Refine
Year of publication
Document Type
- Doctoral Thesis (57)
Has Fulltext
- yes (57)
Is part of the Bibliography
- no (57)
Keywords
- Molekülstruktur (2)
- RNA (2)
- rhodopsin (2)
- solid-state NMR (2)
- 2-Photonen (1)
- Ackerschmalwand (1)
- Arzneimitteldesingn (1)
- Arzneimittelentwicklung (1)
- Azide (1)
- C. elegans (1)
Institute
- Biochemie und Chemie (33)
- Biochemie, Chemie und Pharmazie (21)
- Biowissenschaften (1)
- Pharmazie (1)
- Physik (1)
In dieser Arbeit wurden die Strukturen von drei Membranproteinen mittels Einzelpartikel-Kryo‑Elektronenmikroskopie (Kryo‑EM) gelöst. Bei den Membranproteinen handelt es sich um den humanen TRP-Kanal Polycystin‑2, den sekundär-aktiven Transporter BetP aus Corynebacterium glutamicum und den Rotor-Ring der N‑Typ ATPase aus Burkholderia pseudomallei.
Kanäle sind Membranproteine, die Ionen durch eine Pore über die Membran diffundieren lassen. Durch einen präzisen, kanalabhängigen Regulationsmechanismus wird die Pore nur bei Bedarf geöffnet. TRP (transient receptor potential) Kanäle sind anhand von DNA-Sequenzvergleichen identifiziert worden und kommen ausschließlich in Eukaryonten vor. In dieser Arbeit lag der Fokus auf der Strukturbestimmung des humanen TRP Kanals Polycystin‑2 (PC‑2). PC‑2 wurde in einer Studie entdeckt, in der Patienten mit der autosomal dominanten Erbkrankheit „polyzystische Nierenerkrankung“ untersucht wurden. Patienten mit dieser Krankheit tragen eine Mutation in einem der beiden Gene PKD1 oder PKD2, welche für die Proteine Polycystin‑1 und ‑2 kodieren. In dieser Arbeit wurden verschiedene Deletionsmutanten von PC‑2 hergestellt und in das Genom menschlicher HEK293 GnTI‑ Zellen inseriert. Die Zellen, die PC‑2 bzw. die Deletionskonstrukte am stärksten synthetisierten, wurden isoliert und für die rekombinante Proteinherstellung verwendet. Die Expression von PC‑2 führte zu der Entstehung von kristalloidem endoplasmatischem Retikulum. Mutationsstudien in dieser Arbeit zeigen, dass diese morphologische Veränderung durch die Akkumulation von Membranproteinen, die mit sich selbst interagieren, begünstigt wird. Weiter ist es in dieser Arbeit gelungen, PC‑2 zu reinigen und die Struktur des Proteins mit Hilfe von Einzelpartikel Kryo-EM mit einer Auflösung von 4.6 Å zu bestimmen. Die Membrandomäne von PC‑2 ist sehr ähnlich zu den bekannten TRP Kanal Strukturen. Ein Vergleich der PC‑2 Struktur mit dem offenen und geschlossenen TRPV1 Kanal legt nahe, dass PC‑2 in seiner offenen Konformation gelöst wurde.
Der sekundär aktive Transporter BetP von C. glutamicum gehört zu der Familie der BCC- (betaine-carnitine-choline) Transporter und wird durch osmotischen Schock aktiviert. Nach seiner Aktivierung importiert BetP zwei Natriumionen und ein Glycinbetain Molekül. Durch die Akkumulierung von Glycinbetain in der Zelle steigt das osmotische Potential des Zytoplasmas, was den Wasserausstrom aus der Zelle stoppt. Viele Strukturen, die BetP in unterschiedlichen Stadien des Transportprozesses zeigen, konnten bereits mittels Röntgenkristallographie gelöst werden. Allerdings ist die N‑terminale Domäne für die Kristallisation entfernt worden und die C‑terminale Domäne, die komplett aufgelöst ist, ist an einem wichtigen Kristallkontakt beteiligt. Um strukturelle Informationen über die N‑ und C‑terminale Domäne ohne Kristallisationsartefakte zu erhalten, wurde in dieser Arbeit die Struktur von BetP mittels Einzelpartikel Kryo‑EM bestimmt. Die Struktur mit einer Auflösung von 6.8 Å zeigt BetP in einem zum Zytoplasma geöffneten Zustand. Der größte Unterschied zu allen Kristallstrukturen ist die Position der C‑terminalen α‑Helix, die um ~30° rotiert ist und dadurch deutlich enger am Protein zu liegen kommt. Da BetP in Abwesenheit von aktivierenden Stoffen analysiert wurde, wird vermutet, dass es sich bei der gelösten Struktur um den inaktiven Zustand von BetP handelt.
Rotierende ATPasen sind membrangebunden Enzymkomplexe, die bei der zellulären Energieumwandlung eine entscheidende Rolle einnehmen. Sie bestehen aus einem löslichen und einem membrangebundenen Teil. Während in dem löslichen Teil der zelluläre Energieträger Adenosintriphosphat (ATP) entweder synthetisiert oder hydrolysiert wird, baut der membrangebundene Teil entweder einen Ionengradienten auf oder nutzt die Energie eines existierenden Gradienten für die ATP Synthese. Ein wesentlicher Bestandteil des membrangebundenen Teils einer rotierenden ATPase ist der Rotor-Ring. Dieser transportiert Ionen über die Membran und rotiert dabei um seine eigene Achse. In dieser Arbeit wurde eine Studie fortgesetzt, die den Rotor-Ring der N‑Typ ATPase von B. pseudomallei mittels Kryo‑EM untersuchte und zeigte, dass der Rotor-Ring aus 17 identischen Untereinheiten aufgebaut ist. Damit hat die N‑Typ ATPase das größte Ionen-zu-ATP-Verhältnis aller bisher charakterisierten ATPasen. In dieser Arbeit wurde die c17 Stöchiometrie des N‑Typ ATPase Rotor-Rings bestätigt und die Struktur mittels Kryo‑EM bestimmt. Im besonderen Fokus lag dabei der Einfluss von Detergenzien auf die Strukturbestimmung. Es konnte gezeigt werden, dass die beiden Parameter Dichte und Mizellengröße der verwendeten Detergenzien ausschlaggebend für den Erfolg der Strukturbestimmung dieses sehr kleinen Membranproteins sind.
The focus of this thesis is the integral membrane protein Escherichia coli diacylglycerol kinase (DGK). It is located within the inner membrane, where it catalyzes the ATP-dependent phosphorylation of diacylglycerol (DAG) to phosphatic acid (PA). DGK is a unique enzyme, which does not share any sequence homology with typical kinases. In spite of its small size, it exhibits a notable complexity in structure and function. The aim of this thesis is the investigation of DGK’s structure and function at an atomic level directly within the native-like lipid bilayer using MAS NMR. This way, a deeper understanding of DGK’s catalytic mechanism should be obtained.
First, the preparation of DGK was optimized, leading to a sample, which provides well-resolved MAS NMR spectra. The high quality MAS NMR spectra formed the foundation for the second step, the resonance assignment of DGK’s backbone and side chains. The assignment was performed at high magnetic field (1H frequency 850 MHz). The sequential assignment of immobile domains was carried out using dipolar coupling based 3D experiments, NCACX, NCOCX and CONCA. The measurement time could be reduced by paramagnetic doping with Gd3+-DOTA in combination with an E-free probehead. The sequential assignment was mainly performed using a uniformly labelled sample (U-13C,15N-DGK). Residual ambiguities could be resolved by reverse labelling (U-13C,15N-DGK-I,L,V). Resonances could be assigned for 82% of the residues, from which 74% were completely assigned. For validation, ssFLYA was applied, which is a generally applicable algorithm for the automatic assignment of protein solid state NMR spectra. Its principal applicability for demanding systems as membrane proteins could be proven for the first time. Overall, ~90% of the manually obtained assignments could be confirmed by ssFLYA. For the completion of DGK’s assignment, J-coupling based 2D experiments, 1H-13C/15N HETCOR and 13C-13C TOBSY, were carried out to detect highly mobile residues. This way, residues of the two termini and the cytosolic loop, which were not detectable by dipolar coupling based experiments, could be assigned tentatively. Whereupon, peaks for arginine and lysine were assigned unambiguously to Arg9 and Lys12. Overall, ~84% of the residues could be assigned by the applied NMR strategy. Furthermore, a secondary structure analysis was carried out. It showed substantial similarities between wild-type DGK, its thermostable mutant determined both by MAS NMR and the crystal structure of wtDGK. However, there are few differences around the flexible regions most likely caused by the high mobility of these regions. During the assignment procedure, no systematic peak doublets or triplets were detected, indicating that the DGK trimer adopts a symmetric conformation. This is in contrast to the X-ray structure, which shows asymmetries between the three subunits. Especially, crystal packing may be a potential source for these structural asymmetries.
On the basis of the nearly complete assignment of DGK, the apo state was compared with the substrate bound states. Perturbations in peak position and intensity of the substrate bound states were analysed for all assigned residues in 3D and 2D spectra. The nucleotide-bound state was emulated by adenylylmethylenediphosphonate (AMP-PCP), a non-hydrolysable ATP analogue, whereas the DAG-bound state was mimicked by 1,2-dioctanoyl-sn-glycerol (DOG, chain length n = 8). Upon nucleotide binding, extensive chemical shift perturbations could be observed. These data provide evidence for a symmetric DGK trimer with all of its three active sites concurrently occupied. Additionally, it could be demonstrated that the nucleotide substrate induces a substantial conformational change. This most likely supports the enzyme in binding of the lipid substrate, indicating positive heteroallostery. In contrast, the overall alterations caused by DOG are very minor. They involve mainly changes in peak intensities. For DGK bound with either AMP-PCP+DOG or only AMP-PCP, a similar spectral fingerprint was observed. This implies that binding of the nucleotide seems to set the enzyme into a catalytic active state, triggering the actual phosphoryl transfer reaction.
The investigation of DGK’s remarkable stability and the cross-talk between its subunits forms the last part of this thesis. This demands for the identification of key intra- and interprotomer contacts, which are of structural or functional importance. For this purpose, 13C-13C DARR and 2D NCOCX spectra with long mixing times were recorded using high field MAS NMR. Additionally, DNP-enhanced 13C−15N TEDOR experiments were conducted on mixed labelled DGK trimers to enable the visualization of interprotomer contacts. With the applied NMR strategy, intra- (Arg32 - Trp25/ Glu28/ Ala29 and Trp112 - Ser61) and interprotomer (ArgNn,e - AspCg/ GluCd/ AsnCg) long-range interactions could be identified.
Verschiedene physikalische Effekte erlauben es Licht so zu führen und zu verändern, dass es Einblicke in für Menschen sonst unzugängliche Bereiche gewährt. Eines von insgesamt drei Elementen dieser Dissertationsschrift ist der Aufbau eines Multiphotonen-Mikroskops. Dieses fortschrittliche Werkzeug erweitert das zur Verfügung stehende Instrumentarium um verschiedene Analysemethoden, allen voran die 2-Photonen-Fluoreszenz-Mikroskopie. Durch geringfügige Modifikationen können auch weitere Methoden, wie beispielsweise stimulierte Raman-Streuung realisiert werden.
Insbesondere die 2-Photonen-Fluoreszenz-Mikroskopie war für das zweite Element dieser Dissertationsschrift von großer Bedeutung. In dieser Studie wurde das Bleichverhalten von Spinach bei 2-Photonen-Absorption untersucht, sowohl an frei in Lösung befindlichen als auch auf einem Träger immobilisierten Spinach-Komplexen. Die Ergebnisse zu den frei in Lösung befindlichen Spinach-Komplexen zeigen, dass die Verstärkung der Fluoreszenz von DFHBI grundsätzlich auch im Fall der 2-Photonen-Absorption eintritt. Dabei wurde ein Ausbleichen der 2-Photonen-induzierten Fluoreszenz für frei in Lösung befindliche Spinach-Komplexe erst bei außerordentlich hohen Intensitäten der Anregungsstrahlung beobachtet. Dieser Befund kann zumindest teilweise auf das Eindiffundieren fluoreszenter Spinach-Komplexe in das sehr kleine Fokalvolumen innerhalb der 2-Photonen-Anregung stattfindet zurückgeführt werden. Für immobilisierte Spinach-Komplexe konnte gezeigt werden, dass eine kontinuierliche Bildaufnahme gegenüber einer Bildaufnahme in Intervallen mit jeweils zusätzlichen Dunkelphasen zur Erholung des reversiblen Bleichens der 2-Photonen-induzierten Fluoreszenz, sowie der generelle Verzicht auf spezielle Belichtungsschemata und Methoden der Datenakquise mit keinen besonderen Nachteilen verbunden ist. Abschließend betrachtet erweist sich Spinach bei 2-Photonen-Anregung als ausgesprochen resistent gegenüber einem irreversiblem Ausbleichen des Fluoreszenzsignals.
Als drittes Element dieser Dissertationsschrift wurde die Dynamik von Chrimson, einem Kanalrhodopsin mit rot-verschobener Absorption mittels zeitaufgelöster Spektroskopie im sichtbaren Spektralbereich untersucht. Sowohl die Anregungswellenlänge als auch der pH-Wert bzw. der Protonierungszustand des Gegenions haben einen messbaren Einfluss auf die Primärreaktion. Diese verlangsamt sich, sobald der pH-Wert abgesenkt oder die Anregungswellenlänge rot-verschoben wird. Darüber hinaus führt eine Rot-Verschiebung der Anregungswellenlänge zu einer geringeren Effizienz der Isomerisation des Retinal-Chromophors. Die Primärreaktion von Chrimson entspricht dabei einem Reaktionsmodell mit einer Verzweigung des Reaktionspfades auf der Energiehyperfläche des angeregten Zustandes. Ein Reaktionspfad führt dabei durch ein lokales Minimum, welches in seiner Ausprägung stark von der elektrostatischen Umgebung des Retinal-Chromophors abhängt. Je nach ursprünglichem Protonierungszustand des Gegenions der Retinal-Schiff-Base wurden große Unterschiede hinsichtlich der beobachteten transienten Absorptionsmuster für den im Anschluss von Chrimson durchlaufenen Photozyklus gefunden. Bei pH 6,0 weist der Photozyklus von Chrimson eine insgesamt deutlich schnellere Kinetik auf, als es für den Photozyklus bei pH 9,5 beobachtet wurde. Es ist bemerkenswert, dass in elektrophysiologischen Messungen für beide Photozyklen eine Öffnung des Ionenkanals gefunden wurde. Die Kanalfunktion von Chrimson ist somit grundsätzlich nicht vom Protonierungszustand des Gegenions abhängig, wenngleich die Kinetik des Ionenkanals durchaus davon beeinflusst wird. Dies deutet auf Unterschiede in den Wechselwirkungen zwischen dem Ionenkanal und dem Gegenion der Retinal-Schiff-Base hin.
The focus of this research was to understand the molecular mechanism that lies behind the insertion of tail-anchored membrane proteins into the ER membrane of yeast cells. State-of-art instruments such as LILBID, and Cryo-EM, combined with the introduction of direct electron detectors, were used to analyze the proteins that capture tail-anchored proteins near the ER membrane and help their releases from a chaperone, an ATPase named Get3. Get3 escorts TA proteins to the ER membrane, where both Get3 and the TA proteins interact sequentially to Get3 membrane bound receptors Get1 and Get2. Get1 and Get2 are homologs of mammalian WRB and CAML.
The native host was used to separately produce Get1, Get2, and the Get2/Get1 single chain constructs. The studies showed that when Get1 is expressed alone, Get1 does not seems to be located in the ER membrane but rather in microbodies like shape organelles (or peroxisome). Interestingly, Get1 seems to be located in the ER membrane when it is linked to Get2 as single chain construct.
The localization study of Get2/Get1 fused to GFP shows from the fluorescence intensity that Get2/Get1.GFP has a tube-like morphology or membrane-enclosed sacs (cisterna), implying that Get2/Get1 is actually targeted to the ER membrane and is likely functional. In other words, Get1 and Get2 stabilize each other in the ER membrane.
The expression of Get2/Get1 was found to be already optimum when expressed as single chain construct because the fluorescence counts did not improve when additives such as DMSO or histidine were added. However, when Get1 and Get2 are expressed separately, additives improve their protein production yield. In 1 liter culture, Get1 yield is increased by about 3 mg and Get2 by 1.8 mg. This can be explained by the space that Get1 and Get2 should occupy within the ER membrane as they must coexist with other membrane components to maintain the homeostasis of the cell. Hence, if there were no gain for single chain construct expression, it meant that Get2/Get1 was already well expressed on its own in ER membrane and has reached its optimum expression without the help of additives. The Get2/Get1 overexpression is more stable, tolerated and less toxic for the cells to express it at a high level.
DDM has proved to be the best detergent from the detergents tested to solubilize Get1, Get2, and Get2/Get1.
Thereafter, Get1, Get2 (data not shown), and Get2/Get1 were successfully purified in DDM micelles.
Furthermore, for the first time using LILBID, the actual study has shown that Get1 and Get2 are predominantly a heterotetramer (2xGet1 and 2xGet2) but higher oligomerization may exist as well.
Get3 binds to Get1 in a biphasic way with a specific strong binding of an affinity of 57 nM and the second of 740 nM nonspecific indicative of heterogeneity within the interaction between Get1 and Get3. This heterogeneity is caused by the presence of different conformation of either protein. However, in order to characterize a high-resolution structure model of a specific target one needs highly homogenous and identical molecules of the target protein or complex in solution. The homogeneity increases the chances of growing crystals during crystallography as the good homogeneity will likely generate a perfect packing of unit cells stack (also known as crystal lattice) in the three-dimensional spaces. The same truth goes for the single particles analysis Cryo-EM, especially for smaller complexes where having less or no conformation alterations of specific targets will enable the researcher to classify the particles in 2D and 3D, therefore improving the signal-to-noise-ratio that will ultimately lead to high-resolution structure determination.
Get1, Get2/Get1 and chimeric variants (tGet2/Get1, T4l.Get2/Get1, T4l.Get2.apocyte.Get1) were crystallized but none of the crystals could diffract due to heterogeneity.
This heterogeneity was not only occurring upon the binding of Get3 to its membrane receptors, but seems to be already present within the receptors themselves through possibly different conformation.
In this Ph.D. thesis, the heterogeneity of purified Get2 and Get1 as complex or individually in detergent is then, so far, the limiting factor for obtaining a high-resolution structure model of Get1 and Get2. As mentioned above, the heterogeneity observed was not due to the quality of the sample preparation but rather to the effect of different conformations that could have been native, or just because of the micelle used, as it was proven by the 3-D heterogeneity classification by Cryo-EM.
In general, crosslinking is one way to keep the integrity of protein complexes, however it appeared not to improve the sample quality when it was analyzed in micelles. Often the integrity of some membrane proteins is affected when they are solubilized and purified in detergents.
Finally, in this study, the structural map of Get2 and Get1 complex linked with chimeric protein T4 lysozyme and apocytochrome C b562RIL gene was obtained at 10 Å. However, this single chain construct has a density map corresponding to heterodimer species (one Get1 and Get2). Therefore, based on those data the tertiary structure of Get2/Get1 in micelle is poorly defined. It could be that the membrane extraction in DDM and the purification destabilizes the structure of the complex.
Gegenstand der vorliegenden Arbeit sind die Untersuchungen lichtgesteuerter Reaktionen der zwei Retinalproteine Channelrhodopsin-2 (ChR-2) und Proteorhodopsin (PR) mit Hilfe zeitaufgelöster Laserspektroskopie.
Da der Mechanismus der Kanalöffnung des ChR-2 bis heute nicht vollständig aufgeklärt werden konnte, beschäftigt sich diese Arbeit insbesondere mit den Prozessen, die direkt nach der Photoanregung des Retinals stattfinden und die Kanalöffnung vorbereiten. Es wurde dabei gezielt auf für die Funktion des Proteins wichtige Faktoren wie strukturelle Besonderheiten des Chromophors und seiner Umgebung eingegangen und deren Auswirkung auf die Dynamik der Photoreaktionen sowie die Veränderungen im Protein nach der Anregung untersucht.
Zunächst wurden die Ergebnisse der vis-pump-IR-probe-Experimente an ChR-2 im Bereich der Carbonylschwingungsbanden protonierter Glutamat- und Aspartat-Reste dargestellt. Dabei wurde insbesondere die Bildungsdynamik der Differenzbanden in diesem Spektralbereich untersucht und in Anlehnung an die vorhandene Literatur eine Bandenzuordnung der für die Funktion des Proteins wichtigen Aminosäurereste vorgenommen. Aus den Messergebnissen konnte geschlossen werden, dass die mit der Kanalöffnung einhergehenden Konformationsänderungen in ChR-2 durch eine effektive Aufnahme der Überschussenergie durch das Protein auf einer sub-Pikosekunden-Zeitskala vorbereitet werden.
Des Weiteren wurden spektroskopische Untersuchungen an der R120H-Mutante des ChR-2 vorgestellt. Da diese Mutante bei elektrophysiologischen Messungen keine Kanalaktivität zeigte, sollte zunächst geklärt werden, ob die Mutation einen Einfluss auf die Retinalisomerisierung und den nachfolgenden Photozyklus hat. Dabei stellte sich heraus, dass die Retinalisomerisierung bei der R120H-Mutante zwar im Vergleich zum Wildtyp etwas verzögert stattfindet, der Einfluss der Punktmutation auf den weiteren Photozyklus jedoch insgesamt gering ist. Mit Hilfe der Kurzzeit-IR-Spektroskopie im Bereich der Amid I-Schwingung des Proteinrückgrats konnten für die Mutante allerdings signifikante Veränderungen der Bildungsdynamik sowie eine deutliche Abnahme der Amplitude des Amid I-Signals detektiert werden. Anhand weiterer Experimente an den Mutanten E123T und D253N in diesem Spektralbereich konnte anschließend ein Zusammenhang zwischen der Intensität der Amid I-Bande und der Kanalaktivität von ChR-2 festgestellt werden. Diese Ergebnisse ließen somit die Schlussfolgerung zu, dass die Aminosäurereste R120 und D253 eine entscheidende Rolle beim schnellen Transfer der Überschussenergie an das Protein nach der Retinalanregung und der so initiierten Kanalöffnung spielen.
Zusätzlich wurde der Frage nachgegangen, inwieweit Veränderungen am Chromophor die Isomerisierungsreaktion, den nachfolgenden Photozyklus sowie die Funktion des ChR-2 als Ionenkanal beeinflussen können. Zu diesem Zweck wurden spektroskopische Untersuchungen an einem mit 9-12-Phenylretinal (PheRet) rekonstituierten ChR-2 vorgestellt. Es konnte gezeigt werden, dass die Isomerisierung des PheRet zu seiner 13-cis-Form in ChR-2 stark verlangsamt ist und verglichen mit dem nicht modifizierten Chromophor deutlich ineffizienter abläuft. Es wurde außerdem festgestellt, dass die Veränderungen am Retinal zu deutlichen Beeinträchtigungen des Photozyklus führen. Zum einen wurde ein sehr schneller Zerfall des ersten Photoprodukts sowie die Bildung eines zusätzlichen, blauverschobenen Px-Zustands detektiert. Außerdem wurde festgestellt, dass nach der Deprotonierung des isomerisierten PheRet der Großteil der modifizierten Retinale in den Ausgangszustand zurückkehrt und der P3-Zustand nur in geringen Mengen gebildet wird. Die Messergebnisse führten somit zu der Schlussfolgerung, dass die all-trans-Konformation des PheRet in ChR-2 deutlich bevorzugt wird. Da elektrophysiologische Untersuchungen des Retinal-Analogons jodach keine signifikanten Verminderungen der Photoströme im Vergleich zum ATR in ChR-2 zeigten, ließ sich schließlich festhalten, dass die vorgenommenen Veränderungen am Chromophor, die zu einer deutlichen Hemmung der Isomerisierungsreaktion führen und einen starken Einfluss auf den nachfolgenden Photozyklus haben, nicht ausreichend sind, um die Kanalaktivität von ChR-2 komplett zu blockieren, solange noch ein kleiner Anteil der Retinale isomerisieren kann.
Der abschließende Teil der Arbeit beschäftigt sich mit der Absorption des UV-Lichts durch das Retinal mit deprotonierter Schiff-Base im grünabsorbierenden Proteorhodopsin, welches in einem alkalischen Medium im Dunkelzustand akkumuliert werden kann. Die Untersuchungen der Primärreaktion zeigten einen langsamen biexponentiellen Zerfall des angeregten Zustands der UV-absorbierenden Spezies mit anschließender Bildung des 13-cis-Photoprodukts. Aufgrund dieser Ergebnisse konnte ein Reaktionsmodell für die ersten Prozesse nach der UV-Anregung des Retinals im GPR aufgestellt werden, welches möglicherweise für weitere UV-Rezeptoren genutzt werden kann.
The transporter associated with antigen processing (TAP) is a heterodimeric ATP-binding cassette (ABC) transport complex, which selects peptides for export into the endoplasmic reticulum (ER) and subsequent loading onto major histocompatibility complex class I (MHC I) molecules to trigger adaptive immune responses against virally or malignantly transformed cells. Due to its pivotal role in adaptive immunity, TAP is a target for infectious diseases and malignant disorders, such as bare lymphocyte syndrome type I and cancer. A detailed knowledge about the TAP structure and transport mechanism is fundamental for the development of therapies or drugs against such diseases, but numerous aspects are insufficiently determined to date. The aim of this PhD thesis was to elucidate several structural details of TAP using powerful biochemical and biophysical methods and thereby to contribute to the understanding of the translocation machinery functionality.
High protein yields, an efficient isolation from the lipid environment and subsequent purification of a stoichiometric, stable, and functional TAP complex are prerequisites to get detailed insights into TAP functionality. The natural product digitonin is typically used as detergent to isolate TAP, but suffered from fluctuating purity and high costs. The novel detergent GDN was selected from a number of potential detergents upon their ability to isolate and purify TAP overcoming the limitations of digitonin without compromising on functional integrity. State-of-the-art biophysical techniques, such as solid-state nuclear magnetic resonance (NMR), require highly concentrated protein samples. A new and mild procedure to concentrate TAP was established within this thesis. Freeze drying is superior to conventional concentration techniques, such as ultrafiltration, resulting in TAP inactivation and aggregation already at concentrations of 10 mg/mL. This new procedure enables stabilizing TAP in a condensed glycerol matrix and to concentrate the transport complex up to 30 mg/mL active transporter. The functional integrity of the freeze-dried TAP complex was verified by determining equilibrium dissociation constants, peptide dissociation and ATP-hydrolysis rates as well as long-term stabilities identical to untreated TAP. The combined application of the detergent GDN and the freeze drying procedure facilitates the cost-efficient isolation of functional and highly concentrated TAP and enables to study the structure and mechanism of the peptide transporter TAP using modern analyses methods.
Information on peptide-TAP interactions at atomic level have not been obtained so far. This lack of knowledge hampered the mechanistic understanding of the initial steps of substrate translocation catalyzed by TAP. Dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) solid-state NMR on highly concentrated TAP samples prepared with the freeze-drying procedure was used within this thesis to study this challenging membrane protein-substrate complex. The affinity and specificity of peptide binding by TAP are mediated by multiple recognition sites in the N- and C-terminal regions. Side-chains of positions 1, 3, and 9 are most substantially affected upon binding to TAP, revealing recognition principles of the translocation machinery. The nonamer peptide binds to TAP in an extended conformation with an N-to-C terminus distance of ~2.5 nm. Molecular docking revealed that the peptide substrate is locked with its N and C termini between TAP1 and TAP2 and adopts a tilted pose with respect to the membrane plane. The identified contact sites of TAP are consistent with results from earlier crosslinking and mutational analyses on the TAP complex.
The inadequate structure determination and insufficient knowledge about the dynamics of substrate translocation impedes a detailed comprehension of the TAP transport mechanism. Advanced biophysical methods, such as pulsed electron paramagnetic resonance (EPR) or single-molecule Förster resonance energy transfer (FRET), enable to locate the peptide-binding pocket and to elucidate dwell-times, conformational states and dynamics within the translocation cycle of TAP. The specific introduction of spin or fluorescent labels via single cysteines for such studies requires a cysteine-less TAP complex. The endogenous cysteine 213 in TAP2 remained to create a pseudo Cys-less TAP complex within this thesis due to its altered substrate repertoire when mutated to serine as shown in previous studies. Latter complex was used to introduce single-Cys mutations in the cytosolic extensions of transmembrane helices of TAP1. Their functional integrity with respect to peptide binding and translocation was comparable to pseudo Cys-less TAP. All pseudo single cysteines were efficiently labeled, but unintentionally C213TAP2 was labeled as well and TAP concomitantly inactivated. These unsatisfactory initial experiments required the generation of a functional, entirely Cys-less TAP transporter within this thesis. Therefore, C213TAP2 was replaced by all 19 proteinogenic amino acids. All analyzed mutants were capable to bind a high-affinity peptide of TAP, but with varying affinities and binding capacities. The replacement of C213 by isoleucine enabled the generation of a cysteine-less TAP complex with functional characteristics similar to the wild-type transporter and will promote the elucidation of the translocation mechanism of the peptide transporter TAP in future studies using pulsed EPR and single-molecule FRET.
Biological membranes separate the cell interior from the outside and have diverse functions from signal transduction, apoptosis to transportations of ions and small molecules in and out of the cell. Most of these functions are fulfilled by proteins incorporated in the membrane. However, lipids as the main component of membrane not only serve as structural element for bilayer formation but they are also directly involved e.g. signalling processes and bilayer properties are important to mediate protein interactions. To fully understand the role of lipids, it is necessary to develop a molecular understanding of how certain membrane components modify bulk bilayer structure and dynamics. Membranes are known to have many different motions in different conditions and time scales. Temperature, pH, water content and many other conditions change membrane dynamics in a high degree. In addition to this, time scales of motions in membranes vary from ns to ms range corresponding to fast motion and slow motion, respectively. Therefore, membranes are needed to be studied systematically by varying the conditions and using methods to investigate motions in various time scales separately. The aim of this study was therefore perform a combined solid-state NMR / molecular dynamics study on model membranes. Different substrates, such as potential drugs, polarizing agents and signaling lipids were incorporated into bilayers and their location within the membrane and their effect onto the membrane was probed. NSAIDs (non-steroidal anti-inflammatory drugs), pirinixic acid derivatives, ceramides and polarizing agents were the substrates for membranes in this study. There were several experimental methods that were applied in order to investigate effects of these substrates on membrane dynamics. Different kind of phospholipids including POPC, DMPC and DPPC were used. In addition to experimental work, with the information gathered from solid state NMR experiments molecular dynamics simulations were performed to obtain more information about the membranes at the molecular level. As a result, combination of solid-state NMR with molecular dynamics simulations provides very systematic way of investigating membrane dynamics in a large range of time scales.
Pirinixic acid derivatives were special interest of this study because of their activity on peroxisome proliferator-activated receptor (PPAR) as an agonist as well as on enzymes of microsomal prostaglandin E2 synthase-1 (PGE2s) -1 and 5-lipoxygenase (5-LO) as dual inhibitor. Two potent pirinixic acid derivatives, 2-(4-chloro-6-(quinolin-6-ylamino)pyrimidin-2-ylthio)octanoic acid (compound 2) and 2-(4-chloro-6-(quinolin-6-ylamino)pyrimidin-2-ylthio)octanoate (compound 3), have been worked and their insertion depts were investigated by combining of solid state NMR and molecular dynamics simulations. Both experimental and theoretical results pointed out that compound 3 was inserted the phospholipid bilayer more deeply than 2. NSAIDs – lipid mixtures have been also studied here. It is known that consumption of NSAIDs as in mixture with lipids results much fewer side effects than consumption of the drugs alone. Thus, it is crucial to understand interactions of NSAIDs with lipids and investigate the possible complex formation of drugs with lipids. In this study, interactions of three widely used NSAIDs, ibuprofen, diclofenac and piroxicam, with DPPC were investigated by solid-state NMR. 1H and 31P NMR results depicted that ibuprofen and diclofenac had interactions with lipids, which is an indication of drug-lipid complex formation whereas piroxicam didn’t show any interactions with lipids suggesting that no complex formation occurred in the case of piroxicam. Ceramides are known to play key roles in many cell processes and many studies showed that the functions of ceramides are related with the ceramide effects on biological membranes. Therefore, in this study, influences of ceramides on biophysics of lipid bilayers were investigated by using various solid state NMR techniques and molecular dynamics simulations. Results from molecular dynamics simulations clearly showed that ceramide and lipids have strong interactions. More evidences about ceramide-lipid interactions were provided from 1H and 14N NMR results. In addition, it was indicated by both simulation and experimental methods that ceramide increased the rigidity of DMPC by increasing chain order parameters. BTbk is a biradical, which is used as polarizing agent for dynamic nuclear polarization (DNP) experiments and found to be more efficient than other widely used polarizing agents such as TOTAPOL. Since it is a hydrophobic compound, which prefers to stay inside lipid bilayer it is important to investigate the location and orientation of bTbk along the bilayer in order to understand its enhancement profile in DNP measurements. In this study, both NMR relaxation time measurements and molecular dynamics simulations revealed that bTbk tends to stay more close to hydrophobic chain of lipids than the interfacial part of lipids at bilayer surface.
In the first part of this work, a brief introduction on lipid membranes as well as a theoretical summary on both methods of solid-state NMR and molecular dynamics simulations is given. Then, in the second part methodology is introduced for both solid-state NMR spectrometer and theoretical calculations. Afterwards, results of different membrane systems are discussed in the following parts for both solid state NMR and MD. Finally, in the last part, a summary and the conclusion of the overall results together with some future plans are explained.
Infections with multidrug resistant bacterial strains like Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa or Acinetobacter baumanii that can accumulate resistance mechanisms against different groups of drugs cause increasing problems for the health care system. Multidrug efflux pumps are able to transport different classes of substances, providing a basic resistance to different antibiotics. Especially when they are overexpressed they can keep bacterial cells alive under antibiotic pressure unless other high level resistance mechanisms like expression of β-lactamases are established. One example for a clinically relevant multidrug efflux pump is the AcrAB/TolC tripartite system of E. coli, that transports a variety of different substrates, including besides antibiotics dyes, detergents, bile salts and organic compounds from the periplasm or the inner membrane out of the cell. AcrB is the inner membrane component of the protein complex that determines not only the substrate specificity of the tripartite system but energises the transport through the whole system process via proton transduction as well. TolC is the outer membrane spanning protein that forms a pore in the outer membrane enabling the system to transport drugs over the latter out of the cell. The periplasmic membrane fusion protein AcrA connects AcrB and TolC in the periplasm completing the channel from the periplasm, respective the inner membrane to the extracellular space. AcrB assembles as trimers, in asymmetric crystal structures each of the protomers adapts a different conformation designated L(oose), T(ight) and O(pen). In the protomers tunnels open up and collaps in different conformations. In the L protomer a periplasmic cleft opens up that can initially bind substrates to the periplasmic part of AcrB. In the T conformation the deep binding pocket opens that is assumed to bind substrates tightly that were bound to the access pocket before. As well in the T conformation a second pathway leading to the deep binding pocket opens that can guide substrates from a groove between transmembrane helices TM7, TM8 and TM9, the TM8 groove, that is connected with socalled tunnel 1 that ends in the deep binding pocket. In the O conformation a new tunnel opens that connects the collapsing deep binding pocket with the periplasmic space, respective the channel through the periplasmic space formed from AcrA and TolC. Substrates were cocrystallised in access and deep binding pocket verifying their role in substrate transport. In the TM8 groove in high resolution crystal structures DDM molecules were cocrystallised in L and T conformation, indicating that the AcrB substrate DDM may utilise this entrance to the deep binding pocket. The asymmetry observed in the AcrB trimers trongly suggests a peristaltic pump mechanism. The functional rotation cycle demands communication between the subunits and tight control of substrate load of protomers during the transport to optimise the ration between protons that are transduced and substrates transported. Indeed it was shown that AcrB transport mechanism is positively cooperative for some β-lactam substrates. For the communication between the subunits it was assumed that ionic interaction between ion pairs established between charged amino acids at the interfaces of protomers in different conformations are of special importance. Thus the amino acids engaged in ionic interactions, respective ion pairs D73-K131, E130-K110, D174-K110, R168, R259-E734 were substituted with non-charged amino acids pairwise and phenotypes were determined in plate dilution assays and MIC experiments. No evidence for a general, substrate independent, reduction of AcrB activity, that would be expected when the ionic residues are of special importance for AcrB function, could be found with the methods applied. Substitutions were not only combined pairwise according to the putative ion pairs but as well in combinations of R168A with D174N, E130Q and K131M. AcrB activity is reduced for the variant R168A_D174N significantly, activity decreases further for quadruple variant E130Q_K131M_ R168A_D174N. Because the reduced activity is only observed in this combination of substitutions the phenotype must result from accumulation of small effects of the single substitutions. R168A may destabilise the protomer interfaces, as its side chain is oriented in direction to the neighbouring protomer at all interfaces, enhancing substratespecific effects of substitutions E130Q, K131M, D174N that are not in all conformations oriented towards the neighbouring protomer but as well along the substrate transport pathway. Further investigations to figure out the details of the effects observed were not conducted because fluctuating expression of the variants hindered experimental procedures.
In another approach TM8 was in focus of the interest. As mentioned above it is a possible substrate entrance in the inner membrane. The linker between TM8 and the periplasmic PC2 subdomain undergoes a coil-to-helix transition when AcrB cycles through L, T and O conformations. Linking the transmembrane part of AcrB that provides the energy for the transport process via proton transduction with the periplasmic part harbouring the major part of the substrate pathway assignes TM8 and the periplasmic linker (859-876) an important role in the function of AcrB. Thus it was investigated with an alanine-scan of residues 859 to 884 and G/P respective P/G exchange followed by phenotype characterisation in growth curve and plate dilution assays of selected variants. In the phenotype determinations none of the variants, except G861P that seems to cause massive sterical restriction in an α-helical region, displayed a general, substrate independent decrease of AcrB activity. Thus it is concluded that the individual properties of amino acids in TM8 and the periplasmic linker are not of general importance for the mechanism of AcrB. The substitution of individual amino acids had impact on uptake of different substrates in plate dilution assays in a substrate dependent manner. The uptake of some substrates, like erythromycin or chloramphenicol is more affected than that of others with rhodamine 6G resistance being only reduced for the G861P variant. A relation between the PSA of substrates and reduced activity of AcrB was observed. in Substrates with higher PSA values are more affected by substitutions in TM8 or periplasmic linker, resulting in the conclusion that substrates with higher PSA are more likely to be taken up via the TM8 groove/tunnel 1 pathway than those with lower PSA values.
Probing the photointermediates of light-driven sodium ion pump KR2 by DNP-enhanced solid-state NMR
(2021)
KR2 is a light-driven sodium ion pump found in marine flavobacterium Krokinobacter Eikastus. The protein belongs to the microbial rhodopsin family, which is characterized by seven transmembrane helices and a retinal cofactor covalently bound to a conserved lysine residue through a Schiff base linkage. Specific features of KR2 and other sodium pumping rhodopsins are the NDQ motif, the N-terminal helix capping the protein at the extracellular side, and the sodium ion bound at the protomer interface in the pentameric structure. The ability to pump sodium ions was a surprising discovery since the positive charge at the Schiff base was long thought to hinder the transport of non-proton cations and the Grotthuss mechanism could not be applied to explain the Na+ transport. The photocycle of KR2 revealed by flashed photolysis and ultrafast femtosecond absorption spectroscopy consists of consecutive intermediates, named K, L, M, and O.
Here, DNP-enhanced ssNMR was used to analyze various aspects of these intermediate states. The K/L-state can be generated and trapped by in-situ illumination inside the magnet at 110 K. The trapping of L-state together with the K-state at this temperature is unexpected as this usually leads to the trapping of only K-state in bacteriorhodopsin (BR), proteorhodopsin (PR), and channelrhodopsin 2 (ChR2). This observation suggests a lower energy barrier between K- and L-state in KR2. For the O-state, the intermediate was generated by illuminating outside the magnet, followed by rapid freezing in liquid nitrogen and transfer to the magnet. Based on these procedures, the retinal conformation, and the electrostatic environment at the Schiff base in KR2 dark, K-, L- and O-intermediates were probed using 13C-labeled retinals bound to 15N-labeled KR2 by both 1D and 2D magic angle spinning (MAS) NMR experiments.
The obtained data show an all-trans retinal conformation with the distortion of 150° at H-C14-C15-H in the dark state whereas the retinal has a 13-cis, 15-anti conformation in the K- and L-state after light activation. Differences between K- and L-intermediates were observed. The retinal chemical shifts of the K-state show a large deviation from the model compound behavior between the middle and end part of the polyene chain. In the L-state, these differences are much less pronounced. These observations indicate that the light energy stored in the K-state dissipates into the protein in the subsequent photointermediate states. Furthermore, an additional shielding observed for C14 in L-state indicates the slight rotation toward a more compact 13-cis, 15-syn conformation. The distortion of the H-C14-C15-H angle in the L-state (136°) is larger than in the dark state. This twist of the retinal in the L-state would play an important role in lowering the pKa of the Schiff base, which is a prerequisite for the proton transfer from the Schiff base to the proton acceptor (D116). The electrostatic environments at the Schiff base in K- and L-states cause a de-shielding of the 15N nitrogen compared to the dark state. This indicates a stepwise stronger interaction with the counterion as the Schiff base proton moves away from the Schiff base and comes closer to the D116 in the transition from K- to L-state and approaches the proton transfer step during the M-state formation. In the O-state, the retinal was found to be in the all-trans conformation but differed to the dark state in the C13, C20, and Schiff base nitrogen chemical shifts. The largest effect (9 ppm) was observed for the Schiff base nitrogen, which could be explained by the effect of the positive charge of bound Na+ near the Schiff base in the O-state, coordinated by N112 and D116 as observed in the O-state crystal structure in the pentameric form.
The structural change at the opsin followed the retinal isomerization and the energy transfer from the chromophore to the surrounding were also investigated in this thesis using various amino acids labeling schemes. Moreover, 1H-13C hNOE in combination with CE-DNP was applied to probe the dynamics of retinylidene methyl groups and 23Na MAS NMR was employed to detect the bound sodium ion at the protomer interface in KR2 dark state.
Resistant microbes are a growing concern. It was estimated that about 33,000 of people die because of the infections caused by multidrug resistant bacteria each year in Europe (ECDC, 2018, https://www.ecdc.europa.eu/). Bacteria can acquire resistance against toxic compounds via different mechanisms and intrinsic active efflux is one of the first mechanisms deployed by bacterial cells. The membrane-localized efflux pumps catalysing this reaction, extract toxic compounds from the interior of the cell and transport these to the outside, thereby maintaining sub-lethal toxin levels in the cytoplasm, periplasm and membranes. Gram-negative three-component efflux pumps, analysed in this study, are composed of an inner membrane protein, a member of the Resistance-Nodulation cell Division (RND) superfamily, an Outer Membrane Factor (OMF) protein and a Membrane Fusion Protein (MFP) that connects the two afore mentioned components into an active efflux pump. The pumps described in this work, AcrAB-TolC and EmrAB-TolC, are drug efflux pumps belonging to the RND and MFS superfamilies, respectively, while CusCBA is an efflux pump that belongs to the RND heavy metal efflux family. Another efflux pump that was used as a model for the design of an in vitro assay for the silver ion transport studies, CopA, belongs to the P-type ATPase superfamily. All pumps analysed in this study are part of the resistance system of Escherichia coli, which is a highly clinically relevant pathogen.
In order to examine the AcrAB-TolC, CopA and CusA efflux pumps, the individual components were separately produced in E. coli, purified to monodispersity and reconstituted in large unilamellar vesicles, LUVs. Means for the optimized production and adequate conditions for efficient reconstitution were presented in this study. The activity of AcrB in LUVs was detected using fluorescence quenching of the dye 8-hydroxy-1,3,6 pyrenetrisulfonate (pyranine), which is incorporated inside the proteoliposomes and is sensitive to the pH changes in its surrounding. The inactive AcrB variant with a substitution in the proton relay network, D407N, showed no activity in proteoliposomes, which correlates with the measurements done in empty liposomes. When AcrA was co-reconstituted with AcrB D407N proteoliposomes it did not restore protein activity. To test the assembly of the AcrAB-TolC pump out of its single components, an in vitro assay was established where the complex assembly was tested with AcrAB- and TolC-containing liposomes. These experiments showed putative AcrAB-TolC formation in the presence or absence of a pump substrate, taurocholate, as well as in the presence of the pump inhibitor, MBX3132. The assembly appeared stable over time and results were invariant in the presence or absence of a pH gradient across the AcrAB-containing membrane.
After determination of the ATPase activity of the P-type ATPase, CopA, in detergent micelles, the protein was reconstituted in LUVs. Quenching of the Ag+-sensitive dye Phen Green SK (PGSK), present on the inside of the CopA-containing proteoliposomes, was observed in presence of ATP and Ag+. Under the same conditions, but in absence of Ag+-ions, quenching was reduced by 80 % after 300 seconds. No PGSK-quenching was observed in control liposomes in the presence of ATP and Ag+. The additional presence of sodium azide led to minimal reduction of the PGSK-quenching as expected since sodium azide is not an inhibitor of P-type ATPases, but the quenching rate was similar to that of the same experimental condition with control liposomes.
The RND superfamily member CusA, as part of the tripartite CusCBA efflux pump, has been proposed to sequester Ag+ or Cu+ from either the cytoplasmic or periplasmic side of the inner membrane. The periplasmic transport of silver ions was implied from an in vitro assay where the quenching of a pH sensitive dye, 9-amino-6-chloro-2-methoxyacridine (ACMA), indicates acidification of the lumen of the proteoliposomes containing CusA when an inwardly directed pH was imposed. The same experiment with the CusA D405N variant, which was previously reported to be an inactive variant, also led to ACMA quenching, although at a slightly lower rate. Under application of an inwardly directed pH and a (negative inside), CusA-containing proteoliposomes showed a strong quenching of the incorporated PGSK dye, suggesting strong Ag+ influx.
The Major Facilitator Superfamily-(MFS-) type EmrAB-TolC pump has an analogous structural setup as the RND-type AcrAB-TolC pump. To examine the efflux of one of its substrates, carbonyl - cyanide m-chlorophenylhydrazone (CCCP), a plate-based susceptibility assay was used. The presence of the EmrAB-TolC pump confers lower susceptibility levels towards CCCP in E. coli, compared to cells not expressing the pump or cells expressing only the MFS component, indicating that EmrAB-TolC extrudes CCCP.
The work done in this study opens up a path towards investigation of drug and metal resistance in vitro. The methodologies to obtain proteoliposomal samples of multicomponent efflux pumps and subsequent measurements of drug/metal ion and H+ fluxes, as well as the determination of pump assembly are crucial for the future research on pump catalysis and transport kinetics. The in vivo drug-plate assays done in this work provide initial insights for future investigations of the drug susceptibility of E. coli expressing the MFS-type tripartite efflux pumps.