Refine
Document Type
- Doctoral Thesis (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Großhirnrinde (2)
- Sehrinde (2)
- sparse coding (2)
- Bilderkennung (1)
- Gedächtnis (1)
- Gedächtnisbildung (1)
- Gehirn (1)
- Hirnforschung (1)
- ICA (1)
- Langzeitgedächtnis (1)
Institute
This dissertation connects two independent fields of theoretical neuroscience: on the one hand, the self-organization of topographic connectivity patterns, and on the other hand, invariant object recognition, that is the recognition of objects independently of their various possible retinal representations (for example due to translations or scalings). The topographic representation is used in the presented approach, as a coordinate system, which then allows for the implementation of invariance transformations. Hence this study shows, that it is possible that the brain self-organizes before birth, so that it is able to invariantly recognize objects immediately after birth. Besides the core hypothesis that links prenatal work with object recognition, advancements in both fields themselves are also presented. In the beginning of the thesis, a novel analytically solvable probabilistic generative model for topographic maps is introduced. And at the end of the thesis, a model that integrates classical feature-based ideas with the normalization-based approach is presented. This bilinear model makes use of sparseness as well as slowness to implement "optimal" topographic representations. It is therefore a good candidate for hierarchical processing in the brain and for future research.
Plasticity supports the remarkable adaptability and robustness of cortical processing. It allows the brain to learn and remember patterns in the sensory world, to refine motor control, to predict and obtain reward, or to recover function after injury. Behind this great flexibility hide a range of plasticity mechanisms, affecting different aspects of neuronal communication. However, little is known about the precise computational roles of some of these mechanisms. Here, we show that the interaction between spike-timing dependent plasticity (STDP), intrinsic plasticity and synaptic scaling enables neurons to learn efficient representations of their inputs. In the context of reward-dependent learning, the same mechanisms allow a neural network to solve a working memory task. Moreover, although we make no any apriori assumptions on the encoding used for representing inputs, the network activity resembles that of brain regions known to be associated with working memory, suggesting that reward-dependent learning may be a central force in working memory development. Lastly, we investigated some of the clinical implications of synaptic scaling and showed that, paradoxically, there are situations in which the very mechanisms that normally are required to preserve the balance of the system, may act as a destabilizing factor and lead to seizures. Our model offers a novel explanation for the increased incidence of seizures following chronic inflammation.
Different approaches are possible when it comes to modeling the brain. Given its biological nature, models can be constructed out of the chemical and biological building blocks known to be at play in the brain, formulating a given mechanism in terms of the basic interactions underlying it. On the other hand, the functions of the brain can be described in a more general or macroscopic way, in terms of desirable goals. This goals may include reducing metabolic costs, being stable or robust, or being efficient in computational terms. Synaptic plasticity, that is, the study of how the connections between neurons evolve in time, is no exception to this. In the following work we formulate (and study the properties of) synaptic plasticity models, employing two complementary approaches: a top-down approach, deriving a learning rule from a guiding principle for rate-encoding neurons, and a bottom-up approach, where a simple yet biophysical rule for time-dependent plasticity is constructed.
We begin this thesis with a general overview, in Chapter 1, of the properties of neurons and their connections, clarifying notations and the jargon of the field. These will be our building blocks and will also determine the constrains we need to respect when formulating our models. We will discuss the present challenges of computational neuroscience, as well as the role of physicists in this line of research.
In Chapters 2 and 3, we develop and study a local online Hebbian self-limiting synaptic plasticity rule, employing the mentioned top-down approach. Firstly, in Chapter 2 we formulate the stationarity principle of statistical learning, in terms of the Fisher information of the output probability distribution with respect to the synaptic weights. To ensure that the learning rules are formulated in terms of information locally available to a synapse, we employ the local synapse extension to the one dimensional Fisher information. Once the objective function has been defined, we derive an online synaptic plasticity rule via stochastic gradient descent.
In order to test the computational capabilities of a neuron evolving according to this rule (combined with a preexisting intrinsic plasticity rule), we perform a series of numerical experiments, training the neuron with different input distributions.
We observe that, for input distributions closely resembling a multivariate normal distribution, the neuron robustly selects the first principal component of the distribution, showing otherwise a strong preference for directions of large negative excess kurtosis.
In Chapter 3 we study the robustness of the learning rule derived in Chapter 2 with respect to variations in the neural model’s transfer function. In particular, we find an equivalent cubic form of the rule which, given its functional simplicity, permits to analytically compute the attractors (stationary solutions) of the learning procedure, as a function of the statistical moments of the input distribution. In this way, we manage to explain the numerical findings of Chapter 2 analytically, and formulate a prediction: if the neuron is selective to non-Gaussian input directions, it should be suitable for applications to independent component analysis. We close this section by showing how indeed, a neuron operating under these rules can learn the independent components in the non-linear bars problem.
A simple biophysical model for time-dependent plasticity (STDP) is developed in Chapter 4. The model is formulated in terms of two decaying traces present in the synapse, namely the fraction of activated NMDA receptors and the calcium concentration, which serve as clocks, measuring the time of pre- and postsynaptic spikes. While constructed in terms of the key biological elements thought to be involved in the process, we have kept the functional dependencies of the variables as simple as possible to allow for analytic tractability. Despite its simplicity, the model is able to reproduce several experimental results, including the typical pairwise STDP curve and triplet results, in both hippocampal culture and layer 2/3 cortical neurons. Thanks to the model’s functional simplicity, we are able to compute these results analytically, establishing a direct and transparent connection between the model’s internal parameters and the qualitative features of the results.
Finally, in order to make a connection to synaptic plasticity for rate encoding neural models, we train the synapse with Poisson uncorrelated pre- and postsynaptic spike trains and compute the expected synaptic weight change as a function of the frequencies of these spike trains. Interestingly, a Hebbian (in the rate encoding sense of the word) BCM-like behavior is recovered in this setup for hippocampal neurons, while dominating depression seems unavoidable for parameter configurations reproducing experimentally observed triplet nonlinearities in layer 2/3 cortical neurons. Potentiation can however be recovered in these neurons when correlations between pre- and postsynaptic spikes are present. We end this chapter by discussing the relation to existing experimental results, leaving open questions and predictions for future experiments.
A set of summary cards of the models employed, together with listings of the relevant variables and parameters, are presented at the end of the thesis, for easier access and permanent reference for the reader.
At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into constituent components of much lower complexity along hierarchically organized visual pathways. How this processing architecture self-organizes into a memory domain that employs such compositional object representation by learning from experience remains to a large extent a riddle. The study presented here approaches this question by proposing a functional model of a self-organizing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved in cortical processing and adaptation. The network architecture comprises two consecutive layers of distributed, recurrently interconnected modules. Each module is identified with a localized cortical cluster of fine-scale excitatory subnetworks. A single module performs competitive unsupervised learning on the incoming afferent signals to form a suitable representation of the locally accessible input space. The network employs an operating scheme where ongoing processing is made of discrete successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms observed in the cortex. The cycles are synchronized across the distributed modules that produce highly sparse activity within each cycle by instantiating a local winner-take-all-like operation. Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity regulation, the network is exposed to natural face images of different persons. The images are presented incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from local facial landmarks. The images are presented without any person identity labels. In the course of unsupervised learning, the network creates simultaneously vocabularies of reusable local face appearance elements, captures relations between the elements by linking associatively those parts that encode the same face identity, develops the higher-order identity symbols for the memorized compositions and projects this information back onto the vocabularies in generative manner. This learning corresponds to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and between the network layers. In the mature connectivity state, the network holds thus full compositional description of the experienced faces in form of sparse memory traces that reside in the feed-forward and recurrent connectivity. Due to the generative nature of the established representation, the network is able to recreate the full compositional description of a memorized face in terms of all its constituent parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network successfully proves its ability to recognize identity and gender of the persons from alternative face views not shown before. An intriguing feature of the emerging memory network is its ability to self-generate activity spontaneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a self-sustaining replay of the memory content formed during the previous learning. Remarkably, the recognition performance is tremendously boosted after this off-line memory reprocessing. The performance boost is articulated stronger on those face views that deviate more from the original view shown during the learning. This indicates that the off-line memory reprocessing during the sleep-like state specifically improves the generalization capability of the memory network. The positive effect turns out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-unspecific, homeostatic activity regulation across the memory network. The developed network demonstrates thus functionality not shown by any previous neuronal modeling approach. It forms and maintains a memory domain for compositional, generative object representation in unsupervised manner through experience with natural visual images, using both on- ("wake") and off-line ("sleep") learning regimes. This functionality offers a promising departure point for further studies, aiming for deeper insight into the learning mechanisms employed by the brain and their consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so far.