu einer erhöhten neuronalen Unterscheidbarkeit zwischen beiden Stimuli führte. Auf der Ebene der ereigniskorrelierten LFPs konnte SSA in zwei Komponenten nachgewiesen werden: der ersten, negativen Auslenkung und der folgenden, positiven Auslenkung. Besonders in der ersten, negativen Komponente war SSA systematisch nachzuweisen und sie war zusätzlich starkmit der Aktivität der einzelnen Neuronen korreliert, während die positive Komponente der LFPs keine Korrelation mit den Messungen der einzelnen Nervenzellen zeigte. Der Grad der SSA hing von der Auftrittwahrscheinlichkeit und dem Frequenzabstand der beiden Töne ab. Keine der Messungen hatte die besondere Charakteristik von MMN. Zusammenfassend lässt sich die Aussage treffen, dass SSA auch im wachen Tier nachgewiesen wurde, sowohl auf der Ebene einzelner Neurone als auch in der aufsummierten Aktivität, wenn auch in einer schwächeren Ausprägung als in den bisher veröffentlichten Ergebnissen in anästhesierten Tieren. Ein direkter Beitrag der kortikalen Neurone zu MMN konnte nicht gezeigt werden, es gab aber einen starken Zusammenhang zwischen den einzelnen Neuronen und den LFPs.
Eine überlebenswichtige Eigenschaft von Mensch und Tier ist es, sich bei Gefahr durch eine Schreckreaktion in Sicherheit zu bringen. Doch woran erkennt ein Organismus, in welcher Situation es „sinnvoll“ wäre, sich zu erschrecken und welche Eigenschaften sensorischer Stimuli tragen zu dem Gefahreneindruck bei? Bei plötzlich eintretenden, lauten auditorischen Reizen kann es zur Auslösung der akustischen Schreckreaktion kommen. Dies führt bei Menschen, aber auch bei kleineren Säugetieren zu einer reflexartigen Kontraktion der Nacken-, Gesichts- und Skelettmuskulatur. Die Erforschung der akustisch evozierten Schreckreaktion (ASR) dient dem besseren Verständnis der neurobiologischen Grundlagen sensorischer Verarbeitung. Modulationen der ASR mithilfe von Präpulsen (Präpulsinhibition) ermöglichen Einblicke in die Funktion der Kochlea, des Hörnervs, der Hirnstammstrukturen und anderer beteiligter Gehirnregionen.
In dieser Arbeit wurden kurzzeitige Änderungen von Frequenz oder Intensität des akustischen Hintergrundes als neuartige Präpulse untersucht. Die Bedeutung verschiedener Reizparameter dieser Präpulse wurde in der vorliegenden Arbeit zum ersten Mal systematisch erforscht. Um zu prüfen, welche Präpulsstimulationen eine Inhibition der ASR auslösen können, wurde eine Reihe von Parametern umfassend getestet. In einem weiteren Schritt wurde analysiert, ob es mithilfe von gezielten Änderungen von Frequenz oder Intensität möglich sein könnte, Unterscheidungsschwellen, oder gar Hörschwellen von Versuchstieren zu bestimmen.
Die Experimente zur Modulation der ASR wurden mit weiblichen Sprague Dawley-Ratten durchgeführt. Dabei wurde eine Vielzahl von Verhaltensparadigmen untersucht. Dazu zählten Präpulse mit unterschiedlichem Frequenzgehalt und variabler Dauer. Zusätzlich wurden neuartige Paradigmen etabliert, um die Fähigkeit zur Frequenz- und Intensitätsdiskriminierung zu untersuchen. Hierbei wurde der Frequenzgehalt oder die Intensität einer kontinuierlichen Hintergrundstimulation verändert, um eine Präpulswirkung zu erzeugen. Um die Möglichkeiten der Bestimmung von Hörschwellen mittels der Präpulsinhibition (PPI) zu ergründen, wurde die Intensität von Präpulsen systematisch verändert. Die so generierten Schwellenwerte wurden durch die Messung früher akustisch evozierter Hirnstammpotenziale verifiziert. Schließlich sollten, unter Zuhilfenahme der Signaldetektionstheorie, aus den erhobenen Daten diverse Schwellen bestimmt werden: Für die Intensitätsänderungen der Präpulse in Stille wurden Hörschwellen bestimmt, während bei Änderungen der Frequenz und Intensität Unterscheidungsschwellen bestimmt werden sollten.
Mit steigender Größe eines Frequenzsprungs in einer kontinuierlichen Hintergrundstimulation war eine stärkere Inhibition der ASR feststellbar; ein Effekt, der stark von der Hintergrundfrequenz abhängig war. Bei einer Stimulation mit 8 kHz konnten signifikant höhere Inhibitionswerte erzielt werden als mit 16 kHz. Bei der Untersuchung des Zeitablaufs der Stimulation ergab sich, dass eine abgesetzte Stimulation mit einer Abweichung von 80 ms Dauer bis 50 ms vor dem Schreckreiz für die höchsten Inhibitionen sorgte.
Die durch eine Intensitätsänderung einer kontinuierlichen Hintergrundstimulation ausgelöste PPI hing primär von der Größe und Richtung des Intensitätssprungs ab. Mit zunehmender Sprunggröße stiegen die Inhibitionswerte an. Eine Erhöhung der Hintergrundintensität um 10 dB hatte einen signifikanten Einfluss auf die Inhibitionswerte. Auch hier zeigte sich eine höhere Sensitivität in Form von höheren Inhibitionen für Stimuli mit einer Hintergrundfrequenz von 8 kHz als für alle anderen getesteten Hintergrundfrequenzen.
Die Bestimmung von Hörschwellen mittels intensitätsabhängiger PPI wies im Vergleich mit den elektrophysiologisch bestimmten Hörschwellen ein heterogenes Bild mit starken individuellen Schwankungen auf: Bei etwa der Hälfte der Tiere waren die Hörschwellen beider Messungen sehr vergleichbar, bei den übrigen Tieren konnten mittels PPI für eine oder mehrere Frequenzen keine aussagekräftigen Hörschwellen erzielt werden. Die elektrophysiologisch bestimmten Hörschwellen waren am sensitivsten, während PPI-Stimulationen signifikant höher waren. Außerdem bewirkten PPI-Stimulationen mit Reintönen signifikant sensitivere Hörschwellen im Vergleich zu einem Schmalbandrauschen.
Für die Bestimmung der Unterscheidungsschwellen von Frequenzänderungen konnte beobachtet werden, dass die Tiere auf Frequenzsprünge hin zu niedrigeren Frequenzen signifikant sensibler reagierten, als hin zu Aufwärtssprüngen (-1.2 bzw. +4.5%). Bei der Intensitätsunterscheidung hingegen konnte beobachtet werden, dass die Tiere signifikant sensitiver auf Intensitätserhöhungen als auf Erniedrigungen reagierten (-5.9 bzw. +2.7 dB).
Zusammenfassend konnte in der vorliegenden Arbeit festgestellt werden, dass die PPI zur Bestimmung von absoluten Hörschwellen starken Schwankungen unterlag, sodass diese Methode nur eingeschränkt als Alternative zu operanter Konditionierung oder elektrophysiologischen Ableitungen in Frage kommt. Des Weiteren erzeugten bereits kleine Änderungen des Frequenzgehalts oder der Intensität einer Hintergrundstimulation eine robuste PPI. Somit können reflexbasierte Messungen mit überschwelligen Stimuli genutzt werden, um Unterscheidungsschwellen in Versuchstieren zu bestimmen. Diese Herangehensweise stellt also eine vielversprechende Methode dar, um Hörstörungen zu untersuchen, die nach einem Schalltrauma auftreten können. In einem nächsten Schritt könnte sie zur weiteren Charakterisierung von verstecktem Hörverlust beitragen.