Refine
Year of publication
Document Type
- Doctoral Thesis (21)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Bulk viscosity (1)
- Color Superconductivity (1)
- Gravitational wave (1)
- Hartree-Näherung (1)
- Jet-Medium-Wechselwirkungen (1)
- Kernastrophysik (1)
- Mach cone (1)
- Machkegel (1)
- Magnetic field (1)
- Mesons (1)
Institute
Hinreichend kalte und dichte Quarkmaterie ist ein Farbsupraleiter. Ähnlich wie Elektronen in einem gewöhnlichen Supraleiter bilden Quarks Cooper-Paare. Während bei Elektronen der Austausch von Phononen zu einer Anziehung führt, ist im Falle von Quarks der Antitriplett-Kanal der starken Wechselwirkung attraktiv. Arbeiten in den letzten Jahren haben verschiedene Phasen von farbsupraleitender Quarkmaterie untersucht und sich dabei vor allem auf Phasen konzentriert, m denen der Gesamtspin eines Cooper-Paares verschwindet. In der vorliegenden Dissertation habe ich hauptsächlich Farbsupraleiter diskutiert, deren Cooper-Paare im Spin-Triplett-Kanal kondensieren, d.h. die Cooper-Paare haben den Gesamtspin 1. Diese Art von Supraleiter ist möglicherweise relevant für Systeme in der Natur, wie z.B. das Innere von Neutronensternen. Denn bei der Spin-0-Farbsupraleitung wird vorausgesetzt, dass die Fermi-Impulse zweier Quark-Flavor gleich ist oder zumindest hinreichend klein, was für realistische Systeme, also für nicht zu große Dichten, fragwürdig ist. Diese Einschränkung gibt es im Falle von Spin-1-Farbsupraleitern nicht, da hier Quarks des gleichen Flavors Cooper-Paare bilden. Ich habe in meiner Dissertation die verschiedenen möglichen Phasen eines Spin-1-Farbsupraleiters systematisch klassifiziert. Dies wurde mit Hilfe von gruppen-theoretischen Methoden durchgeführt, basierend auf der Tatsache, dass die Farbsupraleitung durch das theoretische Konzept der spontanen Symmetriebrechung beschrieben werden kann. Ähnlich wie bei supraflüssigem Helium-3 gibt es eine Vielzahl theoretisch möglicher Phasen. Ich habe die physikalischen Eigenschaften von vier dieser Phasen untersucht, nämlich der polaren und planaren Phasen sowie der A- und CSL-(color-spin-locked)Phasen. Mit Hilfe der QCD-Lückengleichung wurde die Energielücke sowie die kritische Temperatur bestimmt. Es stellt sich heraus, dass die Energielücke eines Spin-1-Farbsupraleiters um 2-3 Größenordnungen kleiner ist als die eines Spin-0-Farbsupraleiters, d.h. sie liegt im Bereich von 10 - 100 keV. Zwei besondere Eigenschaften der Energielücke werden diskutiert, nämlich eine 2-Lücken-Struktur, die in zwei der untersuchten Fälle auftritt, sowie mögliche Anisotropien, insbesondere Nullstellen der Lückenfunktion. Die Berechnung der kritischen Temperatur zeigt, dass es durchaus farbsupraleitende Materie in einer Spin-1-Phase im Innern von Neutronensternen geben kann, da die Temperatur von alten Neutronensternen im Bereich von einigen keV oder sogar darunter liegt. Darüber hinaus wurde die Frage untersucht, ob ein Farbsupraleiter auch ein gewöhnlicher Supraleiter ist. In diesem Zusammenhang ist die Frage von Interesse, ob ein Spin-1-Farbsupraleiter gewöhnliche Magnetfelder aus seinem Innern verdrängt, was sicherlich Auswirkungen auf die Observablen eines Neutronensterns hätte. Tatsächlich stellt sich heraus, dass ein Spin-1-Farbsupraleiter, im Gegensatz zu einem Spin-0-Farbsupraleiter, einen elektronmagnetischen Meissner-Effekt aufweist. Dieses Ergebnis wurde mit Hilfe von gruppentheoretischen Überlegungen vorausgesagt und mit Hilfe einer detaillierten Berechnung der Photon-Meissner-Massen bestätigt.
The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window.
After a brief introduction on QCD and effective models in the first chapter, I analyze the dependence of the QCD transition temperature on the quark (or pion) mass in the second chapter. I found that a linear sigma model, which links the transition to chiral symmetry restoration, predicts a much stronger dependence of T_c on m_pi than seen in present lattice data for m_pi >~ 0.4 GeV. On the other hand, an effective Lagrangian for the Polyakov loop requires only small explicit symmetry breaking to describe T_c(m_pi) in the above mass range. In the third and fourth chapter, I study the linear sigma model with O(N) symmetry at nonzero temperature in the framework of the Cornwall-Jackiw-Tomboulis formalism. Extending the set of two-particle irreducible diagrams by adding sunset diagrams to the usual Hartree-Fock (or Hartree) contributions, I derive a new approximation scheme which extends the standard Hartree-Fock (or Hartree) approximation by the inclusion of nonzero decay widths.
In this thesis I use effective models to investigate the properties of QCD-like theories at nonzero temperature and baryon chemical potential. First I construct a PNJL model using a lattice spin model with nearestneighbor interactions for the gauge sector and four-fermion interactions for the quarks in (pseudo)real representations of the gauge group. Calculating the phase diagram in the plane of temperature and quark chemical potential in QCD with adjoint quarks, it is qualitatively confirmed that the critical temperature of the chiral phase transition is much higher than the deconfinement transition temperature. At a chemical potential equal to half of the diquark mass in the vacuum, a diquark Bose–Einstein condensation (BEC) phase transition occurs. In the two-color case, a Ginzburg–Landau expansion is used to study the tetracritical behavior around the intersection point of the deconfinement and BEC transition lines which are both of second order. A compact expression for the expectation value of the Polyakov loop in an arbitrary representation of the gauge group is obtained for any number of colors, which allows us to study Casimir scaling at both nonzero temperature and chemical potential. Subsequently I study the thermodynamics of two-color QCD (QC2D) at high temperature and/or density using ZQCD, a dimensionally reduced superrenormalizable effective theory, formulated in terms of a coarse grained Wilson line. In the absence of quarks, the theory is required to respect the Z2 center symmetry, while the effects of quarks of arbitrary masses and chemical potentials are introduced via soft Z2 breaking operators. Perturbative matching of the effective theory parameters to the full theory is carried out explicitly, and it is argued how the new theory can be used to explore the phase diagram of two-color QCD.
Das Schwerionenkollisionen Programm der Beschleuniger RHIC und LHC gibt Hinweise auf einen neuen Zustand hadronischer Materie --- das Quark-Gluon Plasma. Dieses zeichnet sich durch eine zumindest partielle Aufhebung des confinements aus, welches besagt, dass keine freien Quarks beochtbar sind.
Aus einer Beschreibung der experimentellen Daten mit relativistischer Hydrodynamik folgen weitere Eigenschaften. So geht das in einer Schwerionenkollision erzeugte Quark-Gluon Plasma nach sehr kurzer Zeit, etwa 1 fm/c, in ein zumindest lokales thermisches Gleichgewicht über. Durch die Lorentzkontraktion der beiden Schwerionen erwartet man, dass der Zustand direkt nach der Kollision durch eine Impulsanisotropie in der transversal-longitudinalen Ebene bestimmt wird. Somit setzt das Erreichen eines thermischen Gleichgewichts zunächst eine Isotropisierung voraus. Bisherige Studien haben gezeigt, dass gluonische Moden bei dieser Isotropisierung durch Verursachung einer chromo-Weibel Instabilität eine entscheidende Rolle spielen.
Weiterhin verhält sich das Quark-Gluon Plasma wie eine fast perfekte Flüssigkeit. Eine Berücksichtigung dissipativer Terme in der hydrodynamischen Beschreibung erfordert das Hinzufügen weiterer Terme zu den entsprechenden Bewegungsgleichungen. Diese sind proportional zu Transportkoeffizienten, welche durch die zugrunde liegende mikroskopische Theorie festgelegt sind.
Diese Theorie ist Quantenchromodynamik. Sie beschreibt die starke Wechselwirkung der Quarks und Gluonen und ist ein fundamentaler Baustein des Standardmodells der Teilchenphysik. Da im Regelfall Prozesse der starken Wechselwirkung nichtperturbativ sind, beschreiben wir QCD unter Verwendung einer Gitterregularisierung. Diese beruht auf einer Diskretisierung der vierdimensionalen Euklidischen Raumzeit durch einen Hyperkubus mit periodischen Randbedingungen und ermöglicht ein Lösen der QCD mit numerischen Methoden. Allerdings ist die Anwendung der Gittereichtheorie auf Systeme im thermischen Gleichgewicht beschränkt und kann somit keine Prozesse beschreiben, die auf Echtzeit basieren.
Transportkoeffizienten entsprechen Proportionalitätskoeffizienten, die die Relaxation einer Flüssigkeit oder eben eines Quark-Gluon Plasmas von einer kleinen Störung beschreiben. Damit sind sie unmittelbar mit der Zeit verknüpft. Über Kubo-Formeln lassen sie sich jedoch mit Gleichgewichtserwartungswerten retardierter Korrelatoren verknüpfen und werden so in Gitter QCD zugänglich.
In der vorliegenden Dissertation berechnen wir den Transportkoeffizienten κ in Gittereichtheorie für das Yang-Mills Plasma. Dabei nutzen wir aus, dass dieser Transportkoeffizient eine triviale analytische Fortsetzung vom retardierten zum Euklidischen Korrelator besitzt, welcher direkt in Gittereichtheorie zugänglich ist. Es ist die erste nichtperturbative Berechnung eines Transportkoeffizienten in QCD ohne weitere Annahmen, wie die Maximum Entropie Methode oder Ansätze, zu treffen.
In this work a nonlinear evolution of pure states of a finite dimensional quantum system is introduced, in particular a Riccati evolution equation.
It is shown how this class of dynamics is actually a Hamiltonian dynamics in the complex projective space.
In this projective space it is shown that there is a nonlinear superposition rule, consistent with its linear counterpart in the Hilbert space. As an example, the developed nonlinear formalism is applied to the semiclassical Jaynes–Cummings model.
Later, it is shown that there is an inherent nonlinear evolution in the dynamics of the so-called generalized coherent states.
To show this, the fact that in quantum mechanics it is possible to immerse a ''classical'' manifold into the Hilbert space is employed, such that one may parametrize the time-dependence of the wave function through the variation of parameters in the classical manifold.
The immersion allows to consider the so-called principle of analogy, i.e. using the procedures and structures available from the classical setting to employ them in the quantum setting.
Finally, it is introduced the contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and it is showed that it is a natural candidate for a geometric description of non-dissipative and dissipative systems.
Das Standardmodell der Elementarteilchenphysik beschreibt nach aktuellem Kenntnisstand die Entstehung, den Aufbau und das Verhalten der Materie in unserem Universum am erfolgreichsten. Dennoch gibt es einige Phänomene, die sich nicht in dessen Rahmen beschreiben lassen, wie z. B. die Existenz von dunkler Materie und Energie, nicht-verschwindende Neutrinomassen oder die Baryonenasymmetrie. Speziell im Hinblick auf die starke Wechselwirkung, welche im Standardmodell durch die Quantenchromodynamik (QCD) beschrieben wird, gibt es noch immer viele offene Fragen.
Eine Umgebung, in der man die QCD experimentell ergründen kann, bieten vor allem Schwerionenkollisionen, die insbesondere am Large Hadron Collider (LHC) oder am Relativistic Heavy Ion Collider (RHIC) durchgeführt werden.
In dieser Arbeit soll ein Beitrag von theoretischer Seite aus hinsichtlich eines besseren Verständnisses dieser Schwerionenkollisionen und der zugrundeliegenden QCD erbracht werden. Der Fokus liegt dabei auf dem Isotropisierungsprozess unmittelbar nach der Kollision der beiden Kerne.
Neben etlichen effektiven Theorien, die sehr gute Ergebnisse in den entsprechenden Grenzbereichen liefern, ist die Beschreibung der QCD im Rahmen der Gittereichtheorie (Gitter-QCD) die am meisten etablierte. Diese beinhaltet in den meisten Fällen einen Übergang zur euklidischen Raumzeit, da somit ein Auswerten der hochdimensionalen Pfadintegrale mithilfe von Monte-Carlo-Simulation basierend auf dem sogenannten Importance Sampling ermöglicht wird. Aufgrund der Komplexwertigkeit der euklidischen Zeitkomponente ist man jedoch an das Studieren von statischen Observablen gebunden. Da wir aber gerade an einer Zeitentwicklung des Systems interessiert sind, sehen wir von dem Übergang zur euklidischen Raumzeit ab, was den Namen “real-time” im Titel der Arbeit erklärt.
Wir folgen dem sogenannten Hamilton-Ansatz und leiten damit Feldgleichungen in Form von partiellen Differentialgleichungen her, die wir dann mit den Methoden der Gitter-QCD numerisch lösen. Dabei bedienen wir uns der effektive Theorie des Farb-Glas-Kondensats (CGC, aus dem Englischen: “Color Glass Condensate”), um geeignete Anfangsbedingungen zu erhalten. Genauer gesagt basieren unsere Gitter-Anfangsbedingungen auf dem McLerran-Venugopalan-Modell (MV-Modell), das eine klassische Approximation in niedrigster Ordnung darstellt und nur Beiträge rein gluonischer Felder berücksichtigt.
Die klassische Näherung sowie das Vernachlässigen der fermionischen Felder wird insbesondere mit den hohen Besetzungszahlen der Feldmoden begründet. Einerseits dominieren Infrarot-Effekte, welche klassischer Natur sind, und andererseits ist dadurch der Einfluss der Fermionen, die dem Pauli-Prinzip gehorchen, unterdrückt. Gerade bei letzterer Aussage fehlt es jedoch an numerischen Belegen. Wir erweitern daher die klassische MV-Beschreibung durch stochastische Gitter-Fermionen, um diesem Punkt nachzugehen. Da sich Fermionen nicht klassisch beschreiben lassen, spricht man hierbei oft von einem semi-klassischen Ansatz.
Eines der Hauptziele dieser Arbeit liegt darin, den Isotropisierungsprozess, der bislang noch viele Fragen aufwirft, aber unter anderem Voraussetzung für das Anwenden von hydrodynamischen Modellen ist, zu studieren. Wir legen dabei einen besonderen Fokus auf die systematische Untersuchung der verschiedenen Parameter, die durch die CGC-Anfangsbedingungen in unsere Beschreibung einfließen, und deren Auswirkungen auf etwa die Gesamtenergiedichte des Systems oder die zugehörigen Isotropisierungszeiten. Währenddessen überprüfen wir zudem den Einfluss von unphysikalischen Gitter-Artefakten und präsentieren eine eichinvariante Methode zur Analyse der Güte unserer klassischen Näherung. Die Zeitentwicklung des Systems betrachten wir dabei sowohl in einer statischen Box als auch in einem expandierenden Medium, wobei Letzteres durch sogenannte comoving Koordinaten beschrieben wird. Zudem liefern wir einen Vergleich von der realistischen SU(3)-Eichgruppe und der rechentechnisch ökonomischeren SU(2)-Eichgruppe.
Mit unseren numerischen Ergebnissen zeigen wir, dass das System hochempfindlich auf die verschiedenen Modellparameter reagiert, was das Treffen quantitativer Aussagen in dieser Formulierung deutlich erschwert, insbesondere da einige dieser Parameter rein technischer Natur sind und somit keine zugehörigen physikalisch motivierten Größen, die den Definitionsbereich einschränken könnten, vorhanden sind. Es ist jedoch möglich, die Anzahl der freien Parameter zu reduzieren, indem man ihren Einfluss auf die Gesamtenergie des Systems analysiert und sich diesen zunutze macht. Dadurch gelingt es uns mithilfe von Konturdiagrammen einige Abhängigkeiten zu definieren und somit die Unbestimmtheit des Systems einzuschränken. Des Weiteren finden wir dynamisch generierte Filamentierungen in der Ortsdarstellung der Energiedichte, die ein starkes Indiz für die Präsenz von sogenannten chromo-Weibel-Instabilitäten sind. Unsere Studie des fermionischen Einflusses auf den Isotropisierungsprozess des CGC-Systems weist auf, dass dieser bei kleiner Kopplung vernachlässigbar ist. Bei hinreichend großen Werten für die Kopplungskonstante sehen wir allerdings einen starken Effekt hinsichtlich der Isotropisierungszeiten, was ein bemerkenswertes Resultat ist.
We study the Wigner function for massive spin-1/2 fermions in electromagnetic fields. The Wigner function is analytically solved in five cases when electromagnetic fields are constants. For a general space-time dependent field configuration, we use the method of semi-classical expansion and solved the Wigner function at linear order in the Planck's constant. At the same order, we obtained a generalized Boltzmann equation for particle distribution, and a generalized BMT equation for spin polarization. Using the Wigner function, we calculated some physical quantities in a thermal equilibrium system.
This thesis investigates the jet-medium interactions in a Quark-Gluon Plasma using a hydrodynamical model. Such a Quark-Gluon Plasma represents a very early stage of our universe and is assumed to be created in heavy-ion collisions. Its properties are subject of current research. Since the comparison of measured data to model calculations suggests that the Quark-Gluon Plasma behaves like a nearly perfect liquid, the medium created in a heavy-ion collision can be described applying hydrodynamical simulations. One of the crucial questions in this context is if highly energetic particles (so-called jets), which are produced at the beginning of the collision and traverse the formed medium, may lead to the creation of a Mach cone. Such a Mach cone is always expected to develop if a jet moves with a velocity larger than the speed of sound relative to the medium. In that case, the measured angular particle distributions are supposed to exhibit a characteristic structure allowing for direct conclusions about the Equation of State and in particular about the speed of sound of the medium. Several different scenarios of jet energy loss are examined (the exact form of which is not known from first principles) and different mechanisms of energy and momentum loss are analyzed, ranging from weak interactions (based on calculations from perturbative Quantum Chromodynamics, pQCD) to strong interactions (formulated using the Anti-de-Sitter/Conformal Field Theory Correspondence, AdS/CFT). Though they result in different angular particle correlations which could in principle allow to distinguish the underlying processes (if it becomes possible to analyze single-jet events), it is shown that the characteristic structure observed in experimental data can be obtained due to the different contributions of several possible jet trajectories through an expanding medium. Such a structure cannot directly be connected to the Equation of State. In this context, the impact of a strong flow created behind the jet is examined which is common to almost all jet deposition scenarios. Besides that, the transport equations for dissipative hydrodynamics are discussed which are fundamental for any numerical computation of viscous effects in a Quark-Gluon Plasma.
This thesis has light mesons and their vacuum interactions as its topic. In particular, the work examines the question where the scalar antiquark-quark states are found in the physical spectrum -- in the energy region below or above 1 GeV. Contrary to the naive expectation, the mentioned states are found in the region above 1 GeV. This has consequences for the building of order parameters for the chiral symmetry breaking of Quantum Chromodynamics (QCD).