Refine
Year of publication
Document Type
- Doctoral Thesis (108)
Has Fulltext
- yes (108)
Is part of the Bibliography
- no (108)
Keywords
- Entzündung (5)
- mPGES-1 (3)
- 5-Lipoxygenase (2)
- Nichtsteroidales Antiphlogistikum (2)
- PGE2 (2)
- Phospholipide (2)
- Prostaglandine (2)
- Rückenmark (2)
- Schmerz (2)
- phospholipids (2)
Institute
Im Rahmen dieser Arbeit wurde die humane Leukotrien A4-Hydrolase untersucht.
Die hLTA4H ist ein bifunktionelles Enzym, welches neben der Hydrolaseaktivität, welche für die Umwandlung des instabilen LTA4 zu LTB4 verantwortlich ist, auch eine Peptidaseaktivität aufweist. Beide Enzymaktivitäten spielen bei Entzündungsprozessen eine wichtige Rolle, weshalb die LTA4H ein interessantes pharmakologisches Target darstellt. Aufgrund der gegensätzlichen Eigenschaften der beiden Aktivitäten der LTA4H (Produktion des proinflammatorischen LTB4 durch die Hydrolase-Aktivität, sowie der Abbau des PGP-Tripeptids durch die Peptidase-Aktivität) wird deutlich, dass die Entwicklung selektiver Hydrolase-Inhibitoren von Vorteil ist.
Das Protein der humanen LTA4H konnte erfolgreich kloniert werden und in E. coli-Zellen exprimiert werden. Zur Gewinnung des reinen rekombinanten Proteins konnte ein Aufreinigungsprotokoll mittels Nickel-Affinitätschromatographie sowie anschließender Größenausschlusschromatographie etabliert werden. Durch die Testung unterschiedlicher Lysemethoden konnte die Ausbeute deutlich erhöht werden.
Um herauszufinden, ob es durch den potentiellen Inhibitor zu einer Hemmung der Enzymaktivität kommt, muss diese detektiert werden können. Hierfür wurde ein geeignetes fluoreszenzbasiertes Testsystem zur Detektion der Enzymaktivität der hLTA4H entwickelt. Dies lässt auch die Quantifizierung der Wirksamkeit der möglichen Inhibitoren zu. Mit Hilfe eines pharmakophorbasierten Ansatzes wurden 22 Testsubstanzen für die in vitro Testung ausgewählt. Nach der Evaluierung dieser Substanzen wurden weitere 14 Derivate der besten Verbindung ausgewählt und ihre inhibitorischen Eigenschaften an rekombinanter LTA4H getestet. Die Ergebnisse wurden mittels Differential Scanning Fluorimetrie validiert, wofür ein einfaches Protokoll etabliert werden konnte.
Im Rahmen dieser Arbeit wurden weiterhin 5 bereits bekannte Inhibitoren der LTA4H ausgewählt, um sie hinsichtlich ihres thermodynamischen Profils zu untersuchen. Hierzu wurden die ausgewählten Inhibitoren mittels Isothermer Titrationskalorimetrie vermessen. Die Dissoziationskonstanten der untersuchten Inhibitoren wurden ebenfalls mittels Differential Scanning Fluorimetrie bestimmt, wobei sich zeigte, dass diese Methode nicht zur präzisen Messung von Protein/Ligand Interaktionen herangezogen werden kann. Mittels eines in silico Ansatzes zur Vorhersage von stabilisierten und destabilisierten Wassermolekülen in der Bindetasche konnten die thermodynamischen Daten im strukturellen Kontext interpretiert werden. Durch diese Kombination konnten neue Erkenntnisse zum Design neuer Inhibitoren der LTA4H gewonnen werden.
Die Arachidonsäurekaskade spielt bei Entzündungsprozessen und der Schmerzentstehung eine wichtige Rolle. Deren primäre Produkte, die Leukotriene und die Prostaglandine, sind entzündungsfördernde Mediatoren und nehmen Einfluss auf den Entzündungs-auflösendenprozess und sind bei einer Dysregulation für diverse Erkrankungen wie z.B. Asthma bronchiale und allergische Rhinitis mitverantwortlich. Die Kaskade gliedert sich mit ihren beiden Hauptenzymen, Cyclooxygenase und 5-Lipoxygenase (5-LO), in zwei Wege auf. Beide Enzyme sind außerdem in der Lage entzündungsauflösenden Mediatoren zu bilden. Die Mediatoren wie z.B. Lipoxin können im Zellstoffwechsel einerseits über die Lipoxygenase-Route, oder andererseits wie „aspirin-triggered“-Lipoxin von der durch geeignete Wirkstoffe acetylierten Cyclooxygenase-2 (COX-2) katalysiert werden. Diese Mediatoren werden benötigt, um (chronische) Entzündungen und beschädigtes Gewebe zurück zur Homöostase zu führen.
Die Pharmakotherapie chronisch entzündlicher Erkrankungen mit guter Wirksamkeit und verträglichem Profil bei Langzeiteinnahme stellt jedoch eine Herausforderung dar. Die Therapie verzögern oft, z. B bei Einnahme von nicht-steroidalen Antirheumatika (NSAR), die Entzündungsauflösung, da die Bildung von entzündungshemmenden und entzündungs-auflösenden Lipidmediatoren gehemmt werden. Die gezielte Modulation und Einflussnahme auf die Arachidonsäurekaskade an einem der beiden Enzyme, stellt daher einen guten Ansatz für eine verbesserte Therapiemöglichkeit von (chronischen) entzündlichen Krankheiten dar. Diese Arbeit beschäftigt sich mit der Synthese von Modulatoren und Inhibitoren der Arachidonsäurekaskade. Zum einen befasst sie sich mit der Entwicklung von irreversiblen COX-2-acetylierenden Substanzen als neues anti-entzündliches und entzündungsauflösendes Prinzip. Zum anderen mit der Untersuchung der Struktur-Wirkungsbeziehung (SAR) von 2-Aminothiazolen als direkte 5-LO-Inhibitoren ausgehend von SKI-II, welches zuvor als Leitstruktur zur Entwicklung von 5-LO-Inhibitoren entdeckt wurde.
Als Leitstrukturen für die irreversiblen COX-2-acetylierenden Substanzen wurden bekannte COX-2 selektive Substanzen ausgewählt sowie vereinzelte nicht-selektive NSAR. Es wurden an der COX-2 Kristallstruktur Docking-Studien durchgeführt, um die geeignetsten Positionen für die Einführung einer (labilen) Acetylgruppe zu identifizieren. Aufgrund dieser Studien wurden drei Positionen ausgewählt zur Derivatisierung. Es wurden daraufhin zahlreiche Derivate synthetisiert von Celecoxib, Valdecoxib, Rofecoxib, Etericoxib, als Vertreter der (COX-2) selektive Inhibitoren, sowie von Acetylsalicylsäure, Diclofenac und Nimesulid-Analoga als Vertreter der nicht-selektiven NSARs. Zusätzlich wurden Derivate synthetisiert mit Michael-Akzeptoren als kovalente bindende Komponente. Alle synthetisierten Substanzen wurden sukzessiv auf ihre COX inhibitorischen Eigenschaften hin untersucht und auf COX-2 Selektivitäten überprüft. Weiterhin wurden von allen Derivaten Auswaschungs-Studien durchgeführt als Vorversuche welche Derivate eine irreversible COX-2-Inhibition hervorrufen. In den Vorversuchen zeigte die Verbindung ST-1650 am deutlichsten eine COX-2-Selektivität sowie eine starke irreversible Inhibition der COX-2. Die Verbindung ST-1650 wurde weiterhin auf indirekte Hinweise zur Entstehung von heilungsfördernden Mediatoren untersucht anhand von: M1-Macrophagen Polarisation und einem Schmerzmodell, dem Zymosan-Überempfindlichkeit Pfotenmodell. Im Makrophagen-Modell konnte ST-1650 keine Phänotypverschiebung hinzu entzündungsauflösenden M2-Makrophagen bewirken, sowie in den Schmerzmodellen leider keine schnellere Schmerzauflösung als die Kontrollgruppe. Ob diese Effekte durch mangelnde oder zu geringer Entstehung von entzündungshemmenden Mediatoren zurückzuführen ist, ist noch unklar.
Für die SAR der 2-Aminothiazole als direkte 5-LO-Inhibitoren wurden über 60 Verbindungen synthetisiert und untersucht. Zu Beginn erfolgte eine Optimierung der Grundstruktur als 5-LO-Inhibitor. Es wurden die Einflüsse der Substituenten des Thiazolsrings und des Aminolinkers auf die 5-LO-Aktivität ermittelt, um die SAR initialer Arbeiten zu vertiefen. Nach der SAR-Untersuchung im intakten Zellsystem konnten durch Kombination bevorzugter Strukturelemente die zwei Verbindungen ST-1853 und ST-1906, als neue potente 5-LO-Inhibitoren entwickelt werden, die sich als nicht-toxisch herausstellten. Diese beiden 5-LO-Inhibitoren wirken um einen Faktor 10 potenter und sind weniger toxisch verglichen mit der Leitstruktur SKI-II. ST-1853 wurde innerhalb der Arachidonsäurekaskade auch auf Off-targets getestet, deren Aktivitäten sie erst bei 100-fach höherer Konzentration beeinflusst, sowie in humanem Vollblut, wo sie sich ihre 10-fach bessere Wirksamkeit im Vergleich zu SKI-II bestätigte. Darüber hinaus erwies sich ST-1853 bei den ersten Überprüfungen seiner Stabilität unter physiologischen Bedingungen wie bei der in vitro Metabolisierung durch Rattenlebermikrosomen als ausreichend stabil und daher zur weiteren Charakterisierung gut geeignet.
Diese Zusammenfassung ist in zwei Abschnitte gegliedert. Im Abschnitt 6.1. wird die physiologische Bedeutung der Glutamatrezeptoren (GluR) und ihr biologischer Hintergrund kurz erklärt. Am Ende dieses Abschnitts wird der Stand der Strukturanalyse des GluR-B Ionenkanals zu Beginn des Projektes zusammengefasst. Im nachfolgenden Abschnitt 6.2. sind die wesentlichen Ergebnisse der hier vorgelegten Arbeit zusammengefasst. 6.1. Die Bedeutung von Glutamatrezeptoren - Stand der Strukturanalyse zum Beginn dieser Arbeit Die Kommunikation zwischen Nervenzellen erfolgt vorwiegend an hochspezialisierten Kontaktstellen den chemischen Synapsen. Der enge Raum zwischen sendender und empfangender Nervenzelle wird auch als synaptischer Spalt bezeichnet. Der Prozess der synaptischen Übertragung beruht auf der präsynaptischen Freisetzung von chemischen Botenstoffen, sogenannten Neurotransmittern in den synaptischen Spalt. Die Aminosäure L- Glutamat (Glu) ist der wichtigste erregende Neurotransmitter im menschlichen Gehirn und Rückenmark. Dementsprechend bedeutend ist die Rolle der ionotropen Glutamatrezeptoren (iGluRs), die sie bei der elektrochemischen Erregungsübertragung am synaptischen Spalt spielen (Seeburg, 1993), (Hollmann and Heinemann, 1994), (Dingledine et al., 1999). Die Freisetzung von Neurotransmittern wird durch ein elektrisches Signal (Aktionspotential) ausgelöst, das sich entlang der Nervenfaser, dem Axon, bis zur Nervenendigung, der Synapse, fortpflanzt. Nach der Freisetzung diffundieren die Neurotransmitter durch den synaptischen Spalt und binden an sogenannte Rezeptoren. Ionotrope Glutamatrezeptoren sind Ionenkanäle, die in die Membran der nachgeschalteten (postsynaptischen) Nervenzelle eingebaut sind. Sie zählen deshalb zu den Membranproteinen. Als ligandgesteuerte kationenselektive Ionenkanäle machen Glutamatrezeptoren (GluRs) die postsynaptische Membran nach Aktivierung durch Ligandbindung für bestimmte Kationen durchlässig. Der Einstrom von Ionen bewirkt eine Änderung des Membranpotentials. Die Stärke der synaptischen Übertragung ist lebenslang modulierbar; die sogennante synaptische Plastizität wird als eine entscheidende Grundlage für die Erklärung von Lernen und Gedächtnis angesehen. Drei synthetische Agonisten aktivieren die GluRs selektiv und wurden deshalb für die Klassifizierung der ionotropen Glutamatrezeptoren herangezogen. Bei den Agonisten handelt es sich um -Amino-3-hydroxy-5-methyl-4-isoxazol-4-propionat (AMPA), Kainat and N- Methyl-D-Aspartat (NMDA). Die ersten beiden Subtypen werden auch als non-NMDA- Rezeptoren zusammengefasst. Die Aktivierung und Desensitivierung der non-NMDA Rezeptoren ist schneller als die der NMDA-Rezeptoren. Aus molekularbiologischer Sicht (siehe Kapitel 1.3.2.) zeigen die drei Klassen der ionotropen Glutamatrezeptoren eine beträchliche Diversität. So gibt es vier verschiedene Unterheiten vom AMPA-Subtyp, nämlich GluR-A, GluR-B, GluR-C und GluR-B. In dieser Arbeit steht die Strukturanalyse eines aus GluR-B Untereinheiten bestehenden AMPA-Rezeptors im Vordergrund. (Die weitere Unterteilung der NMDA- und Kainatrezeptoren kann dem Kapitel 1.3.2. auf Seite 6 entnommen werden.) Bestimmte Abschnitte der Aminosäurensequenz von Glutamatrezeptoren sind durch hydrophobe Bereiche gekennzeichnet ((M1-M4) in Abbildung 6.1.A (A.)). Das durch verschiedene Untersuchungen etablierte Modell der Glutamatrezeptor-Topologie zeigt 3 Transmembrandomänen (M1, M3 und M4) und eine Membranschleife (M2) (Hollmann et al., 1994), (Kuner et al., 1996). Der Aminoterminus ist extrazellulär, der Carboxyterminus hingegen intrazellulär. Daraus ergibt sich die in Abbildung 6.1.A (B.) abgebildete Topologie (Paas, 1998). S1 und S2 kennzeichnen die Ligandbindungsdomäne. Glutamatrezeptoren (GluR) sind Oligomere, die sich mit grosser Wahrscheinlichkeit aus vier Untereinheiten (Rosenmund et al., 1998), (Ayalon and Stern-Bach, 2001) zusammensetzen (siehe Kapitel 1.3.3.). Die Zusammenlagerung verschiedener Untereinheiten zu einem funktionellen Kanal setzt voraus, dass die Untereinheiten zum gleichen Subtyp gehören, d.h. AMPA Untereinheiten können nur mit anderen AMPA Untereinheiten einen Ionenkanal bilden. Das gleiche gilt für die Zusammensetzung von NMDA und Kainat-Rezeptoren. Das Modell eines tetrameren Glutamatrezeptors ist im Bild C. der Abbildung 6.1.A zu sehen. Die Bestimmung der Quartärstruktur eines vollständigen Glutamatrezeptors ist bislang nicht veröffentlicht. Die strukturelle Analyse von Proteinen erfordert die Isolierung von reinem und funktionellem Protein. Im Vergleich zu den meisten löslichen Proteinen erfordert die Isolierung von Membranproteinen oft besonderer Optimierung. Falls das Vorkommen des Proteins in natürlichem Gewebe gering ist, so kann die strukturelle Analyse durch rekombinante Expression in einem geeigneten Wirtsorganismus zugänglich gemacht werden. Die Isolierung von Milligramm-Mengen eines rekombinanten homomeren GluR-B Rezeptors aus dem entsprechenden Baculovirusexpressionssystem (Keinänen et al., 1994) wurde in unserem Labor etabliert (Safferling et al., 2001) und wurde im ersten Jahr dieses Projektes fortgeführt. Durch zonale Ultrazentrifugation konnte gezeigt werden, dass die molekulare Masse des GluR-B Proteinkomplexes ca. 495 kD beträgt. Dieser Wert liegt in der Nähe des theoretischen Molekulargewichts eines tetrameren Ionenkanals, dessen Molmasse sich aus vier GluR-B Untereinheiten (104 kD) und einer Detergenzmizelle von ca. 63-97 kD zusammensetzt (Safferling et al., 2001). Die elektronenmikroskopische Analyse des Proteinkomplexes von W. Tichelaar aus unserer Gruppe erfolgte 1999 durch Negativfärbung. Für die Strukturanalyse mit Hilfe der Software IMAGIC wurden 10 000 Proteinteilchen selektiert. Das Ergebnis der Bildrekonstruktion ist in der folgenden Abbildung 6.1.B gezeigt. Die projezierten Dimensionen des Models entsprechen einem Molekül mit den Dimensionen 17 nm × 11 nm × 14 nm. Das Model zeigt keine ausgezeichnete Symmetrie, die auf die Stöchiometrie des GluR hinweisen könnte. Das Molekül zeigt mit Färbemittel gefüllte Vertiefungen und innere Strukturen, die vielleicht an der Ionenleitung beteiligt sind. 6.2. Funktionelle und strukturelle Charakterisierung des GluR-B Ionenkanals In der Fortsetzung des oben beschriebenen Projektes wurden für die rekombinante Expression desselben Rezeptors (GluR-B homomer) stabil transformierte Insektenzellen eingesetzt. Dazu wurde die für die GluR-B Untereinheit kodierende und in Plasmiden enthaltene DNA in Insektenzellen transformiert (siehe APPENDIX A.2.2.). Im Vergleich zu dieser auf Dauerhaftigkeit angelegten Integration der Rezeptor DNA wird die Proteinexpression beim Baculovirusexpressionssystem durch Infektion mit rekombinanten Baculoviren initiiert. Der Vergleich zeigte, dass die mit Baculoviren erzielten Ausbeuten bei GluR-B etwa doppelt so hoch waren als bei stabil transformierten Zellen. Allerdings fallen bei stabil transformierten Zellen die eventuellen Nachteile der viralen Belastung auf die zellulären Sekretionsprozesse weg. Im Verlauf der elektronenmikroskopischen Analyse von baculoviral erzeugtem GluR-B Protein hat sich gezeigt, dass Proteine viralen Ursprungs unter Umständen selbst doppelt aufgereinigte GluR-B Proben verunreinigen können (siehe APPENDIX A.2.1.). Dieser Punkt ist bei einer Einzelbildverarbeitung von grosser Relevanz, falls die virusspezifischen Proteinverunreinigungen eine ähnliche Grösse haben wie das eigentliche Zielprotein. Das Hauptziel dieser Arbeit war es, das Potenzial stabil transformierter Insektenzellen für die Expression von homomeren GluR-B Ionenkanälen zu bewerten und dabei die Stöchiometrie der Untereinheiten in diesem Ionenkanal aufzuklären. Zu diesem Zweck wurden biochemische und elektronenmikrosopische Techniken eingesetzt. Zur Isolierung des GluR-B Ionenkanals aus stabil transformierten Insektenzellen wurde das bestehende Aufreinigungsprotokoll für die Affinitätchromatographie an immobilisierten Metallionen (IMAC) (Safferling et al., 2001) optimiert, indem das Chargenverfahren durch das Durchflussverfahren ersetzt wurde (zur genaueren Erklärung der Optimierung siehe RESULTS 4.1.2.). Abbildung 6.C zeigt ein silbergefärbtes Gel mit den Eluaten der IMAC und Eluaten der abschliessenden Affinitätschromatographie mit immobilisiertem M1-Antikörper. Die auf den Bahnen 5-8 aufgetragen GluR-B Proben wurden auch für die Einzelteilchenanalyse mittels Elektronenmikroskopie verwendet. Die Ligandbindungsaktivität von GluR-B wurde durch Filterbindungsexperimente mit dem Radioliganden [3H]-AMPA vor und nach der Isolierung aus den Membranfragmenten bestimmt. Die KD-Werte sind für beide Proben ähnlich gross. Der Bmax-Werte ist für die aufgereinigte Probe wie erwartet sehr viel (mehr als 200×) höher. Die Ergebnisse der Ligandbindungsexperimente sind im Kapitel 4.2.1 tabellarisch zusammengefasst. Die oligomere Struktur des isolierten Ionenkanals wurde durch Quervernetzungsexperimente (Cross-linking) und Einzelteilchenanalyse von negativ gefärbten Proteinmolekülen bewertet. Die Quervernetzungsexerimente selbst erbrachten kein eindeutiges Ergebnis im Hinblick auf oligomere Struktur des komplett zusammengesetzten Rezeptors. Kontrollexperimente mit dem Lysat vom Rattenhippocampus zeigten, dass mit DTSSP ein geeigneter Cross-Linker verwendet wurde (siehe RESULTS 4.3.2.). Neben einem aus 4 Banden bestehenden Muster (siehe RESULTS 4.3.1.) lieferten die Quervernetzungsexperimente mit isoliertem GluR-B aber einen deutlichen Hinweis auf die Stabilität von dimeren GluR-B Strukturen, die im Einklang mit einer jüngst veröffentlichten Arbeit stehen (Ayalon and Stern-Bach, 2001). Diese Veröffentlichung liefert zusätzliche (Armstrong et al., 1998) Hinweise auf die Bedeutung von Dimeren in der Glutamatrezeptorstruktur und postuliert, dass sich ein kompletter Glutamaterezeptor aus einem Dimer-Paar zusmmensetzt, wobei die Dimere zuerst gebildet werden. Die nachfolgende Abbildung 6.2.B zeigt negativ gefärbte GluR-B Ionenkanäle bei einer 46000× Vergrösserung. Die Aufnahme stammt von einem Philips EM 400 Elektronenmikroskop. Für die 3D Rekonstruktion wurden 500 der in Abbildung 6.2.B gezeigten Rezeptormoleküle ausgewählt. Dieser relativ kleine Datensatz besteht aus GluR-B Ionenkanälen deren Präservierung in Uranylacetat als besonderes vielversprechend eingeschätzt wurde. Dieser positive Effekt wurde auf die Verwendung frisch von einer Wasseroberfläche aufgefischter Kohlefilme zurückgeführt (siehe RESULTS 4.4.3.3.). Während der Klassifizierung dieses Datensatzes fiel auf, dass die beim Band-Pass-Filtern für die niedrigen Frequenzen gesetzten Cut-offs einen deutlichen Einfluss auf die erste Klassifizierung der unterschiedlichen zweidimensionalen Ansichten des Proteinkomplexes haben (siehe RESULTS 4.4.3.4.). Aus diesem Grund wurde der gleiche Datensatz mit 5 verschiedenen low-frequency cut-offs (LFCO) gefiltert (siehe Table 4.4.3.4.) und getrennt klassifiziert. Von den 5 resultierenden Klassifikationen wurden 3 (LFCO 0,005, 0,03 und 0,05) für die weiterführende 3D Rekonstruktion ausgewählt. Die Evaluierung der resultiernden 3D Modelle ergab, dass der mit einem LFCO von 0,03 gefilterte Datensatz eine Klassifikationen erlaubte, die zu einem 3D Modell (Modell GluR-BII/a siehe RESULTS Figure 4.4.3.4.H) führte, das im Vergleich zu den beiden anderen Rekonstruktionen konsistenter war. Am stärksten spricht für dieses Modell die Übereinstimmung der Input-Projektionen mit den Reprojektionen der 3D Rekonstruktion (siehe siehe RESULTS Figure 4.4.3.4.H). Zur Verfeinerung des Modells GluR-BII/a wurden die beiden Projektionen mit der höchsten Standardabweichung vom Klassendurchschnitt (class average) eliminiert. Die verbleibenden 11 Projektionen bildeten die Input-Projektionen für die Berechung eines verfeinerten Modells, GluR-BII/b, das auf einer neuen Zuordnung der Euler-Winkel beruht. Das Ergebnis dieser Berechung ist in der nachfolgenden Abbildung gezeigt. Das Modell in Abbildung 6.2.C zeigt einen zentralen Kanal und hat die Dimensionen 18 nm × 14 nm × 11 nm. Die Stöchiometrie der Untereinheiten ist aus dem Modell, das mit grosser Wahrscheinlichkeit einen komplett zusammengesetzten GluR darstellt, nicht ablesbar. Ebensowenig zeigt das Modell eine eindeutig vierzählige oder fünfzählige Symmetrie. Allerdings ist die erkennbare zweizählige Symmetrie im Einklang mit dem vorgeschlagenen Pair-of-Dimer Modell (Ayalon and Stern-Bach, 2001), das auf eine teramere Struktur des oligomeren Ionenkanals schliessen lässt. Die Ergebnisse dieser Arbeit zeigen, dass stabil transifzierte Insektenzellen eine durchaus geeignete Quelle für GluR-B Ionenkanäle sind. Nachteilig sind die geringen Ausbeuten. Allerdings kann durch weitere Selektion der Zellen die GluR Expression noch gesteigert werden (siehe APPENDIX A.2.2.). Bei höheren GluR-B Ausbeuten könnte zukünftig auch die Detektion des Rezeptors in vitrifizierten Proben in Verbindung mit Kryo-Elektronen- mikroskopie und auch die 2D-Kristallisation gelingen. Die während dieses Projekts gemachten Kristallisationsexperimente (siehe APPENDIX A.3.) und Kryo-Experimente mit GluR-B Protein aus dem Baculovirusexpressionssystem (siehe RESULTS 4.4.1. und 4.4.2.) ergaben negative Ergebnisse. Das Potential der Kryo-Methode konnte allerdings in Kontrollexperimenten mit Tabak-Mosaik-Virus (TMV) gezeigt werden. Kryo-Daten von GluR-B würden die Berechnung eines genaueren Strukurmodells erlauben. Die Reprojektionen des hier besprochenen Strukturmodells GluR-BII/b aus der Abbildung 6.2.C könnten als Referenzen für das Alignment der vitrifizierten GluR Ionenkanäle dienen. Für das langfristige Ziel der Rekonstituition des Rezeptors in Liposomen sollte die Delipidierung des Membranproteins während der Aufreinigung möglichst reduziert werden. Hier erscheinen zwei Ansätze sinnvoll. Die Aufreinigung des Proteins in einem Schritt durch die Erweiterung des tags am Carboxyterminus von nur 6 auf 10 Histidin-Reste. Ausserdem gibt es Hinweise, dass die Anwesenheit von Lipiden während der Aufreinigung für seine Rekonstituierbarkeit förderlich ist (Huganir and Racker, 1982).
Bei inflammatorischen Schmerzen kann durch Hemmung der COX-2 im Rückenmark die zentrale Sensibilisierung reduziert werden. Da die Hemmung der gesamten COX-2 vermittelten Prostaglandinsynthese jedoch zahlreiche unerwünschte Nebenwirkungen verursacht, wird in jüngster Zeit diskutiert, ob eine selektive Hemmung der PGE2 Synthese auf Ebene der mPGES-1 für die Therapie passagerer Schmerzen sinnvoller ist. Um die funktionellen Rollen von COX-2 und mPGES-1 im Rückenmark zu charakterisieren, wurden in der vorliegenden Arbeit die Folgen einer COX-Inhibierung und mPGES-1-Deletion auf den spinalen Eicosanoidmetabolismus, die neuronale Erregbarkeit, die Synthese proinflammatorischer Zytokine und das nozizeptive Verhalten untersucht. Das proinflammatorische Zytokin TNFa induzierte in primären Rückenmarksneuronen eine COX-2- und mPGES-1-Expression und eine erhöhte PGE2 Synthese. Diese Induktion der PGE2 Synthese konnte durch den selektiven COX-2 Inhibitor Rofecoxib und den „selektiven COX-1 Inhibitor“ SC-560 gleichermaßen potent gehemmt werden. Da der Effekt von SC-560 unerwartet war, wurde sein Wirkmechanismus genauer untersucht. Es konnte gezeigt werden, dass SC-560 in Rückenmarkskulturen weder die COX-2 und mPGES-1 Expression, die PLA2 Aktivität, die mPGES-1 Aktivität noch den PGE2 Transport hemmte. Durch Experimente mit Zellen aus COX-1-/- Mäusen konnte gezeigt werden, dass SC-560 in Rückenmarkskulturen die COX-2 unabhängig von COX-1 in nanomolaren Konzentrationen inhibiert. Da dieses Ergebnis den postulierten COX-1-selektiven Eigenschaften von SC-560 widersprach, wurde nach der Ursache für den Verlust der COX-1-Selektivität gesucht. Es zeigte sich, dass SC-560 in einer zellfreien in vitro Synthese und im Vollbluttest mit klarer Selektivität COX-1 hemmt. In kultivierten Rückenmarkszellen, RAW-Makrophagen und Blutzellen (Monozyten und Thrombozyten) inhibiert SC-560 allerdings d beide COX-Isoformen potent. Es wurde dadurch deutlich, dass die zelluläre Einbindung von COX-2 sowie ein niedriger Proteingehalt im extrazellulären Medium die halbmaximalen Konzentrationen (IC50) für die COX-2-Hemmung durch SC-560 stark reduzieren kann und hierdurch die COX-1-Selektivität der Substanz verloren geht. Neben einer COX-2 Hemmung verursachte auch eine mPGES-1-Deletion in Rückenmarkskulturen sowie im adulten Rückenmark eine Reduktion der PGE2 Synthese. Überrachenderweise bewirkte jedoch die mPGES-1-Defizienz im Gegensatz zur COX-2 Hemmung durch Etoricoxib im Zymosanmodell keine Reduktion der mechanischen Hyperalgesie. Um die Ursache für die unterschiedliche antihyperalgetische Wirkung der COX-2-Hemmung und mPGES-1-Deletion zu finden, wurden zunächst die Konsequenzen für die gesamte Prostaglandinsynthese untersucht. Die Analyse mittels LC-MS/MS zeigte, dass im Rückenmark mPGES-1-defizienter Mäuse verstärkt PGI2, PGF2a und PGD2 synthetisiert wird. Da für alle drei Prostaglandine bereits pronozizeptive Effekte beschrieben wurden, wurde die Expression von den entsprechenden Rezeptoren im Rückenmark und die Konsequenzen der Rezeptoraktivierung auf die neuronale Erregbarkeit untersucht. Mittels „calcium imaging“ wurde demonstriert, dass selektive IP Rezeptoragonisten in Rückenmarksneuronen eine PKA und PKC vermittelte Phosphorylierung der NMDA Rezeptoren verursachen und die Aktivierbarkeit der NMDA Rezeptoren sensibilisieren. Eine Verstärkung des NMDA induzierten Calciumeinstromes konnte nach Applikation der anderen Prostaglandine nicht beobachtet werden. Die Ergebnisse zeigen daher, dass in mPGES-1-defizienten Mäusen durch die Umleitung der Prostaglandinsynthese zu Prostacyclin die exzitatorischen NMDA Rezeptoren sensibilisiert und hierdurch die antihyperalgitische Wirkung von PGE2-Synthesehemmung kompensiert werden kann. Zusammenfassend lässt sich aus den Ergebnissen schlussfolgern, dass mPGES-1 als Zielmolekül für die Schmerztherapie eher nicht eignet ist. mPGES-1-defiziente Tiere zeigten in inflammatorischen Schmerzmodellen ein normales nozizeptives Verhalten. Dies kann dadurch erklärt werden, dass es nach einer mPGES-1 Deletion im Rückenmark zwar zur Reduktion der PGE2 Synthese aber auch gleichzeitig zur verstärkten Synthese anderer pronozizeptiv wirkender Prostaglandine kommt.
Ubiquitylation is a three-step process, which results in the attachment of the small protein ubiquitin (Ub) to lysine residues on a substrate protein. SUMO proteins are ubiquitin (Ub)-related modifiers implicated in the regulation of gene transcription, cell cycle, DNA repair and protein localization. The molecular mechanisms by which the sumoylation of target proteins regulates diverse cellular functions remain poorly understood. During my PhD I isolated and characterized SUMO1 and SUMO2 binding motifs. Using Yeast Two Hybrid system, bioinformatics and NMR spectroscopy we defined a common SUMO-interacting motif (SIM) and map its binding surfaces on SUMO1 and SUMO2. This motif forms a β-strand that could bind in parallel or anti-parallel orientation to the β2-strand of SUMO due to the environment of the hydrophobic core. A negative charge imposed by a stretch of neighboring acidic amino acids and/or phosphorylated serine residues determines its specificity in binding to distinct SUMO paralogues and can modulate the spatial orientation of SUMO-SIM interactions. Mutation of the SUMO interacting motif of TTRAP (TRAFS and TNF receptor associated protein) influences both its localization and dynamic behaviour in living cells. Ubiquitin (Ub)-binding domains (UBDs) are key elements in conveying Ub-based cellular signals. UBD-containing proteins interact with ubiquitylated targets and control numerous biological processes including receptor trafficking, DNA repair, virus budding and gene transcription. They themselves undergo UBD-dependent monoubiquitylation, which promotes intramolecular binding of the UBD to the attached Ub and consequently leads to their functional inhibition. During the second part of my PhD I could show that, in contrast to the established ubiquitylation pathway, the presence of UBDs allows the monoubiquitylation of host protein independently of classical E3 ligases. UBDs of different types including UBA, UIM, UBM, NFZ and UBZ, can directly cooperate with E2 Ub-conjugating enzymes to promote monoubiquitylation of their host proteins. Using FRET technology I verified that the E2 enzyme and the substrate directly interact in cells. Moreover, UBD-containing proteins Stam2 and Sts2 promote self-ubiquitylation and not ubiquitylation of other targets or form polyUb chains from free Ub. Our study revealed a yet unappreciated role of E2 enzymes in ubiquitylation reactions of UBD containing proteins.
Functional expression of recombinant N-methyl-D-aspartate (NMDA) receptors in eukaryotic cell lines
(2000)
Chemokines play a key role in the cellular infiltration of inflamed tissue. They are released by a wide variety of cell types during the initial phase of host response to injury, allergens, antigens, or invading microorganisms, and selectively attract leukocytes to inflammatory foci, inducing both migration and activation. Monocyte chemoattractant protein-1 (MCP-1), a member of the CC chemokine superfamily, functions in attracting monocytes, T lymphocytes, and basophils to sites of inflammation. MCP-1 is produced by monocytes, fibroblasts, vascular endothelial cells and smooth muscle cells in response to various stimuli such as tumour necrosis factor-a (TNF-a), interferon-g (IFN-g), and interleukin-1b (IL-1b). It also plays an important role in the pathogenesis of chronic inflammation, and overexpression of MCP-1 has been implicated in diseases including glomerulonephritis and rheumatoid arthritis. Oligonucleotide-directed triple helix formation offers a means to target specific sequences in DNA and interfere with gene expression at the transcriptional level. Triple helix-forming oligonucleotides (TFOs) bind to homopurine/homopyrimidine sequences, forming a stable, sequence-specific complex with the duplex DNA. Purine-rich sequences are frequent in gene regulatory regions and TFOs directed to promoter sequences have been shown to prevent binding of transcription factors and inhibit transcription initiation and elongation. Exogenous TFOs that bind homopurine/ homopyrimidine DNA sequences and form triple-helices can be rationally designed, while the intracellular delivery of single-stranded RNA TFOs has not been studied in detail before. In this study, expression vectors were constructed which directed transcription of either a 19 nt triplex-forming pyrimidine CU-TFO sequence targeting the human MCP-1 or two different 19 nt GU- or CA-control sequences, respectively, together with the vector encoded hygromycin resistance mRNA as one fusion transcript. HEK 293 cells were stable transfected with these vectors and several TFO and control cell lines were generated. Functional relevant triplex formation of a TFO with a corresponding 19 bp GC-rich AP-1/SP-1 site of the human MCP-1 promoter was shown. Binding of synthetic 19 nt CUTFO to the MCP-1 promoter duplex was verified by triplex blotting at pH 6.7. Underlining binding specificity, control sequences, including the GU- and CA-sequence, a TFO containing one single mismatch and a MCP-1 promoter duplex containing two mismatches, did not participate in triplex formation. Establishing a magnetic capture technique with streptavidin microbeads it was verified that at pH 7.0 the 19 nt TFO embedded in a 1.1 kb fusion transcript binds to a plasmid encoded MCP-1 promoter target duplex three times stronger than the controls. Finally, cell culture experiments revealed 76 ± 10.2% inhibition of MCP-1 protein secretion in TNF-a stimulated CU-TFO harboring cell lines and up to 88% after TNF-a and IFN-g costimulation in comparison to controls. Expression of interleukin-8 (IL-8) as one TNF-a inducible control gene was not affected by CU-TFO, demonstrating both highly specific and effective chemokine gene repression. Furthermore, another chemokine target, regulated upon activation normal T cell expressed and secreted (RANTES), which plays an essential role in inflammation by recruiting T lymphocytes, macrophages and eosinophils to inflammatory sites, was analysed using the triplex approach. A 28 nt TFO was designed targeting the murine RANTES gene promoter, and gel mobility shift assays demonstrated that the phosphodiester TFO formed a sequencespecific triplex with the double-stranded target DNA with a Kd of 2.5 x 10-7 M. It was analysed whether RANTES expression could be inhibited at the transcriptional level testing the TFO in two different cell lines, T helper-1 lymphocytes and brain microvascular endothelial cells (bend3 cells). Although there was a sequence-specific binding of the TFO detectable in the gel shift assays, there was no inhibitory effect of the exogenously added and phosphorothioate stabilised TFO on endogenous RANTES gene expression visible. Additionally, the small interfering RNA (siRNA) approach was tested as another strategy to inhibit expression of the pro-inflammatory chemokines MCP-1 and RANTES. Two different methods were pursuit, describing transient transfection with vector derived and synthetic siRNA. The vector pSUPER containing the siRNA coding sequence was used to suppress endogenous MCP-1 in HEK 293 cells. An empty vector without RNA sequence served as a control. Inhibition due to the siRNA was measured in stimulated and unstimulated cells. In TNF-a stimulated cells MCP-1 protein synthesis was decreased by 35 ± 11% after siRNA transfection. Using a synthetic double-stranded siRNA, the TNF-a induced MCP-1 protein secretion could be successfully inhibited about 62.3 ± 10.3% in HEK 293 cells, indicating that the siRNA is functional in these cells to suppress chemokine expression. The siRNA approach targeting murine RANTES in Th1 cells and b-end3 cells revealed no inhibition of endogenous gene expression. Gene therapy approaches rely on efficient transfer of genes to the desired target cells. A wide variety of viral and nonviral vectors have been developed and evaluated for their efficiency of transduction, sustained expression of the transgene, and safety. Among them, lentiviruses have been widely used for gene therapy applications. In order to improve the delivery of TFOs or siRNAs into the target cells, cloning of the lentiviral transfer vector SEW, the production of lentiviral particles by transient transfection were performed with the aim to generate lentiviral vector-derived TFOs in further experiments. Here, Th1 cells were transduced with infectious lentiviral particles and transduction efficacy was measured. Transduction efficacy higher than 82% could be achieved using the lentiviral vector SEW, opening optimal possibilities for the TFO or siRNA approach.
Haematopoietic stem cells (HSCs) are regarded as the prime target for gene therapy of inherited and acquired disorders of the blood system, e.g. X-linked chronic granulomatous disease (X-CGD). The major reason for this is that HSCs posses the ability to self renew as well as the potential to differentiate into all lineage-specific cell types. However, the need to reach and to maintain sufficient therapeutic levels of genetically modified stem cells and their progeny after gene delivery still presents major challenges for current HSC gene therapy approaches. In particular, one of the main limitations for most genetic defects is the lack of a selective growth advantage of gene-modified cells after engraftment. In vitro and in vivo methods have been developed that focus on either positive or negative selection of HSCs. An artificial selection advantage can be conferred to transduced HSCs by incorporating a selection marker in addition to the therapeutic transgene. In the present study, two novel strategies for positive selection of murine gp91phox gene-modified haematopoietic stem cells were developed and tested, bearing in mind that with selective growth advantage, the possibility of uncontrolled proliferation arises. The first strategy to be investigated was based on the homeobox transcription factor HOXB4, which plays an important role in the control of haematopoietic stem cell proliferation and differentiation. Overexpression of a retroviral bicistronic construct containing the therapeutic gene gp91phox and HOXB4 in murine primary bone marrow cells led to a significant 3–4-fold expansion of transduced cells ex vivo. The numbers of transgene-expressing cells increased 2–3-fold after 2 weeks cultivation under cytokine stimulation. Furthermore, the clonogenic progenitor cell assay (CFU assay) demonstrated that the number of colony-forming cells had increased to levels 2-fold higher than those of mock-transduced cells after 1 week of culture, thereby augmenting the presence of a significant number of stem/progenitor cells in the selected cell population. However, in our experiments, HOXB4-overexpressing murine HSCs did not show any repopulating advantage in transplanted recipient mice over control construct-transduced HSCs. These results indicate that selective expansion of gp91phox gene-modified HSCs can be induced by the HOXB4 transcription factor ex vivo but not in vivo. This is possibly dependent on HOXB4 expression levels, which are too low in vivo to achieve selection. The second strategy made use of a chemically inducible dimerizer system consisting of the therapeutic gene gp91phox and a fusion protein, containing sequences from a growth factor receptor signalling domain (epidermal growth factor receptor, EGFR, or prolactin receptor, PrlR) and the drug binding protein FKBP12, as the selection cassette. This strategy aimed to allow inducible selection that could be easily switched off. The activity of these fusion proteins is controlled through the small molecular dimerizer AP20187. Transduction of BaF/3 cells with lentiviral vectors expressing the EGFR construct induced proliferation and led to complete selection within 18 days (99%). However, removing AP20187 could not turn off proliferation. This construct is, therefore, not suitable as a selection cassette for the expansion of gene-modified HSCs due to its oncogenic potential. Transduction of the construct containing the intracellular domain of PrlR caused significant selective expansion of AP20187-treated BaF/3 cells. Following expression in cells, the fusion protein, which lacks membrane-anchoring sequences, mainly localized to the cytoplasm. Evidence was found to indicate that activated STAT5 might be responsible for this effect. Upon expression of the prolactin construct, phosphorylation of STAT5 and its DNA-binding activity to a ß-casein promoter sequence was strongly increased. Importantly, the induced proliferation was reversible after removal of AP20187. Transduced Sca1+ bone marrow cells obtained from C57BL/6-CD45.1 mice could be expanded about 20–100-fold ex vivo in the presence of AP20187 and mSCF without losing progenitor cell features and the capability to contribute to all lineages of the haematopoietic system. To exclude oncogenic outgrowth of one single clone, the polyclonality of selected cells was proven by ligation-mediated PCR (LM-PCR) analysis. In mouse transplantation experiments, ex vivo-expanded cells repopulated the bone marrow of lethally irradiated mice suggesting that the ex vivo expansion took place at the level of haematopoietic stem and/or progenitor cells. Genomic gp91phox sequences were detected in the bone marrow, spleen and peripheral blood cells of transplanted animals, indicating that gp91phox-containing cells most likely contributed to the reconstitution of haematopoiesis in these mice.
G protein-coupled receptors (GPCRs) play regulatory roles in many different physiological processes and they represent one of the most important class of drug targets. However, due to the lack of three-dimensional structures, structure based drug design has not been possible. The major bottleneck in getting three-dimensional crystal structure of GPCRs is to obtain milligram quantities of pure, homogenous and stable protein. Therefore, during my Ph.D. thesis, I focused on expression, characterization and isolation of three GPCRs namely human bradykinin receptor subtype 2 (B2R), human angiotensin II receptor subtype 1 (AT1aR), and human neuromedin U receptor subtype 2 (NmU2R). These receptors were heterologously produced in three different expression systems (i.e. Pichia pastoris, insect cells and mammalian cells), biochemically characterized and subsequently solubilized and purified for structural studies The human bradykinin receptor subtype 2 (B2R) is constitutively expressed in a variety of cells, including endothelial cells, vascular smooth muscle cells and cardiomyocytes. Activation of B2R is important in pathogenesis of inflammation, pain, tissue injury and cardioprotective mechanisms. During this study, recombinant B2R was produced in methylotrophic yeast Pichia pastoris (3.5 pmol/mg), insect cells (10 pmol/mg) and mammalian cells (60 pmol/mg). The recombinant receptor was characterized in terms of [3H] bradykinin binding, G protein coupling, localization, and glycosylation. Subsequently, it was solubilized and purified using affinity chromatography. Homogeneity and stability of purified B2R was monitored by gel filtration analysis. Milligram amounts of pure and stable receptor were obtained from BHK cells and Sf9 cells, which were used for three-dimensional crystallization attempts. The second receptor, which I worked on, is human angiotensin II receptor subtype 1 (AT1aR). AT1aR is distributed in smooth muscle cells, liver, kidney, heart, lung and testis. Activation of AT1aR is implicated in the regulation of blood pressure, hypertension and cardiovascular diseases. Recombinant AT1aR was produced at high levels in Pichia pastoris (167 pmol/mg), while at moderate levels in insect cells (29 pmol/mg) and mammalian cells (32 pmol/mg). The recombinant receptor was characterized in terms of [3H] angiotensin II binding, localization, and glycosylation. Subsequently, the receptor was solubilized and purified using affinity chromatography. Homogeneity and stability of purified AT1aR was monitored by gel filtration analysis. Milligram amounts of pure and stable receptor were obtained from Pichia pastoris, which were used for threedimensional crystallization attempts. In addition to B2R and AT1aR, I also attempted to produce and isolate the human neuromedin U receptor subtype 2 (NmU2R), which was deorphanized recently. It is found in highest abundance in the central nervous system, particularly the medulla oblongata, spinal cord and thalamus. The distribution of this receptor suggests its regulatory role in sensory transmission and modulation. During this study, recombinant NmU2R was produced in Pichia pastoris (6 pmol/mg) and BHK cells (9 pmol/mg). Recombinant receptor was characterized with regard to [125I] NmU binding, localization and glycosylation. Subsequently, the receptor was solubilized and purified using affinity chromatography. Due to its low expression level, further expression optimization is required in order to obtain milligram amounts for structural studies. The long-term goal of this study was to obtain three-dimensional crystal structure of recombinant GPCRs. However, 3-dimensional crystallization of human recombinant membrane proteins still remains a difficult task. On the other hand, recent advances in the solid-state NMR spectroscopy offer ample opportunities to study receptor-ligand systems, provided milligram quantities of purified receptor are available. Therefore, in parallel to 3-dimensional crystallization trials, purified B2R was also used for solid-state NMR analysis in order to investigate the receptor bound conformation of bradykinin. Preliminary results are promising and indicate significant structural changes in bradykinin upon binding to B2R. Further experiments are ongoing and will hopefully result in the structure of receptor bound bradykinin. One of the challenges in GPCR crystallization is the small hydrophilic surface area that is available to make crystal contacts. One possibility to overcome this problem can be the reconstitution of a GPCR complex with an interacting protein for cocrystallization. For this purpose, I coexpressed B2R and AT1aR, which form a stable heterodimer complex, in BHK cells. I could successfully isolate the heterodimer complex by using two-step affinity purification. Unfortunately, this complex was not stable over time and disassociates within three days of purification. However, during coexpression of B2R and AT1aR in BHK cells, I observed that B2R was localized in the plasma membrane in coexpressing cells while it was retained intracellularly when expressed alone. This coexpression of AT1aR with B2R resulted in a four-fold increase in [3H] bradykinin binding sites on the cell surface. In addition, these two receptors were cointernalized in response to their individual specific ligands. Interestingly, colocalization of B2R and AT1aR was also found in human foreskin fibroblasts (which endogenously express both receptors), in line with the possibility that heterodimerization may be required for surface localization of B2R in native tissues as well. This is the first report where surface localization of a peptide GPCR is triggered by a distantly related peptide GPCR. These data support the hypothesis that heterodimerization may be a prerequisite for cell surface localization of some GPCRs. A second approach that I followed to stabilize the purified B2R was to reconstitute the B2R-β-arrestin complex. β-arrestin is a cytosolic protein that participates in agonist mediated desensitization of GPCRs and therefore dampens the cellular responses initiated by the activation of GPCRs. I tried to reconstitute B2R-β-arrestin complex in vitro by mixing purified B2R and purified β-arrestin. But, no interaction of these two proteins was observed in the pull-down assays. However, a C-terminal mutant of B2R (where a part of the C-terminus of the B2R is exchanged with that of the vasopressin receptor) was found to interact with β-arrestin in vitro as revealed by pull-down assays. In conclusion, this work establishes the production, characterization and isolation of three recombinant human GPCRs. Recombinant receptors were produced in milligram amounts and therefore, pave the way for structural analysis. The heterodimer complex of B2R-AT1aR and B2R-β-arrestin complex can be of great help during crystallization. In addition, it was also found for the first time that the surface localization of a peptide GPCR can be triggered by heterodimerization with a distantly related peptide GPCR.
Der COX-2-selektive Inhibitor Celecoxib ist zurzeit das einzigste NSAID, das von der FDA für die adjuvante Therapie von Patienten mit der FAP-Erkrankung zugelassen wurde. Die antineoplastischen Mechanismen dieses Wirkstoffes werden nur teilweise verstanden, jedoch spielen COX-2-abhängige, aber auch COX-2-unabhängige Mechanismen eine wichtige Rolle. Um zu untersuchen, in welchem Ausmaß die antikarzinogenen Effekte von Celecoxib von der COX-2-Expression der Tumor-Zelle abhängig sind, wurden humane Caco-2-Kolonkarzinom-Zellen mit pcDNA-Vektoren transfiziert, in denen die humane COX-2-cDNA sowohl in sense- (hCOX-2-sense), als auch in antisense- (hCOX-2-as) Orientierung einkloniert wurde. Die pcDNA-Kontrollzellen wurde nur mit dem leeren pcDNA-Vektor transfiziert. Caco-hCOX-2-s-Zellen zeigten eine starke Überexpression der COX-2, pcDNA-Kontrollzellen nur eine schwache Expression von COX-2 und hCOX-2-as-Zellen waren COX-2-defizient. Die Behandlung dieser Zellen mit steigenden Konzentrationen an Celecoxib (0-100 µM) führte in Proliferationstests zu einer starken Verminderung der Überlebensrate, die durch die Induktion einer G0/G1-Zellzyklusblockade und durch die Auslösung von Apoptose mit Aktivierung von Caspase-3 und -9 sowie Freisetzung von Cytochrom C charakterisiert ist. Sowohl die Verminderung der Überlebensrate, als auch die Induktion von Apoptose waren in COX-2-defizienten hCOX-2-as-Zellen schwächer ausgeprägt als in COX-2-exprimierenden pcDNA- und hCOX-2-s-Zellen. Im Gegensatz hierzu erfolgte die Induktion der G0/G1-Zellzyklusblockade durch Celecoxib unabhängig vom COX-2-Expressionsstatus der Zellen und war durch einen starken Abfall der Expression von Cyclin A und Cyclin B1 sowie eine Induktion der Zellzyklusinhibitoren p21 und p27 gekennzeichnet. Diese Ergebnisse verdeutlichen, dass die antikarzinogenen Effekte von Celecoxib sowohl über COX-2-abhängige, als auch COX-2-unabhängige Mechanismen erklärt werden können. Zahlreiche Studien konnten zeigen, dass Mutationen im APC- oder Beta-Catenin-Gen eine entscheidende Rolle bei der Entstehung von kolorektalen Polypen und Karzinomen spielen. Weiterhin ist der Beta-Catenin/APC-Signaltransduktionsweg ein wichtiger Regulator von Apoptose und Zellzyklusprogression. Daher wurde im zweiten Teil der vorliegenden Arbeit untersucht, ob Celecoxib einen Einfluss auf den Beta-Catenin/APC-Signaltransduktionsweg in humanen Kolonkarzinom-Zellen besitzt. So wurde nach Behandlung von humanen Caco-2-Zellen mit 100 µM Celecoxib eine schnelle Translokation von Beta-Catenin von seiner überwiegend Membran-assoziierten Lokalisation in das Zytoplasma beobachtet, die durch die Aktivität der GSK-3ß vermittelt wird und somit durch Phosphorylierung von Beta-Catenin stattfinden könnte. Tatsächlich führte die Behandlung von Caco-2-Zellen mit 100 µM Celecoxib bereits nach 2 Stunden Behandlungsdauer zu einer Reduktion des Ser-9-Phosphorylierungsstatus der GSK-3ß und somit zu deren Aktivierung. Die zytosolische Akkumulation von Beta-Catenin war ferner von einem schnellen Anstieg der Beta-Catenin-Spiegel im Zellkern begleitet, der bereits nach 30 Minuten Inkubationsdauer zu beobachten war. Überraschenderweise kam es parallel hierzu zu einem zeitabhängigen Abfall der DNA-Bindungsaktivität von Beta-Catenin. Nach dieser zellulären Reorganisation konnte nach 8 Stunden Behandlungsdauer mit 100 µM Celecoxib ein starker, Proteasom- und Caspase-abhängiger Abbau von Beta-Catenin beobachtet werden. Ein im Vergleich zu Caco-2-Zellen verminderter Beta-Catenin Abbau wurde sowohl in humanen MCF-7-Mammakarzinom-Zellen, die keine funktionale Caspase-3 exprimieren, als auch in humanen HCT-116-Zellen, in denen ein GSK-3ß-abhängiger Abbau von Beta-Catenin aufgrund einer Mutation im Beta-Catenin-Protein nicht stattfindet, beobachtet. Interessanterweise fand ein Abbau von Beta-Catenin weder nach Behandlung der Caco-2-Zellen mit dem stark antikarzinogen wirksamen NSAID R-Fluriprofen, noch mit dem COX-2-selektiven Inhibitor Rofecoxib statt. Die Ergebnisse aus diesem Teil der Arbeit deuten darauf hin, dass der Abbau von Beta-Catenin bei der Auslösung der COX-2-unabhängigen antikarzinogenen Effekte von Celecoxib eine wichtige Rolle spielt. In den letzten Jahren kamen weitere strukturverwandte NSAIDs vom Coxib-Typ auf den Markt, die eine höhere COX-2-Selektivität als Celecoxib besitzen. Die Experimente des dritten Teils dieser Arbeit sollten die Frage klären, ob die antikarzinogene Wirksamkeit einen Klasseneffekt aller Coxibe darstellt, oder nur spezifisch nach Behandlung von Tumor-Zellen mit Celecoxib zu beobachten ist. Mittels Proliferationstests konnte gezeigt werden, dass Celecoxib und Methylcelecoxib (Strukturanalogon von Celecoxib mit schwacher COX-2-inhibitorischer Aktivität) starke wachstumshemmende Effekte (Zellzyklusblockade und Apoptose) in COX-2-überexprimierenden HCA-7-, als auch in COX-2-defizienten HCT-116-Kolon-karzinomzellen verursachen. Unter Behandlung dieser Zellen mit den selektiven COX-2-Inhibitoren Rofecoxib, Etoricoxib, Lumiracoxib und Valdecoxib wurden nur schwache antiproliferative Effekte beobachtet. Die Analyse der Zellzahl in der SubG1-Phase mittels Durchflusszytometrie sowie der Spaltung von PARP mittels Western Blot-Analyse konnte demonstrieren, dass sowohl HCT-116-, als auch HCA-7-Zellen deutlich sensitiver auf die Apoptose-induzierende Wirkung von Methylcelecoxib reagierten als auf Celecoxib. Zudem zeigten COX-2-überexprimierende HCA-7-Zellen nach Behandlung mit Celecoxib und Methylcelecoxib eine höhere Apoptoserate als HCT-116-Zellen, bei denen jedoch die Induktion einer G1-Zellzyklusblockade mit Induktion von p27 und Abbau von Cyclin D1 ausgeprägter als in HCA-7-Zellen war. Eine LC/MS/MS-Analyse der Coxibkonzentrationen in Medium ergab, dass aufgrund der starken Proteinbindungen die freien Coxibkonzentrationen teils deutlich niedriger sind als die totalen eingesetzten Coxibkonzentrationen in Medium mit 10% FCS. Ferner konnte mittels LC/MS/MS demonstriert werden, dass es nach Behandlung von HCT-116- und HCA-7-Zellen mit Celecoxib und Methylcelecoxib zu einer intrazellulären Aufkonzentrierung der Wirkstoffe relativ zur freien Coxibkonzentration im Medium kommt, die nach Behandlung der Zellen mit Rofecoxib, Etoricoxib, Lumiracoxib und Valdecoxib jedoch nicht beobachtet wurde. Die Aufkonzentrierung von Celecoxib in den Kolonkarzinom-Zellen könnte bei der Auslösung der antikarzinogenen Effekte möglicherweise eine Rolle spielen. Die Ergebnisse aus diesem Teil der Arbeit konnten belegen, dass die antiproliferativen Effekte spezifisch und weitgehend COX-2-unabhängig nach Behandlung der Tumor-Zellen mit Celecoxib auftreten und daher keinen Klasseneffekt aller COX-2-selektiven NSAIDs darstellen.