Refine
Document Type
- Doctoral Thesis (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- EGFR (1)
- Hepatitis B (1)
- Hepatitis B virus (1)
- Viral entry (1)
- Virus-host Interaction (1)
- ZIKV (1)
- exosomes (1)
Institute
- Biochemie und Chemie (4)
- Biochemie, Chemie und Pharmazie (4)
- Biowissenschaften (2)
- Medizin (1)
- Pharmazie (1)
Weltweit sind ca. 130–180 Millionen Menschen mit HCV infiziert und jährlich sterben etwa 500.000 Menschen an dessen Folgen. Die neuartigen Therapien versprechen zwar eine sehr hohe Heilungsrate, sind aber aufgrund ihrer enorm hohen Kosten nur in Industrieländern verfügbar. Noch immer gibt es keine prophylaktische Vakzinierung gegen HCV. Deshalb ist es wichtig, den HCV-Lebenszyklus und die Interaktion zwischen Wirtszelle und Virus detailliert zu verstehen, um die Entwicklung von Therapien und Impfungen zu ermöglichen. Außerdem kann ein fundiertes Wissen von HCV translatiert werden und auf neuartige Erreger der Familie der Flaviviridae, wie Denguevirus und Zikavirus, angewendet werden. Während der Zelleintritt und die Replikation von HCV relativ gut charakterisiert sind, bleiben die Assemblierung und Freisetzung der viralen Partikel schlecht verstandene Schritte des HCV-Lebenszyklus. In dieser Arbeit sollte die Rolle des zellulären Proteins α-Taxilin im Lebenszyklus von HCV untersucht werden. In einer späteren Phase der Arbeit wurde der endosomale Freisetzungsweg von HCV untersucht. Dazu wurden HCV Varianten generiert und charakterisiert, die Fluoreszenz-Proteine im NS5A- und E1-Protein enthalten, durch die es möglich ist, den Replikationskomplex und die Viruspartikel zu visualisieren und zu quantifizieren und den viralen Lebenszyklus dadurch besser untersuchen zu können...
In addition to infectious viral particles, hepatitis B virus-replicating cells secrete high amounts of SVPs, which are ssembled by HBsAg in the shape of spheres and filaments but lack any capsid and genome. Filaments are characterized by a much higher amount of the surface protein LHBs as compared to spheres. Spheres are
released via the constitutive secretory pathway, while viral particles are ESCRT-dependently released via MVBs. The interaction of virions with the ESCRT machinery is mediated by α-taxilin that connects the PreS1 domain of LHBs with the ESCRT-component tsg101. Since viral particles and filaments contain a significant amount of LHBs, it is unclear whether filaments are secreted as spheres or released like viral particles. To study the release pathways of HBV filaments in the absence of viral particles, A core-deficient
HBV mutant (1.2×HBVΔCore) was generated by site-directed mutagenesis based on wt1.2x HBV. The start codon of core protein was mutated into stop codon, which was confirmed by DNA sequencing. Data from HBsAg ELISA, Western blot, immunofluorescence microscopy and immunoelectron microscopy showed that the lack of core protein did neither affect the production nor the secretion of HBV SVPs. The intracellular distribution of
LHBs and SHBs showed no difference between wtHBV and the core-deficient mutant expressing cells. Therefore, this system is suitable to investigate the release pathway of HBV filaments in the absence of viral particles. Confocal microscopy analysis of cells cotransfected core-deficient mutants with peYFPRab7 as marker for the endosomal/MVB pathway or with pGalT-eGFP as marker for the trans Golgi apparatus showed that YFP-Rab7, but not GalT-GFP, partially colocalized with LHBs. Furthermore, LHBs could be found in dilated MVBs by immune electron microscopy of ultrathin sections. This was confirmed by isolation of MVBs by cell fractionation using discontinuous sucrose gradient ultracentrifugation and percoll-based linear gradient ultracentrifugation, indicating that filaments enter MVBs in the absence of virion formation. Moreover, inhibition of MVB biogenesis by the small molecular inhibitor U18666A significantly abolished the release of filaments in a dose-dependent manner, but no inhibition could be observed in the production. In contrast, no inhibition on the secretion and production of spheres could be
detected. Inhibition of ESCRT-functionality by coexpression of transdominant negative mutants (Vps4A, Vps4B, CHMP3) abolished the release of filaments while secretion of spheres was not affected. These data indicate that in contrast Abstract 73 to spheres while are secreted via the secretory pathway, filaments are released via ESCRT/MVB pathway like infectious viral particles.
The Hepatitis C virus (HCV) infects more than 170 million individuals worldwide and causes challenging HCV-related diseases. Unfortunately, there is no vaccine available. Therefore, a better understanding of the HCV life cycle is urgently needed to develop more effective and better tolerated therapies.
It has been reported that the secretory pathway plays an essential role for the release of HCV, and the SNARE complexes are a central factor controlling intracellular vesicular trafficking. Recently, our group observed that α-taxilin that binds to free syntaxin 4 prevents the SNARE complex formation and exerts an inhibitory effect on the release of HCV particles. Therefore, it was analyzed whether the t-SNARE protein syntaxin 4 is involved in the HCV life cycle.
An increased intracellular amount of syntaxin 4 was found in HCV-positive cells, while the level of syntaxin 4-specific transcripts was decreased as observed in HCV-positive Huh7.5 cells and in HCV-infected primary human hepatocytes (PHH). Since in HCV-positive cells a significant longer half-life of syntaxin 4 was found, the decreased expression is overcompensated, leading to the elevated amount of syntaxin 4. Overexpression of syntaxin 4 increases the amount of secreted infectious viral particles, while silencing of syntaxin 4 expression decreases the number of released viral particles, which indicates that HCV could use the SNARE-dependent secretory pathway for viral release. Confocal immunofluorescence microscopy and co-immunoprecipitation experiments revealed that syntaxin 4 interacts with HCV core and NS5A. To identify the binding domain, various mutants of syntaxin 4 were generated. Based on these mutants, it was found that the H3 domain of syntaxin 4 interacts with core. These data show that the t-SNARE protein syntaxin 4 is an essential cellular factor for HCV morphogenesis and secretion.
HCV induces autophagy, and in HCV-infected cells a major fraction of the de novo synthesized viral particles is not released but intracellularly degraded. Syntaxin 17 is an autophagosomal SNARE required for the fusion of autophagosomes with lysosomes to form autolysosomes and thereby to deliver the enclosed contents for degradation. Therefore, we aim to investigate whether syntaxin 17 is a relevant factor for the HCV life cycle by regulating the fusion between autophagosomes and lysosomes. It was found that HCV-positive cells possess a decreased amount of syntaxin 17, and HCV reduces the intracellular level of syntaxin 17 by NS5A-mediated interruption of c-Raf signaling, which triggers the syntaxin 17 transcription, and by HCV-dependently induced autophagy. Overexpression of syntaxin 17 decreases the intracellular amount of viral particles and reduces the number of released infectious viral particles by favoring the formation of autolysosomes, in which HCV particles can be degraded. Vice versa, inhibition of syntaxin 17 expression by specific siRNAs results in an elevated amount of intracellular viral particles and increases the number of released viral particles by impaired autophagosome-lysosome fusion. Confocal immunofluorescence microscopy analyses show a fraction of core protein in autophagosomes as stained by lysotracker and the autophagy maker p62. These data identify syntaxin 17 as a novel factor controlling the release of HCV and reveal the autophagosome-autolysosome fusion as an essential step affecting the equilibrium between the release of infectious viral particles and lysosomal degradation of intracellular viral particles.
Taken together, these data identify the t-SNARE proteins syntaxin 4 and syntaxin 17 as essential cellular factors for HCV morphogenesis and secretion.
Nearly 170 million people are chronically infected with HCV and thus at risk of developing liver cirrhosis and hepatocellular carcinoma. Although new and effective oral antiviral drugs are available, there is still the need for a preventive vaccine. In addition, in light of the high number of patients who are chronically infected with HCV the development of a therapeutic vaccine will present a support or even an alternative to the expensive medications.
To induce HCV-specific immune responses in a vaccine model, the HBV capsid is used as a carrier to deliver HCV antigens. Due to its icosahedral structure, the HBV capsid is highly immunogenic and helps to elicit a strong B cell response against the delivered antigens. In addition, the translocation motif (TLM) from the HBV surface protein is fused to the core protein. The TLM conveys membrane-permeability to the carrier capsid, enabling antigen transfer into the cytoplasm, and thus allows immunoproteasomal processing and MHC class I-mediated presentation of the antigen. To load the capsid with foreign antigens, a strep-Tag/streptavidin system is utilized. Recombinant capsids and antigens were purified from the E. coli production system. Detailed characterization of the carrier capsid demonstrated the proper assembly, adequate thermal stability and the successful loading of the foreign antigens onto the capsid surface.
As a further step, seven different HCV-derived proteins were produced and purified for the coupling on the surface of TLM-core particles. The characterization of their immunogenicity using this system is being performed.
Using ovalbumin as a model antigen, which is coupled to the carrier capsids via strep-Tag/streptavidin binding, shows that this system is suitable to efficiently deliver antigens into the cytoplasm of antigen-presenting cells (APCs), leading to the activation of APCs. This activation was assessed by measuring the secretion of IL-6 and TNF-α, in addition to the upregulation of activation markers (CD40, CD80, CD69, and MHC class I). Upon activation, the APCs were able to activate ova-specific CD8+ T cells measured by secreted IFN-γ, which was up to 20-folds more than IFN-γ secreted upon incubation with free ovalbumin. These data indicate that the TLM-capsid is suitable to serve as a carrier to deliver foreign antigens into the cytoplasm of APCs leading to MHC class I-mediated presentation and induction of an antigen-specific CTLs response.
Endolysosomal effectors and their relevance for antiviral activity against the Hepatitis E virus
(2021)
Mit über 20 Millionen registrierter Fälle pro Jahr, repräsentiert das Hepatitis-E-Virus (HEV) eine Hauptursache einer viralen Hepatitis weltweit und stellt ein erhebliches Risiko insbesondere für Schwangere und Immunsupprimierte dar. Jedoch sind Behandlungsoptionen stark limitiert und mit teils schweren Nebenwirkungen verbunden. Neue Erkenntnisse des Wechselspiels zwischen Wirtszelle und HEV werden deshalb benötigt, um neue antivirale Wirkstoffe zu entwickeln. Der Fokus der Arbeit wurde hierbei auf Effektoren des endosomalen Systems gesetzt, welches von HEV zur Freisetzung von Virionen genutzt wird.
Eine virale Infektion führt in der Zelle zur Produktion von Interferonen (IFNs) und weiters zu einer IFN-Antwort. Ein essenzielles Effektormolekül, welches HEV nachweislich effizient repressiert, ist die GTPase guanylate binding protein 1 (GBP1). In dieser Studie wurde beleuchtet, dass Letztere durch eine HEV-Infektion induziert wird. Zusätzlich reduziert die ektopische Expression von GBP1 sowohl die intrazelluläre Menge des HEV Kapsidproteins als auch die Menge freigesetzter Virionen. Mechanistisch liegt diesem Sachverhalt die GBP1-induzierte Inkorporation von Virionen in Lysosomen zugrunde, was schlussendlich deren Abbau nach sich zieht. Erkenntnisse über die Rolle verschiedener GBP1 Proteindomänen innerhalb des Mechanismus wurden unter Verwendung ektopischer Expression von GBP1-Mutanten erlangt. Inkorporation der Mutation R48A führt zum Verlust der GTPase-Aktivität. Andererseits führt eine Inkorporation der Mutation S73A zum Verlust der Homodimerisierung, was die nachfolgende Farnesylierung und gekoppelte Membranassoziation reduziert. Hierbei behält GBP1-R48A Fähigkeiten zur Induktion lysosomalen Abbaus von HEV bei, GBP1-S73A jedoch nicht. Dies wiederum bedeutet, dass eine GBP1 Homodimerisierung notwendig für den antiviralen Mechanismus ist, was eine Adapterfunktion des Moleküls für lysosomale Inkorporation nahelegt. Die Relevanz von GBP1 während einer IFNγ-Antwort wurde deshalb mittels siRNA-basiertem Silencing untersucht. Ähnlich der ektopischen Expression von GBP1 induziert IFNγ die lysosomale Degradation von HEV. In Abwesenheit von GBP1 jedoch, ist dieser Effekt signifikant geringer ausgeprägt, was zu einem Effizienzverlust von IFNy in Bezug auf dessen antiviralen Effekt bedeutet. Dies führte schlussendlich zur Identifizierung von GBP1 als essenziellen Restriktionsfaktor gegen HEV, was seine Rolle in Abhängigkeit seiner Homodimerisierung via Induktion lysosomalen Abbaus erfüllt.
Nebst der Induktion von GBP1, konnte eine Akkumulation von Cholesterin in Lysosomen durch IFNy nachgewiesen werden. Da dieses Lipid einen essenziellen Faktor für endosomale Reifung, Transport und Funktionalität darstellt, wurden Cholesterinspiegel und verbundene transkriptionelle Fußabdrücke im Kontext einer HEV Infektion untersucht. Letztere führt zu einer Dysregulation Cholesterin-assoziierter Genexpression, was eine Reduktion intrazellulären Cholesterins nach sich zieht. Auch in HEV infizierten Patienten liegt eine Abnahme des Serumcholesterins vor. Unter Modulation intrazellulären Cholesterins, wurde deutlich, dass die Inhibition der Cholesterinsynthese durch Simvastatin eine verstärkte Freisetzung von Virionen nach sich zieht, was ebenso in HEV infizierten Patienten nachweisbar war. Im Gegensatz hierzu zieht eine Erhöhung intrazellulären Cholesterins via Supplementierung von Lipoproteinpartikeln niedriger Dichte (LDL) oder 25-Hydroxycholesterin eine signifikante Reduktion des viralen Kapsidproteins und freigesetzter Virionen nach sich. Dem liegt eine verstärkte Inkorporation von HEV in Lysosomen mit anschließender Degradation zugrunde. Ob dieser Mechanismus pharmakologisch nutzbar ist, wurde mittels eines Screenings Lipid modulatorischer Medikamente untersucht. Der p-Glykoprotein Inhibitor PSC833 und besonders der PPARα-Agonist Fenofibrat stellten sich als äußerst effiziente Inhibitoren des HEV heraus. Beide führen zu einer Erhöhung und Akkumulation zellulären Cholesterins in vesikulären Strukturen. Dies zieht eine dramatische Erhöhung lysosomaler Lokalisation von HEV nach sich und führt letzten Endes zu einer signifikanten Reduktion freigesetzter Virionen.
Zusammenfassend konnten in dieser Studie essenzielle Funktionen von GBP1 in Bezug auf dessen restriktiven Effekt gegen HEV identifiziert werden. Weiters wurde dieses als entscheidender Wirtsfaktor für die IFNγ-Antwort gegen das Virus identifiziert. Andererseits legt diese Studie nahe, dass HEV niedrige Cholesterinspiegel innerhalb infizierter Zellen für die Freisetzung von Virionen benötigt. Andererseits sind erhöhte intrazelluläre Cholesterinspiegel schädlich für die virale Freisetzung, da der lysosomale Abbau von Virionen induziert wird. Dies führte zur erfolgreichen Entdeckung eines neuartigen antiviralen Wirkstoffes, welcher diesen cholesterinabhängigen Effekt effizient induziert: Fenofibrat.
Bei Untersuchungen HBV-positiver Zellen konnte zunächst, anders als für HCV, eine deutlich gesteigerte Menge an TIP47 im Western Blot nachgewiesen werden. Da außerdem auch die zellulären mRNA-Spiegel von TIP47 erhöht waren, wurde in Promotorstudien der genaue Regulationsmechanismus untersucht. Für HBV sind zwei wichtige Faktoren bekannt, welche diverse zelluläre Signalkaskaden, wie z. B. die c-Raf/MAP-Kinase-Kaskade, modulieren, die PreS2-Aktivatordomäne des LHBsAg und das HBx-Protein [360]. Diese regulieren via c-Raf die Expression der unterschiedlichsten Gene. Nach eingehenden Analysen lässt sich dazu auch TIP47 zählen, dessen Expression durch HBx und LHBs gesteigert werden kann. Außerdem konnte in CLSM-Analysen eine partielle Colokalisation von LHBs und TIP47 beobachtet werden. Durch Modulation der TIP47-Expression in HBV-positiven Zellen konnte anschließend die Relevanz für die Virus-Sekretion untersucht werden. Durch gezielten knockdown von TIP47 durch spezifische siRNAs wurde die Freisetzung von viralen Partikeln gestört, wohingegen die Menge an freigesetzten subviralen Partikeln erhöht war. Die Überexpression von TIP47 hingegen konnte die Virus-Sekretion steigern, während das Niveau der subviralen Partikel nahezu gleich blieb. Des Weiteren konnte auch für HBV die Rab9-Bindung an TIP47 als essentielle Funktion Charakterisiert werden, da eine Inhibition dieser Interaktion eine Hemmung der Sekretion viraler Partikel zur Folge hatte. Auch hier konnte kein Einfluss auf die subviralen Partikel beobachtet werden. In Studien wurde a-Taxilin als neuer Bindungspartner von Proteinen der Syntaxin-Familie entdeckt. Es spielt daher eine wichtige Rolle im intrazellulären Vesikeltransport. Vor allem die Interaktion mit Syntaxin-4 ist gut untersucht [132]. Es wird vermutet, dass a-Taxilin durch die Bindung an freies Syntaxin-4 die v-SNARE-Bildung verhindert und so einen inhibitorischen Effekt auf den vesikulären Transport ausübt. Des Weiteren konnten Untersuchungen beim Hepatitis-B-Virus demonstrieren, dass die Expression von a-Taxilin durch die Virus-Replikation drastisch erhöht ist und die Sekretion der subviralen Partikel, welche mittels Vesikeln aus der Zelle transportiert werden, negativ beeinflusst. Andererseits interagiert a-Taxilin mit dem großen viralen Oberflächenprotein LHBs und dient so als Adapter zwischen LHBs und tsg101 beim ESCRT-vermittelten Export des Virus via MVBs - einem Zusammenschluss aus vielen späten Endosomen [126].Anders als für HBV, welches aktiv die Menge an intrazellulärem a-Taxilin erhöht, konnte in früheren RNA-Expressionsexperimenten mit transgenen Mäusen, welche Leberspezifisch das regulatorische HCV-Protein NS5A produzieren, eine deutlich verminderte Expression von a-Taxilin beobachtet werden [140]. Durch Analysen von Leberzelllysaten im Western Blot konnte dieser Effekt auch auf Proteinebene bestätigt werden. Dieanschließende Analyse HCV-replizierender Zellen in vitro ergab ebenfalls eine verminderte a-Taxilin-Expression und in der Folge eine reduzierte Proteinmenge. Weiterhin konnte diese Arbeit klären, dass HCV via NS5A den a-Taxilin-Promotor negativ beeinflusst und dafür den bereits für NS5A beschriebenen Mechanismus der c-Raf-Modulation nutzt [234]. Darüber hinaus wird a-Taxilin durch HCV destabilisiert, da in HCV-replizierenden Zellen die Proteinhalbwertszeit von a-Taxilin in etwa halbiert war. Der genaue Mechanismus hierfür muss jedoch noch genauer untersucht werden. Es kann aber aufgrund von anderen aktuellen Studien davon ausgegangen werden, dass a-Taxilin höchstwahrscheinlich durch HCV-Strukturproteine abgefangen wird, welche nicht am Aufbau neuer Virionen beteiligt sind. Diese werden dann, zusammen mit dem gebundenen a-Taxilin, im autophagosomalen Kompartiment recycelt. Gestützt wird diese Hypothese durch die Beobachtungen in CLSM-Analysen, dass die HCV- Strukturproteine E1, E2 und Core partiell mit a-Taxilin colokalisieren und auch durch Co-Immunpräzipitationen sowie yeast-2-hybrid-Analysen eine direkte Interaktion nachgewiesen werden konnte. Dabei konnten vor allem für das Core-Protein zwei unterschiedliche Fraktionen nachgewiesen werden, von denen nur die zytoplasmatisch lokalisierte Fraktion mit a-Taxilin colokalisierte, nicht aber mit dem an den lipid droplets gebundenen Core. Neben der Untersuchung der funktionellen Zusammenhänge wurde außerdem die Relevanz von a-Taxilin für den HCV-Lebenszyklus charakterisiert. Dabei wurde die Expression von a-Taxilin moduliert und der Einfluss auf die Freisetzung infektiöser HCV-Partikel untersucht. Durch die Überexpression von a-Taxilin konnte die Sekretion von Virionen verhindert werden, wohingegen die weitere Reduktion der a-Taxilin-Menge mittels spezifischer siRNA zu einer verstärkten Virus-Freisetzung führte. In einem parallel durchgeführten Projekt konnten durch die Modulation von Syntaxin-4 genau gegenteilige Beobachtungen gemacht werden. Demnach verstärkte eine Überexpression von Syntaxin-4 die HCV-Sekretion, während der knockdown zur Inhibition des Prozesses führte. Abschließend lässt sich festhalten, dass im Rahmen dieser Arbeit zwei zelluläre Proteine in Bezug auf die Morphogenese und Sekretion von HBV und HCV näher Charakterisiert wurden, denen zuvor für das jeweils andere Virus eine entscheidende Rolle im viralen Lebenszyklus zugeordnet werden konnte. TIP47 wurde somit als positiver Regulator für die HBV-Sekretion identifiziert, auch wenn die genaue funktionelle Relevanz bzw. der Funktionsmechanismus bisher noch nicht eindeutig geklärt werden konnte. So liegt jedoch der Schluss nahe, dass es nur die Freisetzung der viralen Partikel via MVBs beeinflusst und nicht an der Sekretion der subviralen Partikel beteiligt ist. Für HCV konnte mit a-Taxilin erstmals ein viraler Restriktionsfaktor beschrieben werden, da es entscheidend die Sekretion infektiöser Viruspartikel verhindert. Im Gegenzug hat HCV, durch die Deregulation des Promotors und durch das Abfangen von a-Taxilin, Mechanismen entwickelt, welche diesem restriktiven Effekt entgegen wirken.
Proteinen die ExHepatitis C ist eine entzündliche Erkrankung der Leber, die durch das Hepatitis-C-Virus (HCV) verursacht wird. Trotz vieler Bemühungen ist heutzutage immer noch keine prophylaktische Vakzinierung verfügbar. Neuartige Therapien versprechen eine hohe Heilungsrate, sind aber mit hohen Kosten verbunden. HCV induziert oxidativen Stress, welcher für das Auftreten und die Progression der Pathogenese eine zentrale Rolle spielt. Um zellulären Stress (z.B. durch ROS) entgegenzuwirken, haben Zellen cytoprotective und detoxifizierende Mechanismen entwickelt, die die zelluläre Homöostase aufrechterhalten. Dabei kontrolliert der redoxsensitive Transkriptionsfaktor Nrf2 als Heterodimer zusammen mit sMaf- pression von cytoprotective und ROS-detoxifizierenden Genen. Vorherige Studien haben gezeigt, dass HCV den Nrf2/ARE-Signalweg beeinträchtigt. Dabei induziert HCV eine Translokation der sMaf-Proteine aus dem Zellkern in das Cytoplasma, wo diese das virale Protein NS3 binden. Im Cytoplasma lokalisierte sMaf-Proteine verhindern dadurch eine Translokation von Nrf2 in den Zellkern. Folglich ist die Expression von Nrf2/ARE-abhängigen cytoprotective Genen inhibiert und intrazelluläre ROS-Spiegel dauerhaft erhöht. Ein weiterer zentraler cytoprotective Mechanismus ist die Autophagie. Sie dient der Aufrechterhaltung der zellulären Homöostase durch den Abbau von defekten Proteinen und Organellen. Des Weiteren ist bekannt, dass Autophagie nicht nur im Laufe von Nährstoffmangel induziert wird, sondern auch durch erhöhte Mengen an ROS. In sämtlichen Studien konnte beobachtet werden, dass Autophagie für die Aufrechterhaltung des viralen Lebenszyklus eine wesentliche Rolle spielt, da sie mit der Ausbildung des membranous web, der Translation, der Replikation und der Freisetzung des Virus interferiert. Ausgehend davon sollte in dieser Arbeit zunächst die Relevanz von HCV-induziertem oxidativen Stress, resultierend aus der Nrf2/ARE-Signalweginhibition, als möglicher Aktivator der Autophagie untersucht werden. Dabei wurde in HCV-positiven Zellen eine Akkumulation von LC3-II beobachtet, was auf eine Induktion der Autophagie schließen lässt. In Übereinstimmung damit wurde eine erhöhte Expression von Autophagie-Markerproteinen in HCV-infizierten PHHs detektiert. Im Laufe der Autophagie wird p62 abgebaut. Somit sollte eine Induktion der Autophagie in einer Verminderung der Menge an p62 resultieren. Nichtsdestotrotz ist eine Akkumulation von p62 in HCV-positiven Zellen nachzuweisen. Dies erscheint zunächst widersprüchlich. Aufgrund der Tatsache, dass die Expression der katalytischen Untereinheit des Proteasoms (PSMB5) Nrf2-abhängig ist, führt die beeinträchtigte Nrf2-Aktivität in HCV-positiven Zellen jedoch zu einer verringerten Aktivität des konstitutiven Proteasoms. Dieser Befund kann auch die erhöhte Halbwertzeit von p62 in HCV-positiven Zellen erklären. Kürzlich wurde ein Zusammenspiel des Nrf2/ARE-Signalwegs und der Autophagie beobachtet. Dabei kann Nrf2 nicht nur über den kanonischen Signalweg aktiviert werden, sondern auch durch eine direkte Interaktion des phosphorylierten Autophagie-Adaptorproteins p62 (pS[349] p62) mit Keap1. In HCV-positiven Zellen können nicht nur eine Zunahme der Gesamtmenge von p62 beobachtet werden, sondern auch erhöhte Mengen an pS[349] p62. Die Berechnung des Quotienten aus pS[349] p62 und p62 zeigt in etwa eine Verdopplung der Menge an pS[349] p62 , was auf eine vermehrte Phosphorylierung von p62 in HCV-positiven Zellen rückschließen lässt. Des Weiteren konnte beobachtet werden, dass erhöhte Mengen an ROS, wie sie auch in HCV-positiven Zellen vorkommen, Autophagie induzieren können, die durch eine Akkumulation von LC3-II und die Zunahme von LC3 Puncta charakterisiert ist. Auch eine Zunahme von pS[349] p62 konnte beobachtet werden. Ferner resultierte die Überexpression der phosphomimetischen Mutante (p62 [S351E]) in einer Akkumulation von LC3-II, was auf die Fähigkeit von pS[349] p62 rückschließen lässt, Autophagie zu induzieren. Eine Modulation der Autophagie mittels der Inhibitoren 3-Methyladenin und Bafilomycin führte zu einer inhibierten Freisetzung von infektiösen viralen Partikeln und unterstreicht damit, dass der Autophagie eine essentielle Bedeutung bei der Freisetzung viraler Partikel zukommt. Eine HCV-Infektion wird sowohl von erhöhten Mengen an ROS als auch von einer Induktion der Autophagie begleitet. Dementsprechend führte eine Verminderung des intrazellulären Radikalspiegels durch eine Inkubation mit den Radikalfängern PDTC und NAC zu geringeren Mengen an LC3-II und pS[349] p62. Dabei konnte auch eine Abnahme der freigesetzten infektiösen viralen Partikel beobachtet werden, was ein Zusammenspiel zwischen erhöhten Mengen an ROS, Induktion der Autophagie und Virusfreisetzung nahelegt. Vorschlag: Erhöhte Mengen an ROS werden durch eine Aktivierung des Nrf2/ARE-Signalwegs detoxifiziert und würden somit den zuvor beschriebenen viralen Mechanismus verhindern. HCV die Aktivierung Nrf2/ARE-regulierter Gene beeinträchtigt, wurde die Hypothese aufgestellt, dass in HCV-positiven Zellen dieser komplexe Mechanismus dazu dient, die Translokation des pS[349] p62-abhängig freigesetzte Nrf2 in den Zellkern zu verhindern. Das wiederum hat eine eingeschränkte Expression von Nrf2/ARE-abhängigen Genen und Detoxifizierung von ROS zur Folge. Um diese Hypothese experimentell zu untersuchen, wurden HCV-positive und negative Zellen cotransfiziert mit dem p62 Wildtyp (p62 [wt]), der p62 phosphomimetischen Mutante (p62 [S351E]) oder einem Kontrollplasmid in Kombination mit einem Reporterkonstrukt, welches die Nrf2-Aktivierung darstellt (OKD48). Während in HCV-negativen Zellen im Vergleich zum p62 [wt] eine Transfektion mit p62 [S351E] zu einer signifikanten Aktivierung des Nrf2-abhängigen Reportergens führt konnte dies in HCV-positiven Zellen nicht beobachtet werden. Zusammengenommen beschreiben diese Ergebnisse einen neuartigen Mechanismus wie HCV das Zusammenspiel zwischen dem Nrf2/ARE-Signalweg, erhöhten Mengen an ROS und Autophagie beeinflusst. Dabei übt HCV einen negativen Effekt auf den Nrf2/ARE-Signalweg aus, um dem pS[349] p62-abhängig freigesetzten Nrf2 zu entkommen. Folglich werden erhöhte Mengen an ROS aufrechterhalten, die eine Induktion der Autophagie ermöglichen, welche für die Freisetzung viraler Partikel essentiell ist.
Hepatitis B caused by infection with the hepatitis B virus (HBV) still ranks among the most challenging infectious diseases of our time. Despite the availability of an effective prophylactic vaccine, 240 million people worldwide are estimated to be chronically infected with HBV and are at risk of developing life-threatening liver diseases, including cirrhosis and liver cancer. The underlying pathogenic mechanisms of HBV-associated liver diseases are only incompletely understood. It is widely accepted that liver pathology results from long-term immune-mediated liver injury and inflammation as a consequence of inefficient viral elimination. This injury can be naturally compensated by liver regeneration. However, chronic liver damage and permanent inflammation debilitates the regenerative capacity of the liver and fosters fibrosis as well as accumulation of chromosomal aberrations, which both contribute to cirrhosis and liver cancer. Liver regeneration requires the presence of the redox-sensitive transcription factor Nrf2 and intact insulin receptor signaling. A lack of Nrf2 causes increased intracellular levels of reactive oxygen species (ROS) that inactivate insulin receptor signaling and induce insulin resistance. Interestingly, HBV was observed to activate Nrf2 and the expression of Nrf2-regulated genes. This argues against an inhibitory effect of HBV on insulin receptor signaling by increased ROS levels. However, chronic HBV infection is associated with dysregulation of hepatocyte proliferation and retardation of liver regeneration. Hence, the aim of this thesis was to investigate the influence of HBV on the process of liver regeneration with respect to the insulin receptor signaling pathway. After short-term carbon tetrachloride (CCl4)-induced liver damage, HBV transgenic mice present prolonged liver damage and impaired liver regeneration as reflected by reduced hepatocyte proliferation and increased apoptosis. Impaired hepatocyte proliferation in HBV transgenic mice correlates with diminished activation of the insulin receptor. It was further observed in vitro that the activation of Nrf2 by HBV induces increased levels of the insulin receptor mRNA and protein in HBV-expressing cells. Strikingly, stably HBV-expressing cells as well as primary mouse hepatocytes from HBV transgenic mice bind less insulin due to reduced amounts of insulin receptor on the cell surface. This is caused by intracellular retention of the insulin receptor in HBV-expressing cells as a consequence of increased amounts of the cellular trafficking factor α-taxilin. The reduced amounts of insulin receptor on the cell surface impair insulin sensitivity in HBV-expressing cells and inactivate downstream signaling cascades that initiate insulin-dependent gene expression and glucose uptake. As a consequence of impaired hepatocyte proliferation and liver regeneration, HBV transgenic mice exhibit increased development of fibrosis after long-term CCl4-induced liver damage. Taken together, in this thesis, a novel pathomechanism could be uncovered that includes inactivation of insulin receptor signaling by HBV via intracellular retention of the insulin receptor leading to impaired liver regeneration after liver damage and promotion of liver fibrosis. These findings significantly contribute to an enhanced understanding of HBV-associated liver pathogenesis.
As one of the most widespread infectious diseases in the world, it is currently estimated that approximately 296 million people globally are chronically infected with Hepatitis B virus (HBV), the consequences of HBV infection cause more than 620,000 deaths each year. Although safe and effective HBV vaccines have reduced the incidence of new HBV infections in most countries, there are still around 1.5 million new infections each year. HBV remains a major health problem because there is no large-scale effective vaccination strategy in many countries with a high burden of disease, many people with chronic HBV infection are not receiving effective and timely treatment, and a complete cure for chronic infection is still far from being achieved.
Since its discovery, HBV has been identified as an enveloped DNA virus with a diameter of 42 nm. For efficient egress from host cells, HBV is thought to acquire the viral envelope by budding into multivesicular bodies (MVBs) and escape from infected cells via the exosome release pathway. It is clear that HBV hijacks the host vesicle system to complete self-assembly and propagation by interacting with factors that mediate exosome formation. Consequently, the overlap with exosome biogenesis, using MVBs as the release platform, raises the possibility for the release of exosomal HBV particles. Currently, virus containing exosomal vesicles have been described for several viruses. In light of this, this study explored whether intact HBV-virions wrapped in exosomes are released by HBV-producing cells.
First, this study established a robust method for efficient separation of exosomes from HBV virions by a combination of differential ultracentrifugation and iodixanol density gradient centrifugation. Fractionation of the density gradient revealed that two populations of infectious viral particles can be separated from the culture fluids of HBV-producing cells. The population present in the low-density peak co-migrates with the exosome markers. Whereas the population that appeared in the high-density fractions was the classical HBV virions, which are rcDNA-containing nucleocapsids encapsulated by the HBV envelope.
Subsequently, the characterization of this low-density population was performed, namely the highly purified exosome fraction was systematically investigated. Relying on the detergent sensitivity of the exosome membrane and the outer envelope of the HBV virus, disruption of the exosome structure by treatment with limited detergent revealed the presence of HBsAg in the exosomes. At the same time, mild and limited NP-40 treatment of highly purified exosomes and a further combination of density gradient centrifugation resulted in the stepwise release of intact HBV virions and naked capsids from the exosomes generated by HBV-producing cells. This implies the presence of intact HBV particles encapsulated by the host membrane.
The presence of exosome-encapsulated HBV particles was consequently also verified by suppressing the morphogenesis of MVBs or exosomes. Impairment of MVB- or exosome-generation with small molecule inhibitors has significantly inhibited the release of host membrane-encapsulated HBV particles as well. Likewise, silencing of exosome-related proteins caused a diminution of exosome output, which compromised the budding efficiency of wrapped HBV.
Moreover, electron microscopy images of ultra-thin sections combined with immunogold staining visualized the hidden virus in the exosomal structure. Additionally, the presence of LHBs on the surface of exosomes derived from HBV-expressing cells was also observed.
As expected, these exosomal membrane-wrapped HBV particles can spread productive infection in differentiated HepaRG cells. In HBV-susceptible cells, as LHBs on the membrane surface, this type of exosomal HBV appeared to be uptaken in an NTCP receptor-dependent manner.
Taken together these data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV. Exosomes hijacked by HBV act as a transporter impacting the dissemination of the virus.
Zika virus (ZIKV) is a member of the Flaviviridae family that received public attention and scientific interest after the outbreak in French Polynesia (2013-2014) and the epidemic in the Americas (2015-2016). Even though only 20% of infected people exhibit clinical manifestations and they are predominantly flu-like symptoms, these events unveiled neurological complications associated with ZIKV infection, such as the Guillain-Barré syndrome in adults and microcephaly in newborns. Lacking a preventive vaccine and a specific antiviral therapy against ZIKV allied to the fact that this pathogen is a re-emerging virus, uncovering and comprehending novel virus-host interactions is crucial to the identification of new antiviral targets and the development of innovative antiviral approaches. Previous research work uncovered that the Chinese hamster ovary (CHO) cells do not support ZIKV infection.459 As this cell line does not express endogenous epidermal growth factor receptor (EGFR), this study aimed to investigate whether EGFR and EGFR-dependent signaling are relevant for the ZIKV life cycle in vitro.
In the first part of the study, viral infection was investigated in CHO cells and compared to A549 cells, a highly ZIKV permissive cell line. After performing binding and entry assays, ZIKV entry, but not the attachment, was significantly decreased in CHO cells in comparison to A549 cells. Additionally, in A549-EGFR KO cells, ZIKV entry was diminished relatively to the off-target control. These results show the clear impact that the absence of EGFR has on viral entry, implicating EGFR during this process. Even though EGFR overexpression in CHO cells could not render these cells permissive to ZIKV infection, as demonstrated by the lack of viral infection after electroporation with in vitro transcribed capped ZIKV-Renilla luciferase RNA, it was possible to rescue ZIKV entry. These findings suggest that there are additional elements, which are not expressed in CHO cells, required for viral replication.
Furthermore, the impact of ZIKV infection on EGFR mRNA and protein levels as well as on the EGFR subcellular localization and distribution was evaluated. The relative number of EGFR specific transcripts continuously increased with ZIKV infection, whereas the EGFR protein level diminished at later times of infection. Moreover, changes in the subcellular localization of EGFR and its colocalization with the early endosomal marker EEA1 in ZIKV-infected cells revealed that ZIKV triggers EGFR internalization. The relevance of EGFR in the ZIKV entry process was further corroborated by the observation of EGFR internalization at 30 min post-infection (mpi) and to less extent at 60 mpi, which concurs with the expected time of ZIKV entry into the host cells.
In the remaining part of the study, the influence of ZIKV infection in EGFR-dependent signaling as well as the contribution of EGFR and EGFR signaling for viral infection were studied. Activation of EGFR and the MAPK/ERK signaling cascade was detected as early as 5 mpi and ceased within 30 mpi in ZIKV-infected cells. Taking into account that EGFR internalization was observed at 30 mpi in infected cells, the activation of EGFR and ERK and subsequent dephosphorylation within this period go along with this previous observation. Vice-versa, inhibition of the activation of EGFR and the MAPK/ERK pathway declines ZIKV infection. On the one hand, inhibition of EGFR activation by Erlotinib affected ZIKV entry, as a consequence of impaired EGFR internalization. On the other hand, Raf and MEK inhibitors reduced ZIKV infection without disturbing viral replication or viral entry. These data suggest that the activation of the MAPK/ERK signaling cascade is necessary for a step of the viral life cycle before the onset of genome replication and morphogenesis and after viral entry. The importance of EGFR signaling was additionally investigated by the determination of EGFR half-life in ZIKV-infected cells upon EGF stimulation. While the EGFR half-life was similar in uninfected and Uganda-infected cells, a delay in EGFR degradation was observed in French Polynesia-infected cells. This observation might indicate an extended usurpation of the EGFR signaling since EGFR seems to still be active in the endosomes. Moreover, disruption of lipid rafts by MβCD, a cholesterol-depleting agent, hampered ZIKV entry. In uninfected cells, MβCD treatment led to the activation of EGFR, but at the same time prevented EGFR internalization, indicating that EGFR activation exclusively is not sufficient for an efficient ZIKV entry and further supporting the importance of EGFR internalization during the ZIKV entry process.
Taken together, this study uncovers EGFR as a relevant host factor in the early stages of ZIKV infection, providing novel insights into the ZIKV entry process. Since numerous monoclonal antibodies and substances that target EGFR are licensed, repurposing these compounds might be a helpful tool for the establishment of an antiviral therapy in case of ZIKV re-emergence.