Refine
Year of publication
Document Type
- Doctoral Thesis (10)
- Bachelor Thesis (6)
- Diploma Thesis (2)
- Master's Thesis (1)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- Boltzmann equation (1)
- CJT formalism (1)
- CJT-Formalismus (1)
- Chirale Symmetrie (1)
- Chiralität, Elementarteilchenphysik (1)
- Color superconductivity (1)
- Farbsupraleitung (1)
- Functional Renormalization Group (1)
- Hydrodynamic (1)
- Kernmaterie (1)
Institute
This thesis deals with the simulation, optimization and realization of quasi-optical scanning systems for active THz cameras. Active THz cameras are sensitive in the THz regime of the electromagnetic spectrum and are suitable for the detection of metal objects such as weapons behind clothing or fabrics (maybe for security applications) or material investigation. An advantage of active THz-systems is the possibility to measure the phase of the THz-radiation and thus to reconstruct the surface topography of the objects under test. Due to the coherent illumination and the required system parameters (like image field size, working distance and lateral resolution) the optical systems (in the THz region often called quasi-optical systems) must be optimized. Specifically, the active illumination systems require highly optimized quasioptical systems to achieve a good image quality. Since currently no suitable multi-pixel detectors are available, the object has to be scanned in one or two dimensions in order to cover a full field of view. This further reinforces the occurring aberrations. The dissertation covers, alongside the underlying theory, the simulation, optimisation and realisation of three different active THz systems. The subdivision of the chapters is as follows: Chapter 1 deals with a motivation. Chapter 2 develops the underlying theory and it is demonstrated that the geometrical optics is an adequate and powerful description of the image field optimization. It also addresses the developed analytic on-axis and the off-axis image field optimization routine. Chapter 3, 4 and 5 are about the basis of various active THz cameras, each presented a major system aspect. Chapter 3 shows how active THz-cameras with very high system dynamics range can be realised. Within this chapter it could although be demonstrated how very high depth resolution can be achieved due to the coherent and active illumination and how high refresh rate can be implemented. Chapter 4 shows how absolute distance data of the objects under test can be obtained. Therefore it is possible to reconstruct the entire object topography up to a fraction of the wavelength. Chapter 5 shows how off-axis quasi-optical systems must be optimized. It is also shown how the illumination geometry of the active THz systems must be changed to allow for real-time frame rates. The developed widened multi-directional lighting approach also fixes the still existing problem of phase ambiguity of the single phase measurement. Within this chapter, the world’s first active real-time camera with very high frame rates around 10 Hz is presented. This could be only realized with the highly optimised quasioptical system and the multi-directional lighting approach. The paper concludes with a summary and an outlook for future work. Within the outlook some results regarding the simulation of synthetic aperture radar systems and metamaterials are shown.
Ein zentraler Bestandteil der Teilchenphysik ist die Berechnung der Zerfallsbreiten bzw. Lebensdauern von Teilchen. Die meisten bekannten Teilchen sind instabil und zerfallen in zwei oder mehr leichtere Teilchen. Die Formel für die Berechnung einer Zerfallsbreite enthält zwei verschiedene Komponenten: Die kinematischen Faktoren, die lediglich vom Anfangs- und Endzustand abhängen und aus der Energie- und Impulserhaltung folgen, und die dynamischen Faktoren, die sich aus der Art der Wechselwirkung und eventuellen Zwischenstufen ergeben. Gibt es mehrere Zerfallskanäle, die zu den gleichen Endzuständen führen, so unterscheiden diese sich nur in den dynamischen Faktoren. Aus diesem Grunde werden kinematische und dynamische Faktoren getrennt, da nur letztere für die Analyse der Wechselwirkung relevant sind.
Die kinematischen Faktoren von Zwei- und Dreikörperzerfällen haben einen fundamentalen Unterschied: Beim Zweikörperzerfall ist durch die Erhaltungssätze die Verteilung der Energien der Produktteilchen komplett festgelegt, während sie bei einem Dreikörperzerfall innerhalb bestimmter Grenzen variieren kann.
Ein Dreikörperzerfall kann auf zwei verschiedeneWeisen auftreten: Bei einem direkten Zerfall entstehen gleichzeitig alle drei Endprodukte. Bei einem indirekten Zerfall zerfällt das Startteilchen zuerst in zwei Teilchen, von denen eines stabil ist und das andere erneut zerfällt. Im Falle des indirekten Zerfalls haben die resultierenden Teilchen eine andere Impulsverteilung als bei einem direkten Zerfall, woraus sich Informationen über den Zwischenzustand gewinnen lassen.
Im ersten Kapitel dieser Arbeit widmen wir uns der expliziten Berechnung der Zerfallsbreite für die verschiedenen Fälle. Wir beschränken uns hier und in allen weiteren Rechnungen auf skalare und pseudoskalare Teilchen, bei denen keine Spineffekte auftreten.
Die Zerfallsbreite eines Dreikörperzerfalls lässt sich in einer besonders praktischen Form, dem sogenannten Dalitz-Plot, darstellen. Hierbei sind alle kinematischen Faktoren konstant und eine Darstellung der Zerfallsbreite in Abhängigkeit der entsprechenden Variablen lässt direkten Aufschluss über die Art der Wechselwirkung zu. Die Form eines Dalitz-Plots sowie dessen Interpretation ist Gegenstand des zweiten Kapitels.
Im dritten Kapitel beschäftigen wir uns kurz mit der Frage, welche Auswirkungen Prozesse höherer Ordnung auf den gesamten Zerfall haben. Hierbei beschränken wir uns auf die Betrachtung von Loopbeiträgen des Zwischenzustandes eines indirekten Zerfalls.
Im letzten Kapitel werden wir die theoretischen Betrachtungen am Zerfall eines pseudoskalaren Glueballs anwenden. Ein Glueball ist ein gebundener Zustand aus Gluonen, den Austauschteilchen der starken Wechselwirkung. Da die Gluonen aufgrund der nichtabelschen Struktur der Farbsymmetriegruppe selbst Farbladung tragen, ist es theoretisch möglich, Zustände nur aus Gluonen zu konstruieren, die farbneutral sind und damit den Regeln des Confinements entsprechen. Im Falle der betrachteten Glueballs tritt ein weiterer interessanter Effekt auf: Da es mehrere Zerfallskanäle gibt, die zum gleichen Endzustand führen, treten Interferenzeffekte auf, deren Auswirkung auf das Gesamtergebnis näher untersucht wird.
In this thesis we explore the characteristics of strongly interacting matter, described by Quantum Chromodynamics (QCD). In particular, we investigate the properties of QCD at extreme densities, a region yet to be explored by first principle methods. We base the study on lattice gauge theory with Wilson fermions in the strong coupling, heavy quark regime. We expand the lattice action around this limit, and carry out analytic integrals over the gauge links to obtain an effective, dimensionally reduced, theory of Polyakov loop interactions.
The 3D effective theory suffers only from a mild sign problem, and we briefly outline how it can be simulated using either Monte Carlo techniques with reweighting, or the Complex Langevin flow. We then continue to the main topic of the thesis, namely the analytic treatment of the effective theory. We introduce the linked cluster expansion, a method ideal for studying thermodynamic expansions. The complex nature of the effective theory action requires the development of a generalisation of the linked cluster expansion. We find a mapping between generalised linked cluster expansion and our effective theory, and use this to compute the thermodynamic quantities.
Lastly, various resummation techniques are explored, and a chain resummation is implemented on the level of the effective theory itself. The resummed effective theory describes not only nearest neighbour, next to nearest neighbour, and so on, interactions, but couplings at all distances, making it well suited for describing macroscopic effects. We compute the equation of state for cold and dense heavy QCD, and find a correspondence with that of non-relativistic free fermions, indicating a shift of the dynamics in the continuum.
We conclude this thesis by presenting two possible extensions to new physics using the techniques outlined within. First is the application of the effective theory in the large-$N_c$ limit, of particular interest to the study of conformal field theory. Second is the computation of analytic Yang Lee zeros, which can be applied in the search for real phase transitions.
Phänomenologie der Pseudovektormesonen und Mischung mit Axialvektormesonen im kaonischen Sektor
(2012)
Ziel dieser Bachelorarbeit war die Vorstellung und die Untersuchung eines effektiven, mesonischen Drei-Flavor-Modells der Quantenchromodynamik und dessen Phänomenologie. Dazu wurden zunächst die Kopplungskonstanten a und b des Modells durch die Berechnung dominanter Zerfallsbreiten der im Modell enthaltenen Axialvektor- und Pseudovektor-Mesonen festgelegt. Dabei wurde für die Festlegung der Kopplungskonstanten a der Zerfall von f1 (1420) in KK*(892) verwendet. Die so berechnete Kopplungskonstante wurde anschließend unter Verwendung des ρπ-Zerfalls von a1 (1260) auf Konsistenz geprüft. Das dadurch erhaltene Resultat von Γa1--> ρπ= (443:962 ± 13:456) MeV liegt sehr gut in dem von der particle data group angegebenen Wertebereich der Gesamtbreite von a1 (1260). Die Festlegung und Berechnung der Kopplungskonstante b des Pseudovektor-Sektors war Gegenstand der Bachelorarbeit von Lisa Olbrich, so dass in dieser Arbeit nur die Resultate dieser Rechnung präsentiert wurden. Jedoch passen die dort erzielten Resultate auch mit guter Genauigkeit zu den experimentell bestimmten Werten der particle data group.
Das zweite Ziel dieser Bachelorarbeit war die Untersuchung der im Modell enthaltenen Mischungseffekte der Kaonen-Felder von K1 (1270) und K1 (1400). Zunächst waren im Axialvektor- und Pseudovektor-Nonet dieses Modells nur unphysikalische Kaonen-Felder K1;A und K1;B enthalten. Durch den Mischungsterm Lmix der Lagrange-Dichte des Modells existieren allerdings Mischterme beider Felder. Diese Mischterme wurden durch die Einführung der physikalischen Felder K1 (1270) und K1 (1400), welche durch eine SU(2)-Drehung aus den unphysikalischen Feldern hervorgehen, zum Verschwinden gebracht. Dies hat allerdings zur Folge, dass die Wechselwirkungsterme der physikalischen Felder K1 (1270) und K1 (1400) nun über eine gedrehte Kopplungskonstante koppeln. Diese gedrehte Kopplungskonstante ist eine Funktion der ursprünglich bestimmten Kopplungskonstanten a; b und eines Mischwinkels Φ. Dieser Mischungswinkel wurde von uns über den K? (892) π-Zerfall von K1 (1270) festgelegt. Anschließend konnten wir unter Verwendung des so berechneten Mischungswinkels Φ die Zerfallsbreite von K1 (1400) berechnen und mit den experimentell festgelegten Daten der particle data group vergleichen. Auch hier konnten wir eine gute Übereinstimmung unserer durch das Modell vorhergesagten Daten mit den experimentell bestimmten Werten erzielen.
Die Arbeit ist in zwei Teile gegliedert. Der erste Teil behandelt einige naturphilosophische und mathematische Probleme. Es wird außerdem das Pfeil-Paradoxon von Zeno vorgestellt, auf dem die moderne Variante des Quanten-Zeno-Paradoxons basiert. Im zweiten Teil wird zunächst eine allgemeine Analyse des Zerfallsgesetzes instabiler Quantensysteme gegeben. Es ist eine Mischung aus Zusammenfassungen von Reviews und neuen Ideen. Eine wichtige Rolle spielt dabei die Wellenfunktion in Energiedarstellung bzw. deren Betragsquadrat, genannt Energiedichte. Es wird auch auf den Fall eingegangen, wenn ein Quantensystem wiederholten (frequenten) Messungen ausgesetzt ist. Anschließend wird der Quanten-Zeno-Effekt und das Quanten-Zeno-Paradoxon als Folge des Verhaltens der Überlebenswahrscheinlichkeit für Zeiten kurz nach der Zustandspräparation beschrieben. Danach wird das Lee-Modell zur Beschreibung eines Teilchenzerfalls vorgestellt. Das Modell beschreibt den Zerfall eines instabilen Teilchens in zwei mögliche Kanäle, d.h. entweder in (genannt) a-Teilchen oder b-Teilchen. Es werden alle wichtigen Funktionen (Zerfallsgesetz, Energiedichte, etc.) analytisch hergeleitet. Es folgen darauf die Ergebnisse der numerischen Auswertung.
Das Ziel dieser Bachelorarbeit war es, einen Überblick über die Größe der, durch Einbeziehung des Loop-Level-Diagrammes entstehenden, Korrekturen zu erhalten. Die Ergebnisse sollen eingrenzen, wann diese Korrekturen wichtig oder sogar dominant sind. Der Einfluss der Korrekturen lässt sich gut mit Hilfe von g0 und g00 einschätzen. So gilt für g0 gerade Γntl = 1.33 Γ, die Korrekturen sind also für die Berechnung wichtig jedoch nicht dominant. Für g00 beginnen die Korrekturen gerade dominant gegenüber den Berechnungen in erster Ordnung zu werden (es gilt hier Γntl = 2 Γ). Wie anhand von Tabelle 7.2 zu sehen werden die Korrekturen, abhängig von der Massenkonfiguration, ab etwa 1.6 − 2.2mS wichtig und ab etwa 2.2 − 3.4mS dominant. Für sehr kleine Massen mΦ liegt diese Grenze natürlich niedriger, es wurde jedoch gezeigt, dass die Korrekturen selbst für mΦ = 10−13mS erst ab etwa 0.65mS dominant sind. Praktisch dürften die Korrekturen daher nur sehr selten, wenn überhaupt für Werte von g < mS, eine nennenswerte Rolle spielen. Welchen Einfluss die Korrekturen bei realen Zerfallskanälen haben, sollte nun anhand der Zerfälle von f0(500), f0(980), f0(1370) und f0(1500) in Pionen gezeigt werden. Zusätzlich wurde für den Zerfall von f0(500) die Berechnung ein weiteres Mal mit endlichem (niedrigen) Cutoff durchgeführt, um dessen Auswirkungen auf die Ergebnisse zu betrachten. Dies ist dann wichtig, wenn die beobachteten Teilchen eine endliche, räumliche Ausdehnung haben (beispielsweise wenn wie hier Hadronenzerfälle betrachtet werden). Für f0(980) und f0(1500) stellen sich die Korrekturen, wie aufgrund der vorherigen Ergebnisse und des sehr kleinen Verhältnisses von Zerfallsbreite und Masse bereits erwartet, mit 1.22% beziehungsweise 0.032% als sehr gering heraus. Für f0(1370) ist das Verhältnis bereits deutlich größer, hier sind die Korrekturen mit 7.43% bereits im hohen einstelligen Prozentbereich und damit für genaue Rechnungen durchaus wichtig. Für f0(500) zeigt sich nun wiederum, dass die Korrekturen sehr groß sind, die Loop-Level-Kopplungskonstanten ist um 24.57% kleiner. Für diesen Zerfalll sollte also bereits bei einer Abschätzung das Loop-Level Diagramm einbezogen werden. Stellt man die Berechnung mit endlichem Cutoff an, so stellt sich heraus, dass sich die exakten Werte zwar durchaus verändern, die Änderungen sind jedoch nicht so groß dass die Ergebnisse drastisch abweichen. Die Kopplungskonstante wird bei dem angenommenen Cutoff Λ = 0.95 GeV um 6.47% größer. In allen Varitionen fallen die Korrekturen kleiner als 33% aus. Als letztes ist die Genauigkeit der hier erhaltenen Ergebnisse zu beurteilen. Theoretisch sollten die numerischen Berechnungen mit beliebiger Genauigkeit durchführbar sein. Bei den im Rahmen dieser Arbeit durchgeführten Berechnungen trat jedoch das Problem auf, dass die numerischen Berechnungen des Integrals für Winkel sehr nahe 0° beziehungsweise 180° chaotisch wurden. Die Winkelintegration wurde daher nur von −0.99999 bis 0.99999 durchgeführt. Da das Impulsintegral bei diesen Winkeln etwa von der Größe 0.1 − 2 ist, abhängig von der Massenkonfiguration, entstehen dadurch Fehler der Größenordnung 10−5. Die Ursache für diesen Fehler liegt vermutlich darin begründet, dass sich für diese Winkel jeweils der dritte Pol auf den ersten und der vierte Pol auf den zweiten Pol verschiebt. In diesem Fall entsteht zwar an gleicher Stelle im Zähler eine Nullstelle (schaut man sich P1, P2 und P3 an, so befinden sich an diesen Stellen auch nur einfache Pole), die numerische Berechnung kann dadurch allerdings problematisch werden. Im Rahmen dieser Arbeit wurde eine Genauigkeit von 4 Nachkommastellen allerdings als ausreichend betrachtet. Abschließend lässt sich sagen, dass die Korrekturen in (fast) allen betrachteten Fällen klein sind. In Einzelfällen können sie allerdings durchaus relevante Dimensionen erreichen, wie am f0(500) Zerfall zu sehen ist. In zukünftigen Arbeiten sollte dieses Thema also auch für Wechselwirkungen mit Ableitungen und nicht-skalare Teilchen aufgegriffen werden.
In der vorliegenden Arbeit wurden verschiedene Aspekte der starken Wechselwirkung in effektiven Modellen in selbstkonsistenten Vielteilchenresummationsverfahren, die mit Hilfe des Cornwall-Jackiw-Tomboulis-Formalismus (CJT) hergeleitet wurden, untersucht. Zum einen wurden in der vorliegenden Arbeit lineare Sigma-Modelle behandelt, die zur Beschreibung der chiralen Symmetrierestauration der starken Wechselwirkung herangezogen werden. Hierbei handelt es sich um die linearen Sigma-Modelle mit O(4)-, U(2)r × U(2)-, U(3)r × U(3)- und U(4)r × U(4)-Symmetrie. Diese linearen Sigma-Modelle wurden zur Berechnung der Meson-Massen und Quark-Kondensate in Abhängigkeit von der Temperatur herangezogen. Hierzu wurden die Meson-Massen und Kondensate selbstkonsistent im Rahmen der Hartree-Näherung berechnet, die wiederum mit Hilfe des CJT-Formalismus hergeleitet wurde. Dies führte zum Studium verschiedener Symmetriebrechungsmuster der chiralen Symmetrie in den verschieden linearen Sigma-Modellen, wie sie in Tabelle 1.1 dargestellt wurden. Als erstes Ergebnis wurde dann der Fall maximaler Symmetriebrechung, nämlich die explizite Symmetriebrechung in Anwesenheit der U(1)A-Anomalie, besprochen. Hierbei wurden alle untersuchten Modelle miteinander verglichen, um den Einfluß der unterschiedlichen Anzahl von Quark-Flavors Nf auf die erzielten Ergebnisse zu diskutieren. Beim Vergleich des linearen O(4)- mit dem U(2)r×U(2)-Modell wird eine Verdopplung der physikalischen Freiheitsgrads augenfällig: zusätzlich zum Sigma-Meson und den Pionen, die schon im O(4)-Modell vorhanden sind, treten noch das η-Meson und die a0-Mesonen. Dies führt dazu, daß in der chiral-restaurierten Phase die Mesonmassen stärker mit der Temperatur ansteigen. Der Grund hierfür sind die Tadpole-Beiträge der zusätzlichen Freiheitsgrade, zu den Mesonenselbstenergie beitragen und so zu einer Zunahme der Mesonmassen führen. Dies trifft auch zu, wenn man den Strange-Freiheitsgrad beim Übergang zum U(3)r × U(3)-Modell hinzufügt. Dies ist eine allgemeine Tatsache, solange die Massen der zusätzlichen Freiheitsgrade von der gleichen Größenordnung sind wie die Übergangstemperatur des chiralen Phasenüberganges. Das Hinzufügen des Charm-Freiheitsgrades im Rahmen eines U(4)r ×U(4)-Modells beeinflußt die Resultate für die bereits im U(3)r×U(3)-Modell vorhandenen Mesonen und Kondensate nicht wesentlich. Dies beruht letztendlich auf der großen Masse des Charm-Quarks, die weit über der Übergangstemperatur des chiralen Phasenüberganges liegt. In der Hartree-Näherung wird diesem Sachverhalt dadurch Rechnung getragen, daß die Tadpole-Beiträge der schwereren, das Charm-Quark enthaltenden Mesonen ex4.3 ponentiell mit der jeweiligen Mesonenmasse unterdrückt sind ~ exp(−M/T ). Umgekehrt ändern sich die Massen der das Charm-Quark enthaltenden Mesonen fast nicht gegenüber ihrem Vakuumwert auf der Temperaturskala, die für die chirale Symmetrierestauration eine entscheidende Rolle spielt. Dies beruht darauf, daß die Tadpole- Beiträge der anderen leichten, Mesonen klein sind für gegenüber den großen Vakuummassen der schweren, das Charm-Quark enthaltenden, Mesonen. Dieses Resultat entspricht den intuitiven Erwartungen, aber ist dennoch aus zweierlei Gründen nichttrivial: erstens sind die Gleichungen für die In-Medium-Massen im U(4)r × U(4)- Modell strukturell von denen im U(3)r × U(3)-Modell verschieden; zweitens stellen die gekoppelten Gleichungen für die Massen und Kondensate ein nichtlineares Gleichungssystem dar, was dazu führen könnte, daß auch kleine Störungen große Veränderungen der Lösung des Gleichungssystemes nach sich ziehen. Dann wurde sich dem Studium der expliziten chiralen Symmetriebrechung ohne U(1)A-Anomalie zugewandt. Der Hauptunterschied zum vorherigen Fall war, daß der Bereich des Phasenüberganges auf der Temperaturskala enger um die Übergangstemperatur konzentriert ist und der chirale Phasenübergang bei etwas kleineren Temperaturen einsetzt. Schließlich wurden die skalaren und pseudoskalaren Mesonen und die Quark-Kondensate im chiralen Limes untersucht. Die Hartree-Näherung sagt hierbei korrekterweise einen Phasenübergang erster Ordnung im Fall des U(2)r × U(2)-Modelles ohne U(1)A-Anomalie und im U(3)r×U(3)-Modell voraus. Im O(4)- und im U(2)r× U(2)-Modell mit U(1)A-Anomalie versagt allerdings die Hartree-Näherung: eigentlich sollte ein Phasenüberganges zweiter Ordnung auftreten, die Hatree-Näherung führt aber auch hier auch hier auf einen Phasenübergang erster Ordnung. Die Übergangstemperaturen sind überraschend nah an denjenigen die in Gittereichrechnungen vorhergesagt werden. Allerdings nimmt mit der U(1)A-Anomalie die Übergangstemperatur mit der Anzahl der Quarkflavors zu, wohingegen die Gittereichtheorie das umgekehrte Verhalten vorhersagt. Dieses Bild ändert sich in Abwesenheit der U(1)A-Anomalie. Hier stimmen die Vorhersagen für die Ordnung der Übergangstemperaturen mit der Anzahl der Quark-Flavors mit der QCD-Vorhersage überein. Dies mag ein Anzeichen dafür sein, daß die U(1)A-Symmetrie – zumindest partiell – in der Nähe der Übergangstemperatur des chiralen Phasenüberganges und darüberhinaus wiederhergestellt sein könnte. Zum anderen wurde die Wechselwirkung von Pionen und Rho-Mesonen im Medium untersucht. Dies wurde im Rahmen eines einfachen Pion-Rho-Vektormesondominanzmodelles vorgenommen. Für dieses Modell wurde eine selbstkonsistente Ein-Schleifen-Näherung für die Dyson-Schwinger-Gleichungen des Pions- und des Rho-Vektormesons hergeleitet. Die im Rahmen dieser Näherung den Dyson- Schwinger-Gleichungen äquivalenten selbstkonsistenten Integralgleichungen für die Spektraldichten und Selbstenergien wurden im CJT-Formalismus unter Verwendung der Saclay-Methode hergeleitet. Renormierungsfragen wurden durch die Beschränkung der Untersuchungen auf die Imaginärteile der Selbstenergien umgangen, damit treten in dieser Näherung keine Massenmodifikationen der Pionen oder des Rho-Vektormesons auf. Im Rahmen der Aufstellung der selbstkonsistenten Dyson- Schwinger-Gleichungen zeigte sich, daß eine Verletzung der Vierer-Transversalität des Selbstenergietensors der Rho-Vektormesons auftritt, die letztlich auf Verletzung der Eichsymmetrie des zugrundeliegenden Pion-Rho-Modells beruht. Dennoch konnte durch sachgerechte Eichung erreicht werden, daß der Tensor der Spektraldichte des Rho-Vektormesons auch in dieser Näherung vierer-transversal ist. Das so erhaltene Integralgleichungssystem wurde numerisch auf einem Energie- und Impulsgitter gelöst. Die Spektraldichten und Selbstenergien der Pionen sowie die Komponenten der Spektraldichten und Selbstenergien des Rho-Mesons wurden hiermit selbstkonsistent bestimmt. Eine sehr interessante Eigenschaft im Vergleich zu perturbativen Ein-Schleifen-Rechnungen in diesen Modellen ist, daß die räumlich-longitudinale und räumlichtransversale Komponente der Spektraldichte des Rho-Vektormesons auch für invariante Massen pP2 unterhalb der Zwei-Pionen-Schwelle pP2 < 2mPion nicht-verschwindende Beiträge erhalten. Dies rührt daher, daß nun in den Integralgleichungen für die Selbstenergiekomponenten des Rho-Mesons die pionische Spektralfunktion im Medium prinzipiell alle Energieanregungen mit einem thermischen Gewichtsfaktor zugänglich macht. Das Schwellenverhalten ist also ein Artefakt der perturbativen Ein-Schleifen-Näherung. Die selbstkonsistenten Spektraldichten des Rho-Meson wurden zur Berechnung der statischen, thermischen Dileptonenproduktionsrate herangezogen. Es ergab sich, daß aufgrund dieses Aufweichens der Zwei-Pion-Schwelle eine erhebliche Erhöhung der statischen Dileptonenproduktionsrate im Vergleich zur perturbativen Ein-Schleifen-Näherung im Bereich von invarianten Massen zwischen 300MeV < pP2 < 700MeV eintritt. Auch das in perturbativen Rechnungen auftretende Maximum im Bereich invarianter Massen von 700MeV < pP2 < 900MeV in der Dileptonenproduktionsrate ist aufgrund der Stoßverbreiterung in den Ergebnissen der selbstkonsistenten Rechnungen nicht mehr auszumachen. Insbesondere zeigt sich hier auch, daß eine rein perturbative Behandlung stark wechselwirkender Systeme bei endlichen Temperaturen und Dichten a priori nicht ausreichend für ein angemessenes physikalisches Verständnis der auftretenden Effekte ist. Die Anwendung von vielteilchentheoretischen Verfahren zur Herleitung von genäherten Dyson-Schwinger-Gleichungen ist deshalb von besonderer Wichtigkeit. Mit den Studien dieser zwei Modellklassen, nämlich zum einen der Modelle des chiralen Phasenüberganges in der starken Wechselwirkung, und zum anderen eines Vektormesondominanzmodelles für ein Pion-Rho-System bei endlichen Temperaturen mit Hilfe von Vielteilchenresummationsverfahren in selbstkonsistenten Näherungen konnten so interessante phänomenologische Einblicke in die Physik der stark wechselwirkenden Materie gewonnen werden. Darüberhinaus wurde ein theoretischer Beitrag zur Behandlung beliebiger bosonischer Systeme in der selbstkonsistenten Schleifen-Näherung für die Dyson-Schwinger-Gleichungen geleistet. Natürlich sind damit die Forschungen auf dem Gebiet der Beschreibung von Aspekten stark wechselwirkender Materie in effektiven Modelle mittels selbstkonsistenter Vielteilchenresummationsverfahren bei weitem nicht abgeschlossen. Vielfältige Entwicklungen auf diesem Forschungsgebiet sind auch in Zukunft zu erwarten. Zum Beispiel bleibt die Frage der Veränderung der Massen (Realteil der Selbstenergien) der Rho-Mesonen und Pionen im Medium in der selbstkonsistenten Schleifennäherung bisher noch unbeantwortet. Auch das Einbinden von Baryonen in diese Betrachtungen ist eine Aufgabe für die Zukunft. Schließlich können auch noch die Effekte der chiralen Symmetrierestauration einen wesentlichen Einfluß auf die Beschreibung der Dileptonenproduktion nehmen. Die vorliegende Arbeit läßt die begründete Hoffnung zu, daß bei der Behandlung dieser weitergehenden Fragen in selbstkonsistenten Resummationsschemata wichtige neue Erkenntnisse gewonnen werden könnten. Darüberhinaus bleibt die Frage eines eichinvarianten, numerisch tatsächlich mit Hilfe des aktuellen Standes der Computertechnologie realisierbaren Vielteilchenresummationsschemas, das bei allen Temperaturen und Dichten anwendbar wäre ein grundlegendes und offenes Problem der Forschung, das nicht nur für die Beschreibung effektiver Theorien sondern auch für die Untersuchung von Dyson-Schwinger-Gleichungen für fundamentale Theorien, wie der Quantenchromodynamik, von höchstem Interesse wäre.
In this thesis we investigate the role played by gauge fields in providing new observable signatures that can attest to the presence of color superconductivity in neutron stars. We show that thermal gluon fluctuations in color-flavor locked superconductors can substantially increase their critical temperature and also change the order of the transition, which becomes a strong first-order phase transition. Moreover, we explore the effects of strong magnetic fields on the properties of color-flavor locked superconducting matter. We find that both the energy gaps as well as the magnetization are oscillating functions of the magnetic field. Also, it is shown that the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. This points towards the existence of magnetic domains or other types of magnetic inhomogeneities in the hypothesized quark cores of magnetars. Obviously, our results only apply if the strong magnetic fields observed on the surface of magnetars can be transmitted to their inner core. This can occur if the superconducting protons expected to exist in the outer core form a type-I I superconductor. However, it has been argued that the observed long periodic oscillations in isolated pulsars can only be explained if the outer core is a type-I superconductor rather than type-I I. We show that this is not the only solution for the precession puzzle by demonstrating that the long-term variation in the spin of PSR 1828-11 can be explained in terms of Tkachenko oscillations within superfluid shells.
Im Rahmen dieser Arbeit wurden zwei verschiedene Zerfallsprozesse behandelt. Zunächst wurde im Rahmen des erweiterten Linearen Sigma-Modells die Antwort auf die Frage gesucht, welches Teilchen als chiraler Partner des Nukleons in Frage kommt. Dazu wurde der Zerfall des chiralen Partners in ein Nukleon und ein skalares Teilchen betrachtet. Das skalare Teilchen wurde mit dem Tetraquark-Zustand f0(600) identifiziert. In Augenschein genommen wurden die Resonanzen N(1535) und N(1640). Aufgrund der berechneten Zerfallsbreiten erkannte man im Falle von N(1650) eine größere Übereinstimmung mit den experimentellen Werten. Die Zerfallsbreite von 45.91 MeV liegt in der Größenordnung des im Particle Data Book verzeichneten Intervalls. Der Wert, den man bei Verwendung von N(1535) als Ausgangsteilchen erhielt, ist allerdings gegenüber der Vorhersage zu groß.
Ein nächster Schritt im Studium dieses Sachverhalts stellt das erweiterte Misch-Szenario dar. Es beinhaltet nicht nur zwei, sondern vier Spinoren. Zwei davon beschreiben Nukleon-Resonanzen, zwei sind mögliche chirale Partner. Da die Zustände mischen, wird der chirale Partner nicht eindeutig durch ein, sondern durch zwei Resonanzen repräsentiert. Weiterhin steht die eingehende Betrachtung des Ursprungs von m0 aus. Dazu muss außer derWechselwirkung mit dem Tetraquark-Zustand auch die Wechselwirkung eines Glueballs mit den beteiligten Hadronen berücksichtigt werden. Dadurch erhält die Masse von m0 einen Anteil, der aus dem Glueball-Kondensat stammt. Dies muss beim Rückschluss auf die Nukleonmasse beachtet werden.
Als nächstes wurde der Zerfall des pseudoskalaren Glueballs in zwei Nukleonen betrachtet. Da die Kopplungskonstante dieses Zerfalls noch nicht experimentell bestimmt wurde, wurde ein Verhältnis zwischen zwei Zerfallskanälen berechnet. Es zeigte sich, dass der Zerfall in zwei Nukleonen fast doppelt so wahrscheinlich ist wie der Zerfall in Nukleon und chiralen Partner, der an der Energieschwelle liegt. Die Berechnung wurde mit einem Teilchen der Masse 2.6 GeV als Glueball durchgeführt. Die Untersuchung derart schwerer Glueballs wird in naher Zukunft erstmalig im Rahmen des PANDA-Experiments der GSI möglich sein.
Zukünftige Studien sollten die Beteiligung des Glueballs an gemischten Zuständen berücksichtigen. Außerdem sollte ein möglicher skalarer Glueball in die Betrachtung miteinbezogen werden.