Refine
Year of publication
Document Type
- Doctoral Thesis (48)
Has Fulltext
- yes (48)
Is part of the Bibliography
- no (48)
Keywords
- Molekülstruktur (2)
- RNA (2)
- solid-state NMR (2)
- 2-Photonen (1)
- Ackerschmalwand (1)
- Arzneimitteldesingn (1)
- Arzneimittelentwicklung (1)
- Azide (1)
- Chrimson (1)
- DNP (1)
Institute
- Biochemie und Chemie (30)
- Biochemie, Chemie und Pharmazie (15)
- Biowissenschaften (1)
- Pharmazie (1)
- Physik (1)
G protein coupled receptors (GPCRs) constitute the largest family of cell-surface receptors in mammals and are key players in signal transduction. By responding to a plethora of extracellular stimuli ranging from photons to amines to fatty acids to peptides and proteins, these receptors trigger intracellular signalling cascades and regulate a variety of cellular responses. Approximately 800 genes in humans encode GPCRs which are classified according to sequence conservation into rhodopsin-like, glutamate, adhesion, frizzled/taste2 and secretin receptors. GPCRs share a seven transmembrane domain fold undergoing a conformational change upon ligand binding which is translated to the intracellular surface of the receptor thereby allowing a heterotrimeric G protein to couple. Heterotrimeric G proteins consist of a Ga, Gb and Gg subunit and dissociate into their Ga and Gbg entities upon activation by a GPCR. Subsequently, distinct signalling cascades are triggered by each G protein protomer.
Membrane proteins and GPCRs in particular, are highly important targets in drug design and development as currently approximately 60% of all marketed drugs target membrane proteins. Although these classes of proteins are of high therapeutic interest, our understanding of their mechanism of action and structure remains limited. The first structure of a human GPCR was determined in 2007 and required the development of protein engineering and innovative crystallisation techniques. Since then, approximately 130 GPCR structures of less than 40 individual receptors have been determined providing insights into the structural arrangement of the transmembrane helices, ligand binding pockets and G protein interactions. Combined with spectroscopic methods, these studies allowed a more detailed understanding of the molecular aspects of GPCR activation and signalling. Despite the tremendous advances in GPCR structural biology, certain aspects of GPCR function still remain poorly understood. Due to their size and inherent flexibility, the interaction of protein and peptide ligands with their receptors remains a challenging aspect in the structural characterisation of GPCRs. Moreover, structural information on subtype selectivity of peptide ligands continues to be scarce. To contribute functional and structural information on the molecular mechanisms of peptide interactions with GPCRs, this thesis focused on characterising receptors from the chemoattractant cluster using radioligand binding assays as well as NMR spectroscopy.
The chemoattractant cluster mainly groups the kinin, angiotensin, anaphylatoxin chemotactic complement and apelin receptors according to conserved residues in their ligand binding cavities. All receptors in this cluster bind to peptide ligands deriving from high molecular weight protein precursors upon proteolytic processing. Comparable to the conserved binding pocket of the chemoattractant receptors, the peptide ligands display a certain sequence conservation although they differ strongly in size. The largest ligands used in this thesis are the anaphylatoxins complement 3a and 5a, comprising 77 or 74 residues, respectively. Due to their size and complex fold involving three intramolecular disulphide bonds, solid phase synthesis is impossible, which prompted us to develop a modified cell-free expression system to produce these ligands in tritiated form for subsequent functional characterisation of the complement receptors. To demonstrate the versatility of the developed system, it was applied to another disulphidebond containing peptide ligand, the 21 amino acid endothelin-1. We describe a reliable and multifaceted tool to generate custom labelled peptide ligands for the structural and functional characterisation of GPCRs. The system allows the production of custom radioligands, peptides labelled for NMR studies or with fluorescent amino acids.
Apart from the modulation of GPCR activity by orthosteric ligands, GPCR signalling has long been described to be regulated by allosteric ligands including peptides, small molecules and ions. In this thesis, the influence of sodium ions on the activity state of the chemoattractant cluster receptors and in particular on the apelin, bradykinin 2 and angiotensin II type 1 receptors was examined. In recent high resolution crystal structures an allosteric sodium ion pocket beneath the orthosteric ligand binding cavity was identified and residues contributing to the coordination of sodium ions are conserved throughout the chemoattractant cluster receptors. This allosteric sodium ion coordinated within the transmembrane domain bundle has been described to negatively influence the affinity of agonists but not of antagonists. It was found that sodium ions have distinct influences on the affinity state as well as the available number of binding sites of the chemoattractant receptors. In case of the apelin and bradykinin 2 receptors, sodium ions drastically reduced the number of available binding sites whereas the affinity of peptide ligands to the bradykinin 2 receptors remained constant and the ligand binding affinities to the apelin receptor were completely abolished. In contrast, the angiotensin II type 1 receptor affinity state towards the endogenous peptide ligand angiotensin II is highly dependent on the presence of sodium ions, whereas binding of the synthetic peptide antagonist Sar1-Ile8-angiotensin II remained unaffected by the sodium ion concentration. As differential effects irrespective of the efficacy class but dependent on the amino acid composition of the applied ligands are observed, it can be concluded that electrostatic interactions between charged residues of the peptide ligands and amino acids on the extracellular surface of the receptors are influenced by sodium ions thereby adding another layer of complexity on GPCR signalling.
To elucidate the structure-function relationship of ligand selectivity between the kinin receptors, the structure of desArg10-kallidin (DAK) bound to the bradykinin 1 receptor was determined using solid state NMR (SSNMR) in the course of this thesis. The kinin peptides DAK and bradykinin bind with high affinity and high selectivity to either the bradykinin 1 or bradykinin 2 receptor, respectively. The binding pockets of the receptors are highly conserved and the two peptide ligands only differ in one amino acid at their N- and C-termini whereas the remaining eight amino acids are fully conserved. DAK adopts a U-shaped structure when bound to the bradykinin 1 receptor which resembles a horse shoe-like conformation. Using 2D TEDOR spectroscopy it could furthermore be demonstrated that positively charged residues at the N-terminal part of the peptide engage in ionic interactions with negatively charged amino acids on the extracellular surface of the bradykinin 1 receptor. In contrast, bradykinin displays a distinct b-turn at the C-terminus and an S-shaped conformation of the N-terminal segment when bound to the bradykinin 2 receptor. By using SSNMR to study the binding mode of DAK on the bradykinin 1 receptor we could determine that subtype selectivity between the kinin receptors is conferred by distinct conformational restraints within the peptide ligands and by the formation of specific ionic interaction between charged residues on the peptide and receptor, respectively.
In brief, this thesis contributes structural and functional data on the binding mechanisms and binding mode of different peptide-ligand GPCRs helping to understand subtype selectivity and allosteric modulation of the chemoattractant cluster receptors. In addition, a versatile cell-free expression system was developed that allows the custom synthesis of isotopically labelled peptides containing disulphide bonds for the functional characterisation of GPCRs.
In dieser Arbeit wurden die Strukturen von drei Membranproteinen mittels Einzelpartikel-Kryo‑Elektronenmikroskopie (Kryo‑EM) gelöst. Bei den Membranproteinen handelt es sich um den humanen TRP-Kanal Polycystin‑2, den sekundär-aktiven Transporter BetP aus Corynebacterium glutamicum und den Rotor-Ring der N‑Typ ATPase aus Burkholderia pseudomallei.
Kanäle sind Membranproteine, die Ionen durch eine Pore über die Membran diffundieren lassen. Durch einen präzisen, kanalabhängigen Regulationsmechanismus wird die Pore nur bei Bedarf geöffnet. TRP (transient receptor potential) Kanäle sind anhand von DNA-Sequenzvergleichen identifiziert worden und kommen ausschließlich in Eukaryonten vor. In dieser Arbeit lag der Fokus auf der Strukturbestimmung des humanen TRP Kanals Polycystin‑2 (PC‑2). PC‑2 wurde in einer Studie entdeckt, in der Patienten mit der autosomal dominanten Erbkrankheit „polyzystische Nierenerkrankung“ untersucht wurden. Patienten mit dieser Krankheit tragen eine Mutation in einem der beiden Gene PKD1 oder PKD2, welche für die Proteine Polycystin‑1 und ‑2 kodieren. In dieser Arbeit wurden verschiedene Deletionsmutanten von PC‑2 hergestellt und in das Genom menschlicher HEK293 GnTI‑ Zellen inseriert. Die Zellen, die PC‑2 bzw. die Deletionskonstrukte am stärksten synthetisierten, wurden isoliert und für die rekombinante Proteinherstellung verwendet. Die Expression von PC‑2 führte zu der Entstehung von kristalloidem endoplasmatischem Retikulum. Mutationsstudien in dieser Arbeit zeigen, dass diese morphologische Veränderung durch die Akkumulation von Membranproteinen, die mit sich selbst interagieren, begünstigt wird. Weiter ist es in dieser Arbeit gelungen, PC‑2 zu reinigen und die Struktur des Proteins mit Hilfe von Einzelpartikel Kryo-EM mit einer Auflösung von 4.6 Å zu bestimmen. Die Membrandomäne von PC‑2 ist sehr ähnlich zu den bekannten TRP Kanal Strukturen. Ein Vergleich der PC‑2 Struktur mit dem offenen und geschlossenen TRPV1 Kanal legt nahe, dass PC‑2 in seiner offenen Konformation gelöst wurde.
Der sekundär aktive Transporter BetP von C. glutamicum gehört zu der Familie der BCC- (betaine-carnitine-choline) Transporter und wird durch osmotischen Schock aktiviert. Nach seiner Aktivierung importiert BetP zwei Natriumionen und ein Glycinbetain Molekül. Durch die Akkumulierung von Glycinbetain in der Zelle steigt das osmotische Potential des Zytoplasmas, was den Wasserausstrom aus der Zelle stoppt. Viele Strukturen, die BetP in unterschiedlichen Stadien des Transportprozesses zeigen, konnten bereits mittels Röntgenkristallographie gelöst werden. Allerdings ist die N‑terminale Domäne für die Kristallisation entfernt worden und die C‑terminale Domäne, die komplett aufgelöst ist, ist an einem wichtigen Kristallkontakt beteiligt. Um strukturelle Informationen über die N‑ und C‑terminale Domäne ohne Kristallisationsartefakte zu erhalten, wurde in dieser Arbeit die Struktur von BetP mittels Einzelpartikel Kryo‑EM bestimmt. Die Struktur mit einer Auflösung von 6.8 Å zeigt BetP in einem zum Zytoplasma geöffneten Zustand. Der größte Unterschied zu allen Kristallstrukturen ist die Position der C‑terminalen α‑Helix, die um ~30° rotiert ist und dadurch deutlich enger am Protein zu liegen kommt. Da BetP in Abwesenheit von aktivierenden Stoffen analysiert wurde, wird vermutet, dass es sich bei der gelösten Struktur um den inaktiven Zustand von BetP handelt.
Rotierende ATPasen sind membrangebunden Enzymkomplexe, die bei der zellulären Energieumwandlung eine entscheidende Rolle einnehmen. Sie bestehen aus einem löslichen und einem membrangebundenen Teil. Während in dem löslichen Teil der zelluläre Energieträger Adenosintriphosphat (ATP) entweder synthetisiert oder hydrolysiert wird, baut der membrangebundene Teil entweder einen Ionengradienten auf oder nutzt die Energie eines existierenden Gradienten für die ATP Synthese. Ein wesentlicher Bestandteil des membrangebundenen Teils einer rotierenden ATPase ist der Rotor-Ring. Dieser transportiert Ionen über die Membran und rotiert dabei um seine eigene Achse. In dieser Arbeit wurde eine Studie fortgesetzt, die den Rotor-Ring der N‑Typ ATPase von B. pseudomallei mittels Kryo‑EM untersuchte und zeigte, dass der Rotor-Ring aus 17 identischen Untereinheiten aufgebaut ist. Damit hat die N‑Typ ATPase das größte Ionen-zu-ATP-Verhältnis aller bisher charakterisierten ATPasen. In dieser Arbeit wurde die c17 Stöchiometrie des N‑Typ ATPase Rotor-Rings bestätigt und die Struktur mittels Kryo‑EM bestimmt. Im besonderen Fokus lag dabei der Einfluss von Detergenzien auf die Strukturbestimmung. Es konnte gezeigt werden, dass die beiden Parameter Dichte und Mizellengröße der verwendeten Detergenzien ausschlaggebend für den Erfolg der Strukturbestimmung dieses sehr kleinen Membranproteins sind.
The present work wishes to contribute with information on two members of the primary active transporter group, which differ both in structure and function: Wilson Disease Protein which uses the energy released by ATP hydrolysis to transport copper across cell membranes, and Proteorhodopsin, which uses the energy of light to build up a proton gradient across the bacterial cell membrane, both heterologously expressed in Xenopus laevis oocytes. The surface detection experiments using HA-tagged WNDP confirm the proposed topology of WNDP. The HA-tag per se does not interfere with the function of WNDP, as shown for WNDP HA56 by ATP-dependent phosphorylation after expression in Sf9 cells. Sequence modifications within the WNDP HA56 template-construct reveal some interesting features: i) the N-terminal domain, which contains the 6 metal binding sites, is not necessary for plasma membrane targeting; ii) elevated surface expression of WNDP was observed when the carboxy terminus containing the tri-Leu motif is missing, which suggests that this motif might be involved in the retrieval of the protein from the plasma membrane; iii) the mutations TGE>AAA (proposed to lock the protein in the E1 conformation and lead to constitutive plasma membrane localisation) and D1027A (phosphorylation deficient) did not interfere with the surface localisation of the protein; iv) the mutations CPC>SPS (copper transport deficient) and H1069Q (phosphorylation deficient, most common mutation in Wilson Disease) reduced plasma membrane expression to less then 50%. Western blot analysis shows that the overall expression level of all constructs is similar to that of the reference construct WNDP HA56. These findings suggest that motifs involved in copper binding and catalytic activity do not interfere with plasma membrane targeting of WNDP in Xenopus oocytes. However, the H1069Q mutation could interfere with the distribution of WNDP protein within the cells. In the case of Proteorhodopsin, data presented in this work support earlier observations according to which proteorhodopsin can operate as an outwardly and inwardly directed light-driven ion pump. The residues proposed to play the roles of proton donor (E108) and acceptor (D97) are important for proton translocation. In the absence of an anionic residue at position 97 no outward pumping takes place, but inward charge translocation may occurs under appropriate conditions. An M-like state similar to that known from BR detectably accumulates under neutral pH conditions or under conditions where reprotonation of the Schiff base from the cytoplasmic side is slowed down, as in case of the mutants at position 108. Under acidic conditions PR pumps inwardly under the concerted action of pH and transmembrane potential. The experiments performed in parallel with PR and BR wild-types brought not only interesting information about similarities and differences between the two retinylidene ion pumps, but also led to the observation that the life-time of the M state in BR wild-type can be extended in addition to hyperpolarising transmembrane potentials also by extracellular acidic pH, when the proton gradient through the cell membrane is directed opposite to the ion transport (i.e. when the electrochemical gradient opposing the direction of proton transport increases). Direct photocurrent measurements of HA-tagged PR and BR have shown that the inserted tag may interfere with the functionality of the protein. Next to E108 and D97 in PR other residues in the vicinity of the retinal binding pocket contribute to the translocation of protons, as exemplified by the mutant L105Q: additionally to changing the absorption maximum of the protein, this mutant is a less effective proton pump than the wild type. The example of PR suggests that transduction of light energy by – and reaction mechanisms of retinylidene ion pumps have not been entirely deciphered by the extensive studies of bacteriorhodopsin.
X-ray structure of the Na+-coupled Glycine-Betaine symporter BetP from Corynebacterium glutamicum
(2009)
Cellular membranes are important sites of interaction between cells and their environment. Among the multitude of macromolecular complexes embedded in these membranes, transporters play a particularly important role. These integral membrane proteins perform a number of vital functions that enable cell adaptation to changing environmental conditions. Osmotic stress is a major external stimulus for cells. Bacteria are frequently exposed to either hyperosmotic or hypoosmotic stress. Typical conditions for soil bacteria, such as Corynebacterium glutamicum, vary between dryness and sudden rainfall. Physical stimuli caused by osmotic stress have to be sensed and used to activate appropriate response mechanisms. Hypoosmotic stress causes immediate and uncontrolled influx of water. Cells counteract by instantly opening mechanosensitive channels, which act as emergency valves leading to fast efflux of small solutes out of the cell, therebydiminishing the osmotic gradient across the cell membrane. Hyperosmotic stress, on the other hand, results in water efflux. This is counterbalanced by an accumulation of small, osmotically active solutes in the cytoplasm, the so-called compatible solutes. They comprise a large variety of substances, including amino acids (proline), amino acid derivatives (betaine, ectoine), oligosaccharides (trehalose), and heterosides (glucosylglycerol). Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by facilitating the inward translocation of compatible solutes across the cell membrane, to restore normal hydration levels. This work presents the first X-ray structure of a member of the Betaine-Choline-Carnitine-Transporter (BCCT) family, BetP. This Na+-coupled symporter from Corynebacterium glutamicum is a highly effective osmoregulated and specific uptake system for glycine-betaine. X-ray structure determination was achieved using single wavelength anomalous dispersion (SAD) of selenium atoms. Selenium was incorporated into the protein during its expression in methione auxotrophic E. coli cells, grown in media supplemented with selenomethionine. SAD data with anomalous signal up to 5 Å led to the detection of 39 selenium sites, which were used to calculate the initial electron density map of the protein. Medium resolution and high data anisotropy made the structure determination of BetP a challenging task. A specific strategy for data anisotropy correction and a combination of various crystallographic programs were necessary to obtain an interpretable electron density map suitable for model building. The crystal structure of BetP shows a trimer with glycine-betaine bound in a three-fold cation-pi interaction built by conserved tryptophan residues. The bound substrate is occluded from both sides of the membrane and aromatic side chains line its transport pathway. Very interestingly, the structure reveals that the alpha-helical C-terminal domain, for which a chemo- and osmosensory function was elucidated by biochemical methods, interacts with cytoplasmic loops of an adjacent monomer. These unexpected monomer-monomer interactions are thought to be crucial for the activation mechanism of BetP, and a new atomic model combing biochemical results with the crystal structure is proposed. BetP is shown to have the same overall fold as three unrelated Na+-coupled symporters. While these were crystallised in either the outward- or inward-facing conformation, BetP reveals a unique intermediate state, opening new perspectives on the alternating access mechanism of transport.
Cytochrome b561 (cyt b561) proteins are members of the recently identified eukaryotic ascorbate reducible protein family named CYBASC (CYtochrome B, ASCorbate reducible). CYBASC proteins are di-heme-b-containing membrane proteins that catalyze the transmembrane electron transfer from ascorbate. The function of the CYBASC proteins has been correlated with ascorbate recycling and/or iron facilitation uptake. Therefore, investigations on this family are of great interest as ascorbate is one of the most powerful antioxidants and iron is essential for cell survival both in animals and plants. As the amino acid sequence conservation of animal and plant CYBASC proteins is relatively high, all CYBASC members are proposed to share the same structural motifs. However, no three-dimensional structure of any representative member of the CYBASC family has been determined to date. In the Arabidopsis thaliana (A. thaliana) genome, two complete putative CYBASC open reading frames (ORFs), artb561-a and artb561-b were identified. In this thesis, these two A. thaliana CYBASC ORFs, encoding for Acytb561-A and Acytb561-B proteins respectively, were investigated and obtained main results are listed. 1. A. thaliana CYBASC proteins were heterologously produced in Pichia pastoris and Escherichia coli and purified by a single-step immobilized metal affinity chromatography (IMAC). To facilitate detection and purification, the recombinant A. thaliana CYBASC proteins were produced in both expression systems with the histidine affinity tag. Pure and stable preparations of the cytochromes were obtained via a single-step IMAC in sufficient amounts to perform biochemical characterizations. 2. Detergent solubilized recombinant Acytb561-A and Acytb561-B are dimers. As previously suggested for other CYBASC proteins, analytical gel filtration experiment suggested that both detergent solubilized cytochromes are dimers. 3. Spectroscopic features of Acytb561-B differed from those of previously described bovine chromaffin granule cyt b561. A distinctive feature of the first identified CYBASC protein, the cyt b561 from bovine chromaffin vesicles of adrenal medulla (Bcytb561-CG), is that its differential visible absorbance spectra (visible-spectra) revealed an asymmetric α-band with a maximum at 562 nm and a clear shoulder at 557 nm. This feature was recently used to discriminate CYBASC proteins from not-CYBASC proteins. However, in this thesis, it is shown for the first time that not all CYBASC proteins display in their reduced-minus-oxidized visible-spectra an asymmetric α- band and therefore, this feature can not be used as a discriminating CYBASC characteristic. 4. Ascorbate dependent reduction of the A. thaliana CYBASC proteins is inhibited by diethylpyrocarbonate (DEPC). As previously reported for the Bcytb561-CG, the ascorbatedependent reduction of the A. thaliana CYBASC proteins was inhibited by DEPC treatment. In addition, the ‘ascorbate protectant’ effect against DEPC that was observed on the Bcytb561-CG was also observed on the Acytb561-A and Acytb561-B proteins. Furthermore, as the physiological electron donor of all CYBASC proteins is supposed to be ascorbate, ascorbate-affinity of Acytb561- A and Acytb561-B was monitored and was found to be in the same range of the one of the Bcytb561- CG. 5. A. thaliana CYBASC proteins are Fe3+-chelate reductases. Recently, the Fe3+-chelate reductase activity of various CYBASC proteins was presented. In this thesis, it is shown that also both A. thaliana CYBASC proteins reduced Fe3+-chelates such as Fe3+-EDTA and Fe3+-citrate. Consistently, heme potentiometric reductive-oxidative titration of purified Acytb561-A and Acytb561-B indicated that the midpoint potential of the two heme centres of both cytochromes was lower than the one of those Fe3+-chelates. The values of both heme centre potentials of Acytb561-A and Acytb561-B are also consistent with the observation that both cytochromes were only partially reducible by ascorbate and were fully reduced with the non-physiological reductant Na-dithionite. In summary, this work describes the heterologous production, purification and initial characterizations of two distinct CYBASC proteins from A. thaliana: Acytb561-A and Acytb561-B. Biochemical characterization of these cytochromes showed that the shape of the α-band in the differential spectra is not a discriminating factor for CYBASC proteins but it is likely the DEPC sensitivity and the Fe3+-chelate reductase activity. Establishment of a purification strategy to obtain sufficient amounts of monodispersed and stable A. thaliana CYBASC proteins has also enabled initial screening of three dimensional crystallization conditions which are a prerequisite for a deeper understanding of this new eukaryotic redox enzyme family.
Eine wichtige Klasse von Membranproteinen ist die der aktiven sekundären Transporter. Diese Proteine werden in allen Spezies gefunden und verwenden einen Gradienten von löslichen Substanzen, um den Transport von Substraten voran zu treiben. Dieser Transportprozess ist essentiell, um die chemische Zusammensetzung des Zytoplasmas, wie Kalium- oder Natriumkonzentration von der des umgebenden Milieus unterschiedlich zu halten. Die Konzentration von K+ und Na+ in der Zelle sind wichtig für ein konstantes Zellvolumen, für die pH-Homöostase, für die Erregbarkeit von Nervenzellen und füür die Akkumulierung von Zuckern und Aminosöuren über Kotransportsysteme. In Bakterien wie Escherichia coli wird mit der Oxidation von Substraten durch die Elektronentransportkette ein Protonengradient und gleichzeitig eine Potentialdifferenz erzeugt. Ein Beispiel für einen sekundären Transporter, der diese Potentialdifferenz ausnutzt ist der Na+/H+-Antiporter NhaA, einer der am besten untersuchten Antiporter aus E. coli (Hunte, Screpanti et al. 2005). Dieser Antiporter ist essentiell für die Fähigkeit von Bakterien im alkalischen pH-Bereich zu überleben. Auch bei Säugetieren, sind die Isoformen der humanen Natrium/Protonen-Antiporter SLC9A1-SLC9A8 (NHE1-8) unentbehrlich für eine Reihe physiologischer Prozesse. So wird über die Antiporter-Aktivität nicht nur der Säure-Base-Haushalt und das Verhältnis des Zellvolumens zur Menge an Elektrolyten reguliert, Antiporter spielen ebenso eine wichtige Rolle bei der Adhäsion, Migration und Proliferation der Zelle (Orlowski and Grinstein 2004). Anomalien in diesem Bereich sind charakteristisch für maligne Zellen. Die Rolle von NHE1 in der Entwicklung von Tumoren ist daher ein wichtiger Ansatzpunkt für die Entwicklung von Krebsmedikamenten. Im Herz ist NHE1 die dominierende Isoform und wird damit zu einem pharmakologisch wertvollen Zielprotein (Malo and Fliegel 2006). Struktur und Mechanismus der meisten Antiporter ist bis dato jedoch noch nicht bekannt. Neben den klassischen Methoden der Pharmaentwicklung wird die strukturbasierende Wirkstoffentwicklung immer wichtiger um effiziente Medikamente ohne Nebenwirkung zu herzustellen. Hierfür werden jedoch 3D-Strukturen von Proteinen, sowie genaue Kenntnisse von deren Mechanismus benötigt. Zieht man in Betracht, dass 70% aller bis jetzt entwickelten Medikamente als Ziel ein Membranprotein haben, wird die Notwendigkeit klar, eine möglichst große Anzahl von Membranproteinstrukturen verfgbar zu haben. Wie bereits erwähnt ist die Klasse der monovalenten Kation/Proton-Antiporter aufgrund ihrer vielfältigen Aufgaben, eine äußerst wichtige Zielgruppe für die strukturbasierende Wirkstoffentwicklung. Die große Anzahl an entschlüsselten Genomen eröffnet hier ein breites Forschungsfeld füür die Strukturbiologie. In dieser Arbeit wurden daher Techniken und Methoden aus Hochdurchsatz-orientierten Strukturgenomikprojekten übernommen, um eine große Anzahl von Zielproteinen in ausreichender Menge für die funktionelle Charakterisierung und für die Kristallisation zu produzieren. Als Zielorganismen wurden Salmonella typhimurium LT2, Helicobacter pylori 26695, Aquifex aeolicus VF5 und Pyrococcus furiosus ausgewählt. Die Grundlage dieser Entscheidung hierfür waren die humanpathogenen Eigenschaften der beiden zuerst genannten Organismen und die Hyperthermophilie der beiden letzteren. Dadurch konnten sowohl klinische Anwendungsmöglichkeiten, als auch die potentiell höhere Stabilität der hyperthermophilen Proteine genutzt werden. Als Proteinzielgruppe wurden die monovalenten Kation/Proton-Antiporter aus allen 4 Organismen ausgewählt. Des Weiteren wurden Antiporter zweier eukaryotischer Systeme, Saccharomyces cerevisiae und Homo sapiens in die Zielproteingruppe aufgenommen. In dieser Arbeit wurden 24 verschiedene monovalente Kation/Proton-Antiporter untersucht. Von diesen 24 Zielproteinen konnten 12 in Expressionsvektoren kloniert und produziert werden. Von diesen 12 Antiportern konnten die Zielproteine STM0039 (STNhaA), HP1552 (HPNhaA), STM1556 (NhaC) und PF2032 (NhaC) in einer für die Kristallisation ausreichenden Homogenität und Ausbeute gereinigt werden. Mit der Ausnahme von HP1552 ist bis heute in keiner Veröffentlichung über diese Zielproteine berichtet worden. Durch Komplementationsexperimente mit dem E. coli-Deletionsstamm EP432 konnten eine Reihe von Zielproteine (STM0039, HP1552, PF2032, Aq_2030, STM1806, STM1556) bezüglich ihrer Fähigkeiten zum Na+/H+-Antiport untersucht werden. Die Ziel-proteine STM0039, STM1556 und HP1552 konnten zum ersten Mal kloniert, produziert, gereinigt und anschlieáen in Liposomen rekonstitutiert werden.Weiterhin konnte durch SSM-Messung die pH-Regulation der Zielproteine STM0039 und HP1552 gezeigt werden. Im Gegensatz zu bisherigen Literaturangaben ist HP1552 im pH-Bereich von pH 6 bis 8,5 nicht konstitutiv aktiv, sondern erfährt eine ähnliche Aktivierung wie STM0039 oder ECNhaA. STM0039 lässt sich zudem durch 2-Aminoperimidin inhibieren. Für STM0039 konnten die ersten Proteinkristalle der inaktiven Konformation bei pH 4 erzeugt werden. Weiterhin wurde in dieser Arbeit ein gegen das Zielprotein STM0039 gerichtetes scFV-Antikörperfragment (F6scFv) eingehend charakterisiert. Durch die Ko-Kristallisation des Antikörperfragments F6scFv mit STM0039 konnten die ersten 3 dimensionalen Kristalle in einer aktiven Proteinkonformation bei pH 7,5 erzeugt werden. Neben den bereits verfeinerten Kristallisationsbedingungen für das Zielprotein STM0039 wurden erfolgreich erste Kristallisationsbedingungen für STM0086 und PF2032 gefunden. Es wurde eine Vielzahl von Produktions- und Reinigungsprotokollen füür die Zielproteine etabliert. Dadurch ist der Grundstein füür weitergehende Charakterisierungs- und Kristalli-sationsexperimente gelegt. Die in dieser Arbeit etablierte Kombination von Hochdurch-satzmethoden mit klassischen Vorgehensweisen zur Proteincharakterisierung lassen sich leicht auf anderen Membranproteinklassen bertragen und die Geschwindigkeit der ver-schiedenen Schritte bis zur Strukturlösung stark beschleunigen.
The increasing resistance of almost all pathogenic bacteria to antibiotics (multidrug resistance) causes a severe threat to public health. The mechanisms underlying multidrug resistance include the induced over expression of multidrug transporters which extrude a variety of lipophilic and toxic substrates in an energy dependent fashion through the membrane out of the cell. These proteins are found in all transporter families. The work described in this thesis is dedicated to drug-proton antiporters from the small multidrug resistance (SMR) family. These efflux pumps with just four transmembrane helices per monomer are so far the smallest transporters discovered. Their oligomeric state, topology, three dimensional structure, catalytic cycle and transport mechanism are still rather controversial. Therefore, the aim of this thesis was to directly address these questions for the small multidrug resistance proteins Halobacterium salinarium Hsmr and Escherichia coli (E. coli) EmrE using a number of biophysical methods such as NMR, transport assays, mass spectrometry and analytical ultracentrifugation. Especially the work on Hsmr has been challenging due to the halophilic nature of this protein. In Chapter 1, key questions and the most important biophysical techniques are introduced followed by Material and Methods in Chapter 2. Depending on experimental requirements, cell free or ‘classical’ in vivo expression has been used for this thesis. Cell free expression as an option for the production of small multidrug transporters has been explored in Chapter 3. It has been possible to produce the SMR family members Hsmr, EmrE, TBsmr and YdgF in vitro. The expression of Hsmr was investigated in more detail under different experimental conditions. Hsmr was either refolded from precipitate or maintained in a soluble form during expression in the presence of detergents and liposomes. Furthermore, amino acids for which no auxotrophic strains were available could be labelled successfully. This expression system has been also used for preparing labelled samples of EmrE as described in Chapter 9. In vivo in E. coli expression of Hsmr, as described in Chapter 4, provided large amounts of proteins if fermenter production was used. Uniform labelling and selective unlabelling with stable isotopes (13C, 15N) for NMR spectroscopy was achieved in vivo in a more efficient and cost effective manner than using the cell free approach for this protein. Hsmr could be purified successfully from both in vitro and in vivo expression media. Hsmr is expressed in vivo and in vitro with N-terminal formylation. The Nterminal formylation is unstable and Hsmr in the presence of low salt concentrations was amenable to N-terminal degradation. It was found that Hsmr shows longest stability in Fos-ß-choline® 12 and sodium dodecyl sulphate, but best reconstitution conditions were found, when dodecyl maltoside is used and exchanged with Escherichia coli lipids. A molar protein lipid ratio of 1 to 100, amenable to solid state nuclear magnetic resonance, has been achieved. Sample homogeneity was shown by freeze fracture electron microscopy. The oligomeric state of Hsmr in detergent has been assessed by SDS PAGE, blue native PAGE, size exclusion chromatography, analytical ultracentrifugation and laser induced liquid bead ion desorption mass spectrometry (LILBID) as described in Chapter 5. A concentration and detergent dependent monomer-oligomer equilibrium has been found by all methods. The activity of Hsmr under the sample preparation conditions used here was shown using radioactive and fluorescence binding as well as fluorescence and electrochemical transport assays (Chapter 6). For transport studies, a stable pH gradient was generated by co-reconstitution of Hsmr with bacteriorhodopsin and subsequent sample illumination. Based on the observed long term stability of Hsmr in Fos-ß-choline® 12 and sodium dodecyl sulphate, liquid state NMR experiments were attempted in order to assess the correct folding of Hsmr in detergent micelles (Chapter 7). 1D proton and 2D HSQC spectra of U-15N Hsmr revealed a poor spectral dispersion, low resolution and only a small number of peaks. These are at least partly due to long rotational correlation times of the large protein detergent complex. This problem has been overcome by applying solid-state NMR to Hsmr reconstituted into E. coli lipids (Chapter 8). Uniform 13C labelled samples were prepared and two dimensional proton-driven spin diffusion and double quantum-single quantum correlation spectra were acquired successfully. Unfortunately, the spectral resolution was not yet sufficient for further structural studies. Reasons for the observed linebroadening could be structural heterogeneity or molecular motions which interfere with the NMR timescale. Therefore, the protein mobility has been probed using static 2H solid state NMR on Ala-d3-Hsmr. It could be shown, that parts of Hsmr are remarkably mobile in the membrane and that this mobility can be limited by the addition of the substrate ethidium bromide. Ethidium bromide as well as tetraphenylphosphonium (TPP+) is typical multidrug transporter substrates. The membrane interaction of TPP+ in DMPC membranes has been resolved by 1H MAS NMR. It was found that it penetrates into the interface region of the lipid bilayers and therefore behaves like many other transporter substrates adding to the hypothesis that the membrane could act as a pre-sorting filter. Finally, Chapter 9 is dedicated to the characterisation of the essential and highly conserved residue Glu-14 in EmrE by solid-state NMR. In order to avoid spectral overlap, the single Glu EmrE E25A mutant was chosen instead of the wildtype. The protein has been produced in vitro to take advantage of reduced isotope scrambling in the cell free expression system as verified by analytical NMR spectroscopy. Correct labelling of EmrE was tested by MALDI-TOF and solid-state NMR. The dimeric state of DDM solubilised EmrE has been probed by LILBID. The labelled protein was reconstituted into E. coli lipids to ensure a native membrane environment. Activity was determined by measuring ethidium bromide transport. Freeze fracture EM revealed very homogeneous protein incorporation even after many days of MAS NMR experiments. 2D 13C double quantum filtered experiments were used to obtain chemical shift and lineshape information of Glu-14 in EmrE. Two distinct populations were found with backbone chemical shift differences of 4 - 6 ppm which change upon substrate binding. These findings indicate a structural asymmetry at the assumed dimerisation interface and are discussed in the context of a model for shared substrate/proton binding. These studies represent the first successful use of cell free expression to prepare labelled membrane proteins for solid-state NMR and allow for the first time an NMR insight into the binding pocket of a multidrug efflux pump.
Antibiotic resistance of pathogenic bacteria is a major worldwide problem. Bacteria can resist antibiotics by active efflux due to multidrug efflux pumps. The focus of this study has been the mycobacterial multidrug transporter TBsmr because it belongs to the small multidrug resistance (SMR) family whose members are a paradigm to study multidrug efflux due to their small size. SMR proteins are typically 11-12 kDa in size and have a four-transmembrane helix topology. They bind cationic, lipophilic antibiotics such as ethidium bromide (EtBr) and TPP+, and transport them across the membrane in exchange for protons. To understand the molecular mechanism of multidrug resistance, we have to gain information about the structure and function of these proteins. The research described in this thesis aimed to deduce details about the topology, transport cycle and key residues of TBsmr using biophysical techniques. Solid-state NMR (ssNMR) can provide detailed insight into structural organization and dynamical properties of these systems. However, a major bottleneck is the preparation of mg amounts of isotope labeled protein. In case of proteoliposomes, the problem is compounded by the presence of lipids which have to fit into the small active volume of the ssNMR rotor. In Chapter 3, an enhanced protein preparation is described which yields large amounts of TBsmr reconstituted in a native lipid environment suitable for further functional and structual studies. The achieved high protein-to-lipid ratios made a further characterization by ssNMR feasible. The transport activity and oligomeric state of the reconstituted protein in different types of lipid was studied as shown in Chapter 4. The exact oligomeric state of native SMR proteins is still uncertain but a number of biochemical and biophysical studies in detergent suggest that the minimal functional unit capable of binding substrate is a dimer. However, binding assays are not ideal since a protein may bind substrate without completing the transport cycle which can only be shown for reconstituted protein in transport assays.By combining functional data of a TPP+ transport assay with information about theoligomeric state of reconstituted TBsmr obtained by freeze-fracture electron microscopy, it could be shown that lipids affect the function and the oligomeric state of the protein, and that the TBsmr dimer is the minimal functional unit necessary for transport. The transport cycle must involve various conformational states of the protein needed for substrate binding, translocation and release. A fluorescent substrate will therefore experience a significant change of environment while being transported, which influences its fluorescence properties. Thus the substrate itself can report intermediate states that form during the transport cycle. In Chapter 5, the existence of such a substrate-transporter complex for the TBsmr and its substrate EtBr could be shown. The pH gradient needed for antiport has been generated by co-reconstituting TBsmr with bacteriorhodopsin. The measurements have shown the formation of a pH-dependant, transient substrate-protein complex between binding and release of EtBr. This state was further characterized by determining the Kd, by inhibiting EtBr transport through titration with non-fluorescent substrate and by fluorescence anisotropy measurements. The findings support a model with a single occluded intermediate state in which the substrate is highly immobile. Liquid-state NMR is a useful tool to monitor protein-ligand interactions by chemical shift mapping and thus identify and characterize important residues in the protein which are involved in substrate binding. In agreement with previous studies (Krueger-Koplin et al., 2004), the detergent LPPG was found to be highly suitable for liquid-state NMR studies of the membrane protein TBsmr and 42% of the residues could be assigned, as reported in Chapter 6. However, no specific interactions with EtBr were found. This observation was confirmed by LILBID mass spectrometry which showed that TBsmr was predominantly in the non-functional monomeric state. Functional protein was prepared in proteoliposomes which can be investigated by solidstate NMR (Chapter 7). Besides the essential E13, the aromatic residues W63, Y40, and Y60 have been shown to be directly involved in drug binding and transport. Different isotope labeling strategies were evaluated to improve the quality of the NMR spectra to identify and characterize these key residues. In a single tryptophan mutant of reconstituted TBsmr W30A, the binding of ethidium bromide could be detected by 13C solid-state NMR. The measurements have revealed two populations of the conserved W63 residue with distinct backbone structures in the presence of substrate. There is a controversy about the parallel or anti-parallel arrangement of the protomers in the EmrE dimer (Schuldiner, 2007) but this structural asymmetry is consistent with both a parallel and anti-parallel topology.
The respiratory chain is composed of protein complexes residing in the inner mitochondrial membrane of eukaryotes or in the cytoplasmic membrane of prokaryotes. This cellular energy converter transforms a redox potential stored in low potential substrates into an electrochemical potential across the respective membrane. Typical respiratory chains contain the complexes I, II, III and IV named according to their sequence in the respiratory chain reaction. Electrons of low potential substrates enter at complex I or II and are passed via complex III to complex IV where they are transferred to oxygen. The transport of electrons between the complexes is mediated by small electron shuttles like quinol or cytochrome c. Two different models describe their exchange either by (1) random collision of freely diffusible electron shuttles and membrane protein complexes or (2) arrangement of the complexes in supercomplexes enabling direct channeling of electron shuttles. In the Gram positive bacterium Corynebacterium glutamicum, the complex III to complex IV electron shuttle cytochrome c is not diffusible but a covalently bound part of the diheme cytochrome subunit QcrC of complex III. Therefore, the complexes III and IV have to form a supercomplex for electron transduction. The aim of this thesis was to purify and characterise this obligatory supercomplex III/IV of C. glutamicum. To gain sufficient biomass of C. glutamicum as starting material for purification, a phosphate buffered minimal medium was developed that enabled yield of total 120 g wet cell mass (38 g dry mass) in 12 L (6×2 L) shaking cultures. The determined conversion factor of glucose into biomass was 0.46 g/g indicating an intact respiratory chain. The yield was increased by bioreactor cultivation to ~690 g wet cell mass (~220 g dry mass) in ~10 L culture volume. A previously described homologous expression system was applied that produces the complex IV subunit CtaD with a fused Strep-tag II to facilitate purification. Affinity purifications using the Strep-tag II affinity to Strep-Tactin resin yielded a mixture of complexes and supercomplexes. Two supercomplex III/IV versions named supercomplex A and B and free complex IV were identified in this mixture by size exclusion chromatography, redox difference spectroscopy and two dimensional polyacrylamide gel electrophoresis including blue native polyacrylamide electrophoresis. The here presented downscaled blue native polyacrylamide electrophoresis method with analysis times of ~1 h enabled efficient screening of factors influencing the stability of supercomplex III/IV. The screening resulted that the integrity of supercomplex III/IV is preserved by using neutral detergents at minimal detergent to protein ratios for solubilisation and low detergent concentrations for purification and storage slightly above the required critical micellar concentration. Furthermore, pH <=7.5 is required for stability of supercomplex III/IV. Large biomass yields enabled upscaling of supercomplex III/IV affinity purification. Application of the identified stability conditions resulted in affinity purified samples free of supercomplex B. The major component supercomplex A was efficiently separated from residual free complex IV by preparative size exclusion chromatography. Concentration of purified supercomplex A by ultracentrifugation resulted in integrity of the supercomplex for several days at 4 °C. Purified supercomplex A contains ten different previously described subunits. The heme content of supercomplex A relative to the protein mass is heme A: 6.0 μmol/g, heme B: 6.5 μmol/g, and heme C: 5.8 μmol/g determined by redox difference spectroscopy and biochemical protein quantification. This indicates an equimolar ratio of complex III and complex IV in supercomplex A. Supercomplex A has quinol oxidase activity that is inhibited by stigmatellin or sodium azide. The turnover number of transferred electrons per complex III monomer is 148 s−1 at 25° C. The homogeneity and stability of the prepared supercomplex A enabled the growth of threedimensional crystals of up to 0.1 mm in length. Their composition of supercomplex A was verified by redox difference spectroscopy of intact crystals and blue native polyacrylamide electrophoresis of dissolved crystals. The crystals diffracted X-rays corresponding to a resolution of ~10 Å. Electron microscopy of negative stained samples revealed the uniform shape of purified supercomplex A particles with dimensions of 22 × 9 nm in the view plane. Combined heme quantification, size determination, determined activity, symmetry considerations, and particle shape indicate that supercomplex A has a central dimer of complex III and two monomers of complex IV on opposite sides. This conformation is functionally reasonable because it provides each complex III monomer with one complex IV monomer as electron acceptor. Therefore, the stoichiometry of supercomplex A is most likely III2IV2. The sensitivity of supercomplex A to detergents indicated a role of phospholipids in its stability. Therefore, a method for phospholipid identification and quantification was developed that is suitable for detergent solubilised crude and purified membrane protein samples. The analysis combines separation of phospholipid classes according to their head group by normal phase high performance liquid chromatography with evaporative light scattering detection. Calibration with external standard allows quantification of phospholipid amount in the range of 0.25-12 μg. The method is verified by analysing the phospholipid content of the well characterised complex III of Saccharomyces cerevisiae. The reduction of its phospholipid content during its purification steps is monitored. The complex III sample purified to crystallisation quality contains the phospholipid content that was also observed in previously reported structures determined by X-ray crystallography. Purified stable supercomplex A from C. glutamicum revealed a large content of bound phospholipids. The main differences between intact supercomplex A and a mixture of potentially disintegrated smaller complexes is that intact supercomplex A has a doubled phosphatidic acid content and an increased phosphatidyl glycerol content. The importance of the small anionic phosphatidic acid for mediation of contacts between complexes in a supercomplex is discussed. The total phospholipid content of stable supercomplex A is sufficient for a complete belt surrounding the supercomplex in the membrane plane. This indicates that also all essential internal phospholipid binding positions are occupied and potentially stabilise supercomplex A.
Proteorhodopsin (PR) originally isolated from uncultivated γ-Proteobacterium as a result of biodiversity screens, is highly abundant ocean wide. PR, a Type I retinal binding protein with 26% sequence identity, is a bacterial homologue of Bacteriorhodopsin (BR). The members within this family share about 78% of sequence identity and display a 40 nm difference in the absorption spectra. This property of the PR family members provides an excellent model system for understanding the mechanism of spectral tuning. Functionally PR is a photoactive proton pump and is suggested to exhibit a pH dependent vectorality of proton transfer. This raises questions about its potential role as pH dependent regulator. The abundance of PR in huge numbers within the cell, its widespread distribution ocean wide at different depths hints towards the involvement of PR in utilization of solar energy, energy metabolism and carbon recycling in the Sea. Contrary to BR, which is known to be a natural 2D crystal, no such information is available for PR til date. Neither its functional mechanism nor its 3D structure has been resolved so far. This PhD project is an attempt to gain a deeper insight so as to understand structural and functional characterization of PR. The approach combines the potentials of 2D crystallography, Atomic Force Microscopy and Solid State NMR techniques for characterization of this protein. Wide range of crystalline conditions was obtained as a result of 2D crystallization screens. This hints towards dominant protein protein interactions. Considering the high number of PR molecules reported per cell, it is likely that driven by such interactions, the protein has a native dense packing in the environment. The projection map represented low resolution of these crystals but suggested a donut shape oligomeric arrangement of protein in a hexagonal lattice with unit cell size of 87Å*87Å. Preliminary FTIR measurements indicated that the crystalline environment does not obstruct the photocycle of PR and K as well as M intermediate states could be identified. Single molecule force spectroscopy and atomic force microscopy on these 2D crystals was used to probe further information about the oligomeric state and nature of unfolding. The data revealed that protein predominantly exists as hexamers in crystalline as well as densely reconstituted regions but a small percentage of pentamers is also observed. The unfolding mechanism was similar to the other relatively well-characterized members of rhodopsin family. A good correlation of the atomic force microscopy and the electron microscopy data was achieved. Solid State NMR of the isotopically labeled 2D crystalline preparations using uniformly and selectively labeling schemes, allowed to obtain high quality SSNMR spectra with typical 15N line width in the range of 0.6-1.2 ppm. The measured 15N chemical shift value of the Schiff base in the 2D crystalline form was observed to be similar to the Schiff base chemical shift values for the functionally active reconstituted samples. This provides an indirect evidence for the active functionality of the protein and hence the folding. The first 15N assignment has been achieved for the Tryptophan with the help of Rotational Echo Double Resonance experiments. The 2D Cross Polarization Lee Goldberg measurements reflect the dynamic state of the protein inspite of restricted mobility in the crystalline state. The behavior of lipids as measured by 31P from the lipid head group showed that the lipids are not tightly bound to the protein but behave more like the lipid bilayer. The 13C-13C homonulear correlation experiments with optimized mixing time based on build up curve analysis, suggest that it is possible to observe individual resonances as seen in case of glutamic acid. The signal to noise was good enough to record a decent spectrum in a feasible period. The selective unlabeling is an efficient method for reduction in the spectral overlap. However, more efficient labeling schemes are required for further characterization. The present spectral resolution is good for individual amino acid investigation but for uniformly labeled samples, further improvement is required.