Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
Pulsed Electron Paramagnetic Resonance (EPR) spectroscopy is the most powerful tool to investigate structural properties and dynamics of paramagnetic substances. Up to date the electron spin is almost exclusively manipulated by rectangular shaped microwave pulses generated with switches. These pulses are unselective which means they excite outside their nominal bandwidth which is in most cases shallow compared to the overall spectral width of the spin system. Shaped pulses which are widely applied in NMR promise higher bandwidth and selectivity. The use of amplitude and phase modulated pulses was not possible for EPR due to the three orders of magnitude faster timescale compared to NMR. In this work, for the first time, an AWG (arbitrary waveform generator) operating with a 1 ns time resolution and 14 bit amplitude resolution was implemented into a commercial Bruker pulsed EPR spectrometer.
First results were obtained with broadband excitation pulses derived by optimum control theory (OCT). The OCT-pulse used excites transverse magnetization with 98% efficiency over a more than four times larger bandwidth than common rectangular pulse generating the same 1 B field. The benefit of such a pulse was demonstrated for magnitude FT-EPR spectroscopy on organic radicals in liquid phase.
Due to Spectrometer deadtime an FID cannot be observed for most inhomogeneous spin systems. For that reason prefocused pulses have been evaluated for their applicability to EPR spectroscopy. OCT-derived prefocused pulses can be understood as a compact Hahn Echo sequence in one monolithic pulse. Here, two problems have been encountered. 1) The limited bandwidth of the active and passive microwave components in the excitation path as well as microwave resonator cause linear distortions of the pulse shape which results in inferior pulse performance. This could be circumvented by measuring the impulse response function of the whole spin excitation path and including this information in the pulse optimization procedure. 2) Anisotropic hyperfine interaction which was not taken into account during the pulse optimization also caused efficiency losses.
PELDOR spectroscopy is a valuable tool to measure distance distributions between two or more paramagnetic centers in the range from 2-8 nm. It is demonstrated that the S/N ratio of PELDOR experiments can be substantially increased by substituting the rectangular shaped pump pulse by an adiabatic inversion pulse. The damping of the dipolar oscillations introduced by the prolonged pump pulse towards shorter distances could be circumvented by introducing a second time reversed pump pulse.
By substituting the refocused echo of the well-known 4-pulse PELDOR with a CPMG sequence the dipolar evolution time and thus the validity of PELDOR experiments would be increased. To achieve the maximum dipolar evolution time in a CPMG PELDOR for each refocusing pulse one pump pulse has to be applied. This could only be achieved with the new adiabatic inversion pulses since multiple inversions with efficiency close to one are not possible with rectangular pulses. Even with adiabatic pump pulses a reduced efficiency was observed due to hardware limitations thus limiting the sequence to three refocusing pulses. An iterative method was developed to remove the residual dipolar signals attributed to the reduced inversion efficiency.
The new 7-pulse CPMG PELDOR sequence enabled measuring reliable distance distributions between the protomers of the trimeric betaine transporter BetP. With these it could be shown that the asymmetries found for the 2 and 3-dimensional crystal structures are even larger in frozen detergent.
Metal ions as novel polarizing agents for dynamic nuclear polarization enhanced NMR spectroscopy
(2017)
High-spin complexes of Gd(III) and Mn(II) were introduced as polarizing agents (PAs) for solid-state dynamic nuclear polarization (DNP) in 2011. This dissertation was undertaken in 2013, with the intention of exploring these PAs further. Major goals of this work were to understand their DNP mechanism(s) and explore their application in biomolecular research. This cumulative thesis details the methods, advantages, and practical implications of using high-spin PAs for MAS DNP. Data from electron paramagnetic resonance (EPR) and NMR spectroscopy are discussed for a complete understanding of DNP mechanisms.
Out of the two main mechanisms − solid effect (SE) and cross effect (CE − active under experimental conditions of solid-state DNP, commonly used nitroxide PAs evoke CE owing to their broad EPR spectra. On the other hand, DNP mechanisms evoked by high-spin metal ions seem non-trivial due to additional features (originating from spin-orbit coupling or zero field splitting) in their EPR spectra. The features of the EPR signal generally influence the shape of enhancement profiles. Therefore, the metal ion with a simpler EPR signal i.e., Gd(III) , is chosen as the starting point for the investigation of DNP mechanisms. Varying concentrations (2, 10, 20 mM) of a water-soluble and stable complex Gd-DOTA was dissolved as the PA in a glycerol-water solution of 13C,15N - urea. Field profiles of DNP enhancement on each nuclear type (1H, 13C, and 15N) establishes SE as the active DNP mechanism at the smallest PA concentration (2 mM). This confirms the theoretical predictions that narrow line width of the Gd(III) EPR signal arising from the central transition (CT, ms = -1/2 +1/2) allows for resolved SE DNP. However, that is no longer the case at higher PA concentrations of 10 and 20 mM. At higher Gd(III) concentrations, the CE mechanism contributes significantly and varies with nuclear Larmor frequency (ωn) of the concerned nuclei. The enhancement maxima shifts towards the EPR resonance as the contribution from CE increases. This shift is evident in the field profiles of 15N and 13C, whereas that of 1H is least influenced. This observation can be explained by combining theoretical estimates with the experimental data; the CE is evoked by increased dipolar coupling (Dee) – a prerequisite for CE – between neighboring Gd(III) spins as the statistical inter-spin distance shortens at elevated concentrations. This finding is important because the knowledge of active DNP mechanisms is essential for accurate interpretation of results from DNP experiments.
From the experiments on Gd-DOTA it becomes clear that concentration, inter-spin distances, and hence induced Dee are intertwined. In order to explicitly address the influence of inter-spin distances on DNP mechanisms we started a collaboration with the group of Adelheid Godt (Bielefeld). In this collaborative project, bis-complexes of the type Gd(III)-spacer-Gd(III) with variable spacer lengths were investigated. These PAs provided an excellent model system where the influence of only inter-spin distances can be determined for a fixed Gd(III) concentration. A small PA concentration of 4 mM is used to ensure absence of significant inter-molecular dipolar interactions. A mono-Gd complex of similar geometry and chemistry is taken as a reference for SE DNP.
The mono-Gd complex yields enhancements arising from SE as expected from negligible inter-molecular Dee. The contribution of CE increases as the inter-spin distances between Gd(III) ions become shorter going from 3.4 nm 2.1 nm 1.4 nm 1.2 nm due to corresponding increase in Dee. The extent of CE on ωn follows the same trend as for Gd-DOTA. Highest CE contribution is observed on nuclei with the smallest ωn 15N because smaller ωn approaches the width of the EPR signal, this is an additional requirement for CE DNP.
The field position for maximum DNP enhancement corresponding to Gd-DOTA, is used for DNP experiments on Ubiquitin with an attached Gd-tag as PA. The success of DNP on this sample illustrates the possibility of site-directed DNP with metal ions tags as PAs. As a perspective Gd-tags can be used to examine change in conformation of a protein that would give higher enhancements due to CE if two Gd(III) labeled domains are closer in space. In a separate project, Mn(II) (s=5/2) bound to the divalent site of a hammerhead ribozyme was used as a PA which resulted in the first demonstration of intra-complex DNP using an intrinsically bound metal ion PA.
Gepulste dipolare EPR-Spektroskopie ist eine wertvolle Methode, um Abstände von 1.5 bis 10 nm zwischen zwei Spinmarkern zu messen. Diese Information kann für Strukturbestimmungen hilfreich sein, wo traditionelle Methoden wie Kristallstrukturanalyse und NMR nicht angewendet werden können. Zusätzlich ist es möglich, Änderungen in Konformation und Flexibilität zu verfolgen. Für diese Studien haben sich stabile Nitroxidradikale als Spinmarker etabliert. Diese werden spezifisch durch die site-directed spin labelling Methode (SDSL) kovalent an das zu untersuchende Biomolekül gebunden. In den letzten Jahren wurden weitere Spinmarker für Abstandsbestimmungen mittels EPR-Spektroskopie entwickelt. Besonders interessant sind Triarylmethylradikale (im Folgenden abgekürzt als Trityl) und paramagnetische Metallzentren.
Im Vergleich zu Nitroxidradikalen hat das Tritylradikal einige Vorteile: Eine höhere Stabilität in einer reduzierenden Umgebung wie im Inneren von Zellen, längere Elektronenspin-Relaxationszeiten bei Raumtemperatur und ein schmaleres EPR-Spektrum. Deswegen ist dieses organische Radikal ein alternativer Spinmarker, der besonders gut für die Forschung von Biomolekülen in einer nativen Umgebung unter physiologischen Bedingungen geeignet ist. Auch paramagnetische Metallzentren sind weniger reduktionsempfindlich als Nitroxidradikale. Zusätzlich sind diese Spinmarker interessant in biologischen Fragestellungen. Zum Beispiel besitzen zahlreiche Enzyme paramagnetische Manganzentren als Cofaktoren. Zudem kann Magnesium, ein wesentlicher Cofaktor in Enzymen, Nukleinsäuren und Nukleotid-Bindungsdomänen der G- und Membranproteine, oft durch das paramagnetische Mangan ersetzt werden. Um Abstandsmessungen an Biomolekülen, die nur ein Metallzentrum besitzen, durchzuführen, können zusätzliche Spinmarker in Form eines Nitroxid-, Tritylradikals oder eines anderen paramagnetischen Metallkomplexes mithilfe der SDSL-Methode kovalent gebunden werden.
Nitroxidradikale, Tritylradikale und Metallzentren haben deutlich unterschiedliche EPR-spektroskopische Eigenschaften, welche oft als orthogonale Spinmarker bezeichnet werden. Solche Spinmarker sind nützlich für die Untersuchung von verschiedenen Untereinheiten bei makromolekularen Komplexen. Somit können die intramolekularen Abstände innerhalb einer Untereinheit sowie intermolekularen Abstände zwischen den unterschiedlichen Untereinheiten mit nur einer einzigen Probe bestimmt werden. Zusätzlich können die orthogonalen Marker sehr effektiv genutzt werden, um Metallzentren in Biomolekülen mithilfe der Trilateration-Strategie genau zu lokalisieren.
Die hier vorliegende Doktorarbeit beschäftigt sich mit der Nutzung dieser neuen Spinmarker für Abstandsmessungen. Solche Spinmarker sind noch kaum erforscht, obwohl sie für biologische Anwendungen eine große Rolle spielen könnten.
Das erste Ziel dieser Doktorarbeit war eine Studie über Tritylradikale mithilfe der dipolaren EPR-Spektroskopie. Zu diesem Zweck wurden sowohl double quantum coherence (DQC) und single frequency technique for refocussing dipolar couplings (SIFTER) Experimente als auch Hochfrequenz pulsed electron electron double resonance (PELDOR) Experimente mit einem Trityl-Modellsystem durchgeführt. Dabei wurden die Besonderheiten der unterschiedlichen dipolaren Spektroskopiemethoden mit diesem Spinmarker untersucht, um die Empfindlichkeit und Robustheit für die Abstandsmessungen zu optimieren.
Das zweite Ziel war eine Studie über den Einfluss der Hochspin-Multiplizität des Mangans auf die Abstandsbestimmungen. Für diesen Zweck wurde zuerst ein Modellsystem mit einem orthogonalen Mn2+ Ion und Nitroxidradikal mithilfe der PELDOR-Spektroskopie untersucht. Anschließend wurde ein weiteres Modellsystem mit zwei Mn2+-Ionen untersucht, um PELDOR und relaxation-induced dipolar modulation enhancement (RIDME) Experimente bezüglich ihrer Empfindlichkeit und Robustheit sowie Genauigkeit der Datenanalyse zu optimieren.
Das Trityl-Modellsystem wurde in der Arbeitsgruppe von Prof. Sigurdsson synthetisiert. Die EPR Messungen wurden bei zwei verschiedenen Mikrowellenfrequenzen (34 und 180 GHz) durchgeführt. Es wurde gezeigt, dass die Auswahl der optimalen Methode von den EPR-spektroskopischen Eigenschaften des Systems bei den jeweiligen Mikrowellenfrequenzen abhängig ist. Das EPR-Spektrum des Trityls ist bei 34 GHz so schmal, dass das ganze Spektrum von einem üblichen Mikrowellenpuls angeregt werden kann. In diesem Fall sind die DQC und SIFTER Experimente am besten geeignet. Der mit diesen Methoden bestimmte Abstand von 4.9 nm ist in guter Übereinstimmung mit Werten aus der Literatur. Es wurde festgestellt, dass die SIFTER Messung eine höhere Empfindlichkeit als DQC besitzt, da das Signal-zu-Rausch Verhältnis um den Faktor vier größer ist. Außerdem ist die SIFTER-Methode experimentell weniger anspruchsvoll, da ein deutlich kürzerer Phasenzyklus für die Mikrowellenpulse benötigt wird. ...