Refine
Year of publication
Document Type
- Doctoral Thesis (24)
Language
- English (24)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- Cardiac regeneration (1)
- Coronaries (1)
- Development (1)
- Developmental Biology (1)
- Extracellular matrix (1)
- Heart (1)
- Regeneration (1)
- Zebrafish (1)
- development (1)
- endothelial cell (1)
Institute
- Biowissenschaften (24)
Discrepancies between knockdown and knockout animal model phenotypes have long stood as a perplexing phenomenon. Several mechanisms explaining such observations have been proposed, namely the toxicity or the off-target effects of the knockdown reagents, as well as, in certain cases, genetic robustness – an organism's ability to maintain its phenotype despite genetic perturbations. In addition to these explanations, transcriptional adaptation (TA), a phenomenon defined as an event whereby a mutation in one gene leads to transcriptional upregulation or downregulation of another, adapting, gene or genes expression, has been recently proposed as an alternative explanation for the conflicting knockdown and knockout phenotype paradox.
Since its discovery in 2015, TA's precise mechanism remains a subject of ongoing research. Majority of evidence suggests that mutant mRNA degradation plays a central in TA. Epigenetic remodeling is also thought to play a role, as evidenced by an increase in active histone marks at the transcription start sites of the adapting genes. Whether mRNA degradation is indeed the key player in TA remains debated. Furthermore, it is still unknown how exactly TA develops, what adapting genes it targets, and whether genomic mutations that render mutant mRNA sensitive to degradation are required for TA to occur.
Throughout the experiments described in this Dissertation, I have designed an inducible TA system where TA can be triggered on demand and its effects on the cell’s transcriptome followed through time. I have demonstrated that degradation-prone transgenes, once induced and expressed, can be efficiently degraded, resulting in the protein loss-independent upregulation of adapting genes via TA. Adapting genes with higher degree of sequence similarity become upregulated faster than genes with lower degree of sequence similarity. Further functionality of this approach to study TA is limited by the leakiness of the inducible gene expression system; however, constitutively expressed degradation-prone transgenes were used to demonstrate TA in human cells.
In addition, I have developed an approach to target wild-type cytoplasmic mRNAs without altering the cell’s genome and reported a TA-like phenomenon, which manifested as adapting gene upregulation not relying on mutations in other genes. Cytoplasmic mRNA cleavage with CRISPR-Cas13d triggered a TA-like response in three different gene models: Actg1 knockdown, Ctnna1 knockdown, and Nckap1 knockdown. After comparing two different modes of triggering TA, CRISPR-Cas9 knockout versus CRISPR-Cas13d knockdown, I reported little overlap between the dysregulated genes and suggested that diverse mRNA degradation modes led to distinct TA responses. In addition, the transcriptional increase of Actg2 caused by CRISPR-Cas13d-mediated Actg1 mRNA cleavage did not require chromatin accessibility changes.
Experiments and genetic tools described in this dissertation investigated how TA develops from its earliest onset, how it affects the global transcriptome of the cell, as well as provided compelling evidence for an mRNA degradation-central TA mechanism. I have created tools to study both direct and indirect TA gene targets and unveiled important insights into the temporal dynamics of TA. Genes with higher sequence similarity were found to be upregulated more rapidly than those with lower similarity. Furthermore, it was revealed that the epigenetic properties of TA responses vary depending on the triggering mechanism. Cas13d-mediated degradation of wild-type mRNAs led to immediate transcriptional enhancement independent of epigenetic changes, which stood in contrast to previously measured alterations in chromatin accessibility in CRISPR-Cas9 mutants. This research has thus significantly advanced our knowledge of TA and provided valuable tools and findings that contribute to the broader understanding of gene expression regulation in response to mRNA degradation.
The adult mammalian heart is unable to regenerate lost myocardial tissue after injury. In contrast, some lower vertebrates including zebrafish are able to undergo complete epimorphic regeneration following multiple types of cardiac injury. During the process of regeneration, spared zebrafish cardiomyocytes in the vicinity of the injured area undergo dedifferentiation and proliferation, thereby giving rise to new cardiomyocytes which replace the injured muscle. Insights into the molecular networks controlling these regenerative processes might help to develop novel therapeutic strategies to restore cardiac performance in humans.
While TGF-β signaling has been implicated in zebrafish cardiac regeneration, the role of individual TGF-β ligands remains to be determined. Here, I report the opposing expression response of two TGF-β ligand genes, mstnb and inhbaa, during zebrafish heart regeneration. Using gain- and loss-of-function approaches, I show that these ligands exert opposite effects on cardiac regeneration and specifically on cardiomyocyte proliferation. Notably, I show that overexpression of mstnb and loss of inhbaa negatively regulate cardiomyocyte proliferation and therefore disturb cardiac regeneration. In contrast, loss of mstnb and activation of inhbaa not only promote physiological cardiomyocyte proliferation but also enhance cardiac regeneration. I also identify Inhbaa as a mitogen which promotes cardiomyocyte proliferation independent of the well-established Nrg-ErbB signaling. Mechanistically, I unraveled that Mstnb and Inhbaa function through alternate Activin type 2 receptor complexes to control the activities of the signal transducers, Smad2 and Smad3, thereby regulating cardiomyocyte proliferation.
Altogether, I reveal novel and unidentified opposite functions of two TGF-β ligands during cardiac development and regeneration, resulting in a pro-mitogenic as well as an anti-mitogenic effect on cardiomyocytes. This study should therefore stimulate further research on targeting specific TGF-β family members to generate novel regenerative therapeutic strategies.
Tissue size regulation is critical for the normal functioning of the organ as well as to prevent unwanted pathogenesis such as cancer. The Hippo signaling pathway is well known for its robust regulation of tissue growth by the negative regulation of its nuclear effectors YAP1 and WWTR1. In this study, I have described the role of Yap1/Wwtr1 in zebrafish development, with a primary emphasis on the cardiovascular system.
I have generated zebrafish yap1 and wwtr1 mutants by CRISPR/CAS9. The mutant alleles are likely to be nonfunctional due to a premature stop codon and they show evidence of nonsense-mediated decay. Given that Yap1 and Wwtr1 are closely related proteins and have overlapping functions, I am given the opportunity to perform combinatorial analysis of the mutations on zebrafish development. Together with molecular probing tools, high-throughput sequencing and high-resolution imaging, I showed that
1. Double yap1;wwtr1 mutants exhibit severe posterior elongation phenotype, but somitogenesis appears to proceed as usual.
2. Yap1 and Wwtr1 may play an important role in PCV development and secondary angiogenic sprouting. However, key experiments will be needed to elucidate the direct role of Yap1 and Wwtr1 on these processes.
3. wwtr1-/- larvae hearts have a reduction in trabeculation, but in mosaic WT hearts, mutant cardiomyocytes prefer to populate the trabecular layer. My studies revealed that the mutant compact wall could not support trabeculation, which explains the hypotrabeculation phenotype of wwtr1-/- hearts. Additionally, Wwtr1 is required for myocardial Notch activity and can inhibit compact wall cardiomyocytes from entering the trabecular layer.
In summary, the Hippo signaling pathway, through Yap1/Wwtr1 has important regulatory functions in growth control. My work has revealed a surprising role for Yap1/Wwtr1 in tissue morphogenesis such as posterior tail morphogenesis and specific developmental processes of the cardiovascular system. It will be of interest to elucidate the regulation of Yap1/Wwtr1 in individual cells that translates into the complex cellular behaviors that drives morphogenesis.
In conclusion our data show, that Flightless I function is essential for striated muscle development in zebrafish. Myofibrillar bundling and focal adhesion formation represent the basis for this development, and are ultimately a prerequisite for cardiac trabeculation. Future analysis of Actin polymerization in trabeculation will provide addition knowledge about the sensitivity of the developing and adult heart to a disequilibrium in F-actin versus G-actin availability.
In this study we found a novel ErbB2-dependent cardiomyocyte maturation process which affects both cardiac chambers. It will be of great interest to further study the nature of the Memo1-GFP cell-cell junctions and other junction proteins in order to unravel the significance of this maturation process for heart development.
Interestingly we found, that memo1bns4 homozygous mutant animals, which we generated with CRISPR/Cas9 technology, develop indistinguishable from siblings, suggesting that zygotic memo1 expression is dispensable for zebrafish development. Future studies will address the question if maternal zygotic memo1bns4 mutants will develop a heart or vascular phenotype as reported form Memo1 knockout mice or as observed in memo1 morphants in this study.
In cultured C2 mouse skeletal muscle cells the Golgi-apparatus relocalizes dependent on centrosomal proteins and independent of microtubules. We describe here that zebrafish cardiomyocytes have a similar Golgi-complex distribution suggesting a similar differentiation-dependent reorganization. This striated muscle specific, fragmented Golgi distribution might be an advantage for these cells in order to shuttle vesicles through the densely packed sarcomere structures. Future studies could address the timing of the Golgi-reorganization in cardiomyocytes during development and possibly use this Golgi-zebrafish line as a tool to study cardiomyocyte maturation in disease models and in heart regeneration.
The cardiovascular system (CVS) consists of heart and blood vessels, forming a close circulatory loop. All tissues depend on the nutrients and molecular oxygen (O2) delivered by the blood. Therefore, it is not surprising that the CVS is one of the first working systems and the heart is the first functional organ in the forming embryo (Baldwin 1996). The building blocks of blood vessels are endothelial cells (ECs), which form the endothelium, a specialized epithelium that defines the luminal surface of the vessels (Pugsley and Tabrizchi 2000). The process of blood vessel development comprises several steps. The first events occurring are the formation of new vessels de novo to constitute the primary vascular loop known as vasculogenesis. During vasculogenesis the vascular precursors, known as angioblasts, migrate and coalesce to form the axial vessels. Subsequently, the main vessels undergo a specification step where they acquire either arterial or venous identity. As the embryo increases in size, the main vascular loop needs to increase in complexity. In order to reach all the different parts of the developing organs, new blood vessels are formed from pre-existing ones, a phenomenon known as angiogenesis (Gore et al. 2012).
Mature blood cells have a short lifespan. Therefore, hematopoietic stem cells (HSCs) are required throughout lifetime to constantly form new blood cells in a process called hematopoiesis. Interestingly, endothelial and immune cells development have been shown to converge at different points during their development, one of which is developmental hematopoiesis. During embryogenesis, definitive hematopoiesis occurs in a tissue called hemogenic endothelium (HE), a specialized subset of ECs at the ventral wall of the dorsal aorta (DA). HE acquires hematopoietic potentials and gives rise to HSCs, through a process known as endothelial-to-hematopoietic transition (EHT). During EHT, these specialized ECs extrude from DA and colonize the so-called aorta-gonadmesonephros (AGM) region, forming the native HSCs (Paik and Zon 2010).
As vascular development requires different steps, the molecular pathways involved are many. The Notch signaling pathway has been demonstrated to be one of the main players in vascular development. Among other functions, Notch signaling has been shown to be important during EHT. In the murine model, Runx1, a master regulator of HSC formation, has been shown to be transcriptionally regulated by NOTCH1 through GATA2 activation. This observation was later corroborated by knockdown studies for notch1a and notch1b in zebrafish (Butko, Pouget, and Traver 2016). Another essential pathway for vascular development is the HIF pathway. Hif-1α, Hif-1β and Hif-2α mouse mutants show severe vascular defects that result in early embryonic lethality (Simon and Keith 2008), which hinders a deep analysis of the phenotypes incurring in the mutant embryos. In addition, deletion of Hif-1α specifically in myeloid cells showed abnormalities in the motility, invasiveness, and adhesion of macrophages (Cramer et al. 2003). Intriguingly, Hif-1α deletion in vascular endothelial cadherin-expressing cells led to a significant but partial reduction of HSC number, suggesting that other players may be involved in this pathway (Imanirad et al. 2014).
Zebrafish embryos have been shown to be tolerant to hypoxia at very early stages of development (Padilla and Roth 2001). Also, zebrafish embryos develop externally and this allows to finely manipulate the environment where they grow (Lieschke and Currie 2007). These features make zebrafish an ideal model to investigate how hypoxia and Hif transcription factors affect vertebrate vascular development. In this study, I will examine the impact of hypoxia on zebrafish vascular development. Specifically, I will dissect the role of hif-1α in macrophage-EC interactions during vascular development and repair. Moreover, I show redundant functions for hif-1α and hif-2α in HSC development upstream of Notch signaling.
The role of Apelin signaling and endocardial protrusions during cardiac development in zebrafish
(2023)
During cardiac development, cardiomyocytes (CMs) are delaminated from the compact muscle wall to increase the muscle mass of the heart. This process is also known as cardiac trabeculation. It has been shown that growth factors produced by endocardial cells (EdCs) are required for myocardial morphogenesis and growth. In particular, Neuregulin produced by EdCs promotes myocardial trabeculation. The deficiency of Neuregulin signaling leads to hypotrabeculation. Endocardial protrusions project from the endocardium to the myocardium are also essential for the trabeculae onset. Yet current studies only introduce the function of endocardial sprouts descriptively. This article first reports the mechanisms of endocardial sprouting during myocardial trabeculation. By living imaging, we first demonstrate that EdCs interact with CMs through membrane protrusions in zebrafish embryos. More interestingly, these protrusions stay in close contact with their target CMs in spite of the cardiac contraction. We utilize loss-of-function strategies to report the importance of myocardial apelin, which induces endocardial protrusion formation. Zebrafish lacking Apelin signaling exhibit defects in endocardial protrusion formation as well as excessive deposition of cardiac jelly and hypotrabeculation. Notably, we also present data that blocking protrusion formation in endocardial cells phenocopies the trabeculation defects in apelin mutants. Mechanistically, endocardial-derived Neuregulin requires Apelin signaling mediated endocardial protrusions, and Neuregulin dependent pERK expression is attenuated in the condition of reduced endocardial protrusion formation. Together, our data suggest that endocardial-myocardial communication through endocardial protrusions acts as an underlying principle allowing myocardial growth.
The lung comprises more than 40 different cell types, from epithelial cells to resident mesenchymal cells. These cells arise from the foregut endoderm and differentiate into specialized cell types that form the respiratory and conducting airways, and the trachea. However, the molecular pathways underlying these differentiation processes are poorly understood, and may be relevant to pathological conditions. According to the World Health Organization (WHO), while the respiratory disease rate is increasing, limited treatment and therapies are available. Thus, there is a growing need for new treatment strategies and alternative therapies. Various in vivo and in vitro studies in the model organism mus musculus have already provided valuable information on lung cell lineages and their differentiation and/ or dedifferentiation during development and pathological conditions. However, there remain many questions regarding the key regulators and molecular machinery driving lung cell differentiation and underlying lung progenitor/stem cell biology.
Aiming to develop new animal models for lung diseases, we used a forward genetic careening approach, which provides an unbiased method for identifying genes with important roles in lung cell differentiation, and thus probable contributors to pathological conditions. We conducted an N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice and used several histological and immunohistochemical approaches to identify and isolate mutants, focusing on mutations associated with cell differentiation rather than those affecting early development and patterning of the respiratory system. Thus, we screened for phenotypes in the respiratory system of pups from the F2 generation at postnatal day 7 and 0 (P7; P0). I specifically screened 114 families. Each F1 male animal is the founder of 5 to 6 F2 female daughters. For each family, at least 4 F2 females per male founder were analyzed. In total, I screened 630 litters at P7 and P0 with 7 pups on average for each litter. As a result of this extensive screening, 11 different phenotypes in 42 different F2s were discovered at primary screen and later just 2 phenotypes recovered in F3 generation of identified carriers. To identify the causative genes for each of these phenotypes, whole exome sequencing will be conducted in the future to identify recurring SNPs; these can subsequently be linked causatively to the resultant phenotype(s) via complementation studies. In turn, these linkages would enable the creation of mutant mice using CRISPR/Cas9 genomic engineering, which would be invaluable to the further study of respiratory development and disease.
The development of the atrioventricular (AV) canal and the cardiac valves is tightly linked and a critically regulated process. Anomalies in components of the involved pathways can lead to congenital valve malformations, a leading cause of morbidity and mortality in neonates. Myocardial Bmp as well as endocardial Notch and Wnt signaling have been identified as critical factors for the induction of EMT during the formation of the endocardial cushions and cardiac valves. Of these, canonical Wnt signaling positively regulates endocardial proliferation and EMT but negatively regulates endocardial differentiation. Further, elevated Wnt signaling leads to the ectopic expression of myocardial Bmp ligands suggesting a high level of integration of the involved pathways and crosstalk amongst the different cardiac tissues.
Here we have identified a novel role for Id4 as a mediator between Bmp and Wnt signaling. Id4 belongs to the Id family of proteins and is known to be involved in bone and nervous system development. We found that in zebrafish, id4 is expressed in the endocardium of the AV canal at embryonic stages and throughout the atrial chamber in addition to AV canal, in adults. Using transcription activator-like effector nucleases (TALENs) we established an id4 mutant allele. Our analysis shows that id4 mutant larvae are susceptible to retrograde blood flow, and show aberrant expression of developmental valvular markers. These include expanded expression domains of markers like bmp4, cspg2a and Alcam. In contrast, valve maturation as assessed by the expression of spp1 is considerably reduced in id4 mutants. Using conditional transgenic systems, along with elegant in vivo imaging of transgenic reporter lines, we further found that id4 is a transcriptional target of Bmp signaling, and it is capable of dose dependently restricting Wnt signaling in the endocardium of the Atrioventricular Canal.
Taken together, our data identifies Id4 as a novel player in Atrioventricular Canal and valve development. We show that Id4 function is important in valve development acting downstream of Bmp signaling by restricting endocardial Wnt to allow valve maturation
Die Bildung von Blutgefäßen ist essentiell für die Entwicklung und Homöostase von Wirbeltieren und die Endothelzellspezifikation ist ein wichtiger erster Schritt in diesem Prozess. Das früheste bekannte Ereignis bei der Endothelzellspezifikation im Zebrafisch ist die Expression des bHLH-PAS-Transkriptionsfaktor-Gens npas4l. Ich habe eine transgene V5-Linie zum Nachweis des markierten Npas4l auf Proteinebene und eine Gal4-VP16-Reporterlinie zur Visualisierung und Verfolgung von npas4l exprimierenden Zellen in vivo generiert. Beide Linien können bereits in frühen Entwicklungsstadien nachgewiesen werden und komplementieren auch starke npas4l-Mutanten Allele. Um npas4l Reporter exprimierende Zellen in npas4l Mutanten zu verfolgen, habe ich anschließend eine mutierte Variante der Gal4-Reporterlinie erzeugt. Diese Mutante trägt eine Insertion in der Region, die die DNA-Bindedomäne kodiert. Dadurch stört sie die Npas4l-Funktion, aber nicht die Reporterexpression. Dieses mutierte Reporterallel komplementiert nicht die npas4l-Mutanten und zeigt einen starken Phänotyp, was darauf hindeutet, dass es sich um ein funktionelles Nullallel handelt. Phänotypische Analysen zeigten, dass npas4l-Reporter positive Zellen in npas4l-Mutanten nicht spezifizieren oder zur Mittelachse wandern. Stattdessen tragen sie zu den vom intermediären Mesoderm abgeleiteten pronephrischen Tubuli und dem vom paraxialen Mesoderm abgeleiteten Skelettmuskel bei. Ich habe diese Phänotypen durch Einzelzell-RNAseq an den npas4l-Reporter positiven Zellen in npas4l+/- und npas4l-/- Embryonen bestätigt. Zusammen erklären diese beiden alternativen Zellschicksale den Großteil der beobachteten Veränderungen zwischen den Genotypen. Npas4l ist dafür bekannt die Expression der drei Transkriptionsfaktorgene etsrp, tal1 und lmo2 zu fördern. Ich stellte die Hypothese auf, dass das Fehlen jedes dieser Transkriptionsfaktoren in npas4l-Mutanten verschiedene Aspekte des npas4l-Phänotyps verursacht. Daher habe ich Mutantenlinien für alle drei Gene generiert und sie sowohl in vaskulären Reporterlinien als auch im npas4l-Reporterhintergrund analysiert. Die Daten legen nahe, dass verschiedene Gene unterschiedliche Prozesse während der frühen Endothelentwicklung regulieren. In npas4l-/- und etsrp-/- Embryonen differenzieren npas4l-Reporter exprimierende Zellen nicht zu Endothelzellen und tragen stattdessen zur Skelettmuskelzellpopulation bei. In npas4l-/- und tal1-/- Embryonen können npas4l-Reporter exprimierende Zellen nicht migrieren und tragen stattdessen zu der Bildung der pronephrischen Tubuli bei. Um die Beziehung zwischen diesen Faktoren besser zu verstehen, habe ich getestet, ob die Injektion von etsrp-, tal1- oder lmo2-mRNA verschiedene Aspekte des npas4l-Phänotyps retten würde. npas4l-, etsrp- und tal1-Mutanten zeigen alle schwere vaskuläre Phänotypen. Einige Endothelzellen und vaskuläre Strukturen bleiben jedoch in jeder Mutante erhalten. Der Phänotyp ist am stärksten in npas4l-/- Embryonen, aber selbst in diesen Embryonen können einige fli1a-positive Endothelzellen in der Schwanzregion beobachtet werden. Es war unklar, ob sich diese Population von Endothelzellen unabhängig von der Npas4l-, Tal1- und Etsrp-Funktion entwickelt oder als Folge einer restlichen tal1- oder etsrp-Expression unabhängig von Npas4l. Um diese Frage zu untersuchen, habe ich Doppelmutanten generiert und nach dem Vorhandensein von fli1a-positiven Endothelzellen in diesen Mutanten gesucht. Während fli1a-positive Endothelzellen in npas4l-/- und npas4l-/-;tal1-/- Embryonen deutlich vorhanden sind, können keine solchen Zellen in npas4l-/-;etsrp-/- oder etsrp-/-;tal1-/- Embryonen beobachtet werden. Diese Daten deuten darauf hin, dass sich im Zebrafisch keine Endothelzellen entwickeln können, wenn zugleich npas4l und etsrp oder etsrp und tal1 gestört sind. Während der Verlust von etsrp zu stärkeren Defekten in npas4l-Mutanten führt, gibt es keinen zusätzlichen Phänotyp, der durch den Verlust von tal1verursacht wird, was darauf hindeutet, dass die Expression von etsrp, aber nicht die von tal1, unabhängig von Npas4l auftreten kann. Diese Idee wird durch die Beobachtung unterstützt, dass etsrp, aber nicht tal1-Expression in den meisten fli1a-exprimierenden Zellen in npas4l-/- Embryonen beobachtet wird. Dennoch wird der Großteil -Expression durch Npas4l reguliert. tal1-mRNA-Injektionen reichten aus, um eine Wildtyp-ähnliche vaskuläre Musterbildung im Bauchbereich der npas4l-/- Embryonen wiederherzustellen, einschließlich der Rettung sowohl der Zellmigration als auch der Differenzierung. Da Npas4l mehrere unterschiedliche transkriptionelle Effektoren hat, war eine so starke Rettung durch nur einen dieser Effektoren unerwartet. In den geretteten Mutanten wurde die bilaterale Population von npas4l-Reporter-positiven pronephrischen Tubuluszellen nicht entdeckt, aber die Anzahl der ektopischen npas4l-Reporter exprimierenden Muskelzellen war im Vergleich zu nicht injizierten npas4l-Mutanten gleichbleibend.
...
My PhD work employed genetic and pharmacological manipulations, coupled with highresolution live imaging, to understand intercellular communications during zebrafish cardiovascular development. The heart is the first organ to form, and it is composed of several tissues, among which interactions are crucial. I identified two important interactions between muscular and non-muscular tissues in poorly characterized contexts, and the molecules required for the signalling. First, I discovered an important cellular and molecular crosstalk orchestrating the development of the cardiac outflow tract (i.e., the aortic root in mammals).
Endothelial-derived TGF-beta signalling controls the generation of the local extracellular matrix (ECM). The ECM in turn affects endothelial proliferation as well as smooth muscle cell organization (Boezio et al, 2020; Bensimon-Brito*, Boezio* et al, 2020). In my second project, I investigated the crosstalk between the epicardial layer and the myocardial wall. By generating epicardial-impairment models, I identified a novel role for the epicardium in regulating cardiomyocyte volume during heart development (Boezio et al, 2021). Ultimately, this research contributed to our understanding of how paracrine signalling controls the multicellular interactions integral to organogenesis.