Refine
Year of publication
Document Type
- Doctoral Thesis (38)
- diplomthesis (1)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Channel Protein (1)
- Electrophysiology (1)
- Elektrophysiologie (1)
- Funktion (1)
- Kanalprotein (1)
- Membranprotein (1)
- Mitochondrium (1)
- Modellorganismus (1)
- Molecular Evolution (1)
- Molekulare Evolution (1)
Institute
- Biowissenschaften (35)
- Informatik (2)
- Biochemie, Chemie und Pharmazie (1)
- Mathematik (1)
Iron uptake is an essential process in all Gram-negative bacteria including cyanobacteria and therefore different transport systems evolved during evolution. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as cofactor in e.g. photosynthesis and nitrogen fixation. Most of the transport systems depend on outer membrane localized TonB-dependent transporters (TBDTs), a periplasma-facing TonB protein and a plasma membrane localized machinery (ExbBD). So far, iron chelators (siderophores), oligosaccharides and polypeptides have been identified as substrates of TBDTs. However, in proteobacteria TonB-dependent outer membrane transporter represent a well-explored subject whereas for cyanobacteria almost nothing is known about possible TonB-dependent uptake systems for iron or other substrates. The heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 is known to secrete the siderophore schizokinen, but its transport system has remained unidentified. For Anabaena sp. PCC 7120 22 genes were identified as putative TBDTs covering almost all known TBDT subclasses. This is a high number of TBDTs compared to other cyanobacteria. The expression of the 22 putative TBDTs individually depends on the presence of iron, copper or nitrogen. The atypical dependence of TBDT gene expression on different nutrition points to a yet unknown regulatory mechanism. In addition, the hypothesis of the absence of TonB in Anabaena sp. PCC 7120 was clarified by the identification of an according sequence, all5036. Inspection of the genome of Anabaena sp. PCC 7120 shows that only one gene encoding a putative TonB-dependent iron transporter, namely alr0397, is positioned close to genes encoding enzymes involved in the biosynthesis of a hydroxamate siderophore. The expression of alr0397 was elevated under iron-limited conditions. Inactivation of this gene caused a moderate phenotype of iron starvation in the mutant cells. The characterization of the mutant strain showed that Alr0397 is a TonB-dependent schizokinen transporter (SchT) of the outer membrane and that alr0397 expression and schizokinen production are regulated by the iron homeostasis of the cell. Additional two genes of Anabaena sp. PCC 7120 involved in this process were identified. SchE encoded by all4025 is a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. The mutation of schE resulted in an enhanced sensitivity to high metal concentrations and in drastically reduction of secretion of hydroxamate-type siderophores. IacT coded by all4026 is a predicted outer membrane-localized TonB-dependent iron transporter. Inactivation of iacT resulted in reduced sensitivity to elevated iron and copper levels, whereas decoupling the expression from putative regulation by exchange of the promoter resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because decrease of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in Anabaena sp. PCC 7120 where expression of all4026 is under the trc-promoter. In consequence, the results unravel a link between iron and copper homeostasis.
Plastids are complex plant organelles fulfilling essential physiological functions, such as photosynthesis and amino acid metabolism. The majority of proteins required for these functions are encoded in the nuclear genome and synthesized on cytosolic ribosomes as precursors, which are subsequently translocated across the outer and inner membrane of the organelle. Their targeting to the organelle is ensured by a so called transit peptide, which is specifically recognized by GTP-dependent receptors Toc159 and Toc34 at the cytosolic side of outer envelope. They cooperatively regulate the insertion of the precursor protein into the channel protein Toc75, thereby initiating the translocation process. Toc34 is regarded as the primary receptor, while Toc159 probably provides the driving force for the insertion. Precursor transfer is achieved by the physical interaction between both receptors in the GTP loaded state. One translocon unit, also called the Toc core complex, is formed by four molecules Toc34, four molecules Toc75 and one molecule Toc159. In the GDP-loaded state, Toc34 preferably forms homodimers, whose physiological function was investigated in the presented study. It could be shown that the dissociation of GDP and therefore the nucleotide exchange are inhibited by the homodimeric state of Toc34. Dissociation of the homodimer is induced by the recognition of a precursor protein, which renders the binding of GTP and subsequent interaction with Toc159 possible. Thus, the homodimeric conformation could reflect an inactive state of the translocon, preventing GTP consumption in the absence of a precursor protein. Both homodimerization as well as heterodimerization of the receptor are regulated by phosphorylation, which could be demonstrated by in vitro and in vivo approaches using atToc33 from Arabidopsis thaliana as a model system. Since the phosphorylated form of Toc34 cannot be assembled with the Toc core complex, it can be concluded that the interactions between GTPase domains not only regulate the transfer of precursor proteins, but also warrant the integrity of the translocon.
The biogenesis and function of photosynthetically active chloroplasts relies on the import of thousands of nuclear encoded proteins via the coordinated actions of two multiprotein translocon machineries in the outer and inner envelope membrane. Trafficking of preproteins across the soluble compartment of InterMembrane Space (IMS) is currently envisioned to be facilitated by an IMS complex composed of outer envelope proteins Toc64 and Toc12, a soluble IMS component, Tic22 and an IMS-localized Hsp70. Among them, currently Tic22 is the only component that stands undisputed in terms of its existence. Having two closely related homologs in A. thaliana, their biochemical and functional characterization was still lacking. A critical analysis of Tic22 knockout mutants displayed growth phenotype reminiscent of ppi1, the mutant of Toc33. However, both the genes have similar expression patterns with no clear preference for photosynthetic or nonphotosynthetic tissues, which explained the absence of a detectable phenotype in single mutants. In addition, transgenic complementation study with either of the homolog affirmed the identical localization of both proteins in the IMS which characterizes the two homologs as functionally redundant. Based on the pale-yellow phenotype exhibited by the double mutant plants, an attempt to analyze the import capacity of a stromal substrate in the double mutant revealed threefold reduction when compared to wild-type acknowledging the essential role of Tic22 in the import mechanism. Initially, Tic22 was identified together with another protein, Tic20, which has been heavily discussed as a protein conducting channel in the inner membrane. Despite being characterized, in A. thaliana, two out of four homologs of Tic20 are differentially localized with one being additionally localized in mitochondria and the other, exclusively residing in the thylakoids.
According to in silico analysis, for all the Tic20 proteins, a four-helix transmembrane topology was predicted. Accordingly, its topology was mapped by employing the recently established selfassembling GFP-based in vivo experiments. Astonishingly, the expression of one of the inner envelope localized Tic20 homolog enforces inner membrane proliferation affecting the shape and organization of the membrane. Therefore this study focuses on analyzing the effects of high envelope protein concentrations on membrane structures, which together with the existing results, an imbalance in the lipid to protein ratio and a possible role of signaling pathway regulating membrane biogenesis is discussed.
Ribosome biogenesis is best understood in the yeast Saccharomyces cerevisiae. In human or mammalian ribosome biogenesis, it has been shown that basic principles are conserved to yeast, but additional features have been reported. Our understanding about the interplay between proteins and RNA in human ribosome biogenesis is far from complete.
The present study focused on the analysis of the human ribosome biogenesis co-factors PWP2, EMG1 and Exportin 5 (XPO5) to understand the degree of conservation of ribosome biogenesis. The proteins were characterized in respect to their localization and interaction partners. For the early 90S co-factor, PWP2, it was possible to pull down and identify the human UTP-B complex with MALDI mass spectrometry. Besides the orthologues of the members of this complex known in yeast (TBL3, WDR3, WDR36, UTP6, UTP18), the human UTP-B complex is not only conserved from yeast to humans, but contains also additional components, like the DEAD-box RNA helicase DDX21, which lacks a yeast orthologue. DDX21 was localized to the nucleus, assembled to the native UTP-B complex and co-precipitated also with other UTP-B complex members, presumably extending the functions of this complex in ribosome biogenesis.
This phenomenon was also observed for the 90S co-factor EMG1, an RNA methyltransferase, whose mutant form causes the Bowen-Conradi syndrome, if aspartic acid is mutated to glycine at position 86. This study revealed that the mutant, EMG1-D86G, clearly lost its nucleolar localization and co-precipitated to histones for unknown reasons.
A participation of the nuclear export receptor XPO5 in human ribosome biogenesis was shown in this study. Pulldown analysis, sucrose density gradients and UV crosslinking and analysis of cDNAs of XPO5 revealed the involvement of XPO5 in pre-60S subunit maturation. Moreover, besides the known pre-miRNAs and tRNAs as substrates for nuclear export, XPO5 crosslinked to snoRNAs. XPO5 was further demonstrated to interact with the miRNA Let-7a, which has an important regulatory function for MYC, a transcription factor required for ribosome biogenesis.
All results support a role of these proteins in human ribosome biogenesis and therefore it seems that the biogenesis of ribosomes in human cells requires additional components, like DDX21 and XPO5.
The translocation of nuclear-encoded precursor proteins into chloroplasts is a highly ordered process involving the action of several components to regulate this molecular ensemble. Not only GTP hydrolysis and GDP release but also the phosphorylation of TOC GTPases is a widely discussed mechanism to regulate protein import. The receptor component (Toc34) and its isoform of A. thaliana (atToc33) were found to be regulated by phosphorylation. Although the phosphorylation of Toc33 is already known for several years, several questions regarding the molecular components involved in the regulation of the phosphorylation process, precisely what is the protein kinase and where this kinase is initially localized, so far remained unclear.
This thesis aimed at the defining of the phosphorylation status of TOC GTPases in monomeric and/or dimeric states, the identification of the nature of Toc33-PK (protein kinase), and in the same context it aimed at gaining first insights into the physiological significance of Toc33 phosphorylation. To this end, (I) An in vitro and in vivo system for investigating of TOC GTPases Phosphorylation (in monomeric or dimeric state) was developed. Since no information is available about the phosphorylation status of the Toc159 isoforms, the second receptor of the TOC complex, it was interesting to investigate whether these isoforms undergo phosphorylation or not. The results indicated that atToc159 isoforms are able to be phosphorylated by the kinase activity in purified outer envelope membranes (OEMs) of pea, but not atToc132. Moreover, an artificial dimer of psToc34 based on the interaction of a C-terminally fused leucine zipper was not phosphorylated. This result reflected the inability of the OEM kinase to phosphorylate the dimers of TOC GTPases. Also, In vivo labeling of atToc33 was developed and occurred in a dose-dependent manner. Therefore, this results evidenced that in vitro phosphorylation of atToc33 (both endogenous wild type and recombinant expressed proteins) is not artificial labeling but represents a physiological relevance. CD (circular dichroism) measurements revealed that recombinant GTPase domain of atToc33 is preferentially phosphorylated in its folded state. Therefore, it could be suggested that folding of atToc33rec is a prerequisite for its phosphorylation and the phosphorylation event occurs as a posttranslational modification most likely after insertion of Toc33 (Toc34) into the OE of chloroplasts.
Secondly, (II) Isolation and identification of Toc33-PK from OEMs of chloroplasts was performed. Four independent strategies were developed to identify the Toc33-protein kinase: UV-induced and chemically-based crosslinking, different applied chromatographic techniques, identification of PK-Toc33 interaction by means of HDN-PAGE (histidine- and deoxycholate-based native PAGE), and finally mass spectrometric approaches were performed on fractions including the potential kinase activity. UV-induced crosslinking procedure was developed and resulted in covalent bonding of nine proteins to [a-32P] ATP, while chemically-based one was not significant. The applied chromatographic and HDN-PAGE approaches, including mass spectrometry, have revealed the identification of 13 protein kinases. Of these identified kinases, phototropin2 (Phot2, AT5G58140), leucine-rich repeat PK (LRR-PK, AT4G28650.1), and receptor-like transmembrane PK (RLK, AT5G56040.2) were selected as the most promising candidates (ca. kinase type and one transmembrane helix for membrane localization).
(III) The physiological significance of Toc33 phosphoryation was shown to link this process with the environmental changes (especially, the light conditions). Identification of chloroplast OE-located PKs performed by nLC-MALDI-MS/MS resulted in the detection of Phot2. Furthermore, the subcellular localization of Phot2 in OEM of chloroplasts was confirmed by immunoblotting experiments using a-Phot2 antibody. The kinase activity of Phot2 towards TOC GTPases was characterized and revealed that fused GST-KD (kinase domain) protein able to specifically phosphorylate atToc33rec, but not atToc159rec. Also, endogenous atPhot2 was upregulated and heavily detected in the ppi1-S181A plant line (where serine to alanine exchange was performed to abolish the phosphorylation of atToc33). Hence, we suggested that certain signal cascades may directly or indirectly link Toc33 receptor phosphorylation, protein levels of Phot2 (as promising PK candidate), and irradiation conditions (as an inducing signal of the subsequent phosphorylation events). Light-dependent phosphorylation of Toc33 was shown either after de-etiolation conditions or after high light intensities of blue light was performed. Therefore, phosphorylation of Toc33 might be identified as an external regulatory signal to regulate preproteins import into chloroplasts in response to environmental conditions (e.g. light changes) or as a signal of chloroplast biogenesis.
Die Studien im Rahmen dieser Arbeit wurden am Modellorganismus Anabaena sp. PCC 7120 (Anabaena) durchgeführt, einem filamentösen Süßwasser-Cyanobakterium. Cyanobakterien sind photosynthetische, Gram-negative Organismen. Sie besitzen eine das Zytosol begrenzende Plasmamembran und eine Äußere Membran. TonB-abhängige Transporter (TBDTs) und Porine der Äußeren Membran bewerkstelligen und regulieren die Aufnahme von Nährstoffen. Typischerweise wenig abundante Substrate für den TBDT-vermittelten, aktiven Transport sind beispielsweise eisenhaltige Siderophore oder VitaminB12. Kleinere gelöste und abundante Stoffe wie Salze oder andere Ionen gelangen hingegen passiv durch Porine in das Periplasma.
In Anabaena wurden neun putative Porine identifiziert. Sieben hiervon wiesen eine porinspezifische Domänenstruktur auf (Alr0834, Alr2231, All4499, Alr4550, Alr4741, All5191 und All7614), und wurden im Rahmen dieser Arbeit näher betrachtet. Die Expression dieser sieben Gene wurde vergleichend untersucht, nachdem der Wildtyp in Standardmedium oder in Medium indem jeweils Mangan, Eisen, Kupfer oder Zink fehlte angezogen wurde. Außerdem wurde das Wachstum der einzelnen Porinmutanten im Vergleich zum Wildtyp auf Festmedium mit hohen Konzentrationen von Salzen, Antibiotika oder anderen Stoffen analysiert. Hierbei konnten den einzelnen Mutanten teilweise spezifische phänotypische Eigenschaften zugeschrieben werden. Zusammengefasst kann anhand der Analysenergebnisse vermutet werden, dass Alr4550 eine besondere Rolle in der Wahrung der Zellhüllenstabilität oder -integrität spielt, wohingegen das Fehlen von Alr5191 auf unbekannte Weise die Fixierung von Stickstoff zu erschweren scheint. Die alr2231-Mutante zeigte eine Resistenz gegenüber hohen Zinkkonzentrationen, was die Vermutung zulässt, dass Zink ein Substrat von Alr2231 darstellt. Für weitere Porine kann ebenfalls ein Zusammenhang zum Transport von Kupfer oder Mangan vermutet werden.
Neben Porinen wurden ebenfalls TonB-ähnliche Proteine in Anabaena untersucht. TonB ist ein plasmamembranständiges Protein, das in Komplex mit ExbB und ExbD die Energie für Transportprozesse über die Äußere Membran bereitstellt. Hierfür bindet TonB C-terminal an TBDTs und induziert dort Strukturänderungen, welche den Substratimport ins Periplasma ermöglichen. Als Energiequelle wird der Protonengradient genutzt, der über die Plasmamembran besteht. In Anabaena wurden vier putative TonB Proteine identifiziert, die sich jeweils in Länge und Domänenstruktur unterscheiden. Im Rahmen dieser Arbeit konnte durch Substrattransport-Experimente und Wachstumsanalysen gezeigt werden, dass TonB3 an der Aufnahme zweier Siderophore (Schizokinen und dem Xenosiderophor Ferrichrom) beteiligt ist, da die entsprechende Mutante sich als unfähig erwies diese zu als Eisenquelle nutzbar zu machen. Daneben wies TonB3 weitere Merkmale auf, die auch TonB-Proteinen anderer Organismen zugeschrieben wurden (Wachstumsdefizit der Mutante unter Eisenmangel, eisenabhängiges Expressionsprofil). Interessanterweise zeigte sich, dass das Siderophor Ferrichrom ebenfalls nicht als Eisenquelle für die tonB4-Mutante zur Verfügung stand, was zum Beispiel auf eine Beteiligung von TonB4 an dessen Transport hinweisen könnte.
TonB1, welches sich durch ein inkomplettes TBDT-Interaktionsmotiv auszeichnet, und TonB2 konnte keine Beteiligung am Siderophoretransport zugeschrieben werden, jedoch zeigten Mutanten der einzelnen Gene spezifische phänotypische Eigenschaften. Die tonB1-Mutante stach hervor durch ein vergleichsweise stark verzögertes Wachstum unter diazotrophen Bedingungen. Es konnte gezeigt werden, dass sowohl die Nitrogenaseaktivität als auch die expression vermindert war im tonB1-Mutantenstamm. Außerdem zeigten die Heterozysten dieser Mutante, die auf die Stickstoffixierung spezialisierten Zellen, eine abnormale Morphologie. Da die Expression von tonB1 jedoch nach dem Überführen von Wildypzellen in stickstoffreies Medium nicht erhöht war, kann eine direkte Beteiligung von TonB1 an der Heterozystendifferenzierung als unwahrscheinlich betrachtet werden. Die Zelleinschnürungen zwischen Heterozysten und vegetativen Zellen waren in I-tonB1 weniger ausgeprägt als im Wildtyp, was durch eine Anfärbung der Zellwand mit einem Fluoreszenzmarker gezeigt werden konnte. Ebenfalls konnte anhand des fluoreszierenden Markers Calcein gezeigt werden, dass die molekulare Diffusionsgeschwindigkeit zwischen Heterozysten und vegetativen Zellen, und auch zwischen zwei benachbarten vegetativen Zellen, in der tonB1-Mutante erhöht ist. Deswegen kann hier vermutlich vermehrt die Nitrogenase schädigender Sauerstoff in Heterozysten eindringen. Die aufgezählten Ergebnisse deuten auf eine Funktion von SjdR im Aufbau der Septumsstrukturen hin, beispielsweise durch Regulation der Peptidoglykansynthese oder -verteilung, weswegen TonB1 umbenannt wurde in SjdR (Septal junction disc regulator).
Die Untersuchung der tonB2-Mutante zeigte bei dieser eine veränderte Pigmentierung, eine vermehrte Lipopolysaccharidproduktion und Filamentaggregation sowie eine erhöhte Resistenz gegenüber bestimmten Antibiotika oder Detergenzien. Letzteres könnte auf die ebenfalls in der tonB2-Mutante beobachtete verringerte Porinexpression zurückgeführt werden. Es wurde außerdem eine vermehrte Anreicherung von Kupfer und Molybdän in der Mutante gemessen, was ein Grund für die Veränderte Pigmentierung sein könnte und ebenfalls die Porinexpression beeinflussen könnte. Insgesamt scheint sich das Fehlen von TonB2 auf die Integrität der Äußeren Membran auszuwirken. Daher kann für TonB2, eine Funktion in Anlehnung an das Tol-system vermutet werden.
Heat stress transcription factors (Hsfs) have an essential role in heat stress response (HSR) and thermotolerance by controlling the expression of hundreds of genes including heat shock proteins (Hsps) with molecular chaperone functions. Hsf family in plants shows a striking multiplicity, with more than 20 members in many species. In Solanum lycopersicum HsfA1a was reported to act as the master regulator of the onset of HSR and therefore is essential for basal thermotolerance. Evidence for this was provided by the analysis of HsfA1a co-suppression (A1CS) transgenic plants, which exhibited hypersensitivity upon exposure to heat stress (HS) due to the inability of the plants to induce the expression of many HS-genes including HsfA2, HsfB1 and several Hsps. Completion of tomato genome sequencing allowed the completion of the Hsf inventory, which is consisted of 27 members, including another three HsfA1 genes, namely HsfA1b, HsfA1c and HsfA1e.
Consequently, the suppression effect of the short interference RNA in A1CS lin e was re-evaluated for all HsfA1 genes. We found that expression of all HsfA1 proteins was suppressed in A1CS protoplasts. This result suggested that the model of single master regulator needs to be re-examined.
Expression analysis revealed that HsfA1a is constitutively expressed in different tissues and in response to HS, while HsfA1c and HsfA1e are minimally expressed in general, and show an induction during fruit ripening and a weak upregulation in late HSR. Instead HsfA1b shows preferential expression in specific tissues and is strongly and rapidly induced in response to HS. At the protein level HsfA1b and HsfA1e are rapidly degraded while HsfA1a and HsfA1c show a higher stability. In addition, HsfA1a and HsfA1c show a nucleocytosolic distribution, while HsfA1b and HsfA1e a strong nuclear retention.
A major property of a master regulator in HSR is thought to be its ability to cause a strong transactivation of a wide range of genes required for the initial activation of protective mechanisms. GUS reporter assays as well as analysis of transcript levels of several endogenous transcripts in protoplasts transiently expressing HsfA1 proteins revealed that HsfA1a can stimulate the transcription of many genes, while the other Hsfs have weaker activity and only on limited set of target genes. The low activity of HsfA1c and HsfA1e can be attributed to the lower DNA capacity of the two factors as judged by a GUS reporter repressor assay.
HsfA1a has been shown to have synergistic activity with the stress induced HsfA2 and HsfB1. The formation of such complexes is considered as important for stimulation of transcription and long term stress adaptation. All HsfA1 members show synergistic activity with HsfA2, while only HsfA1a act as co-activator of HsfB1 and HsfA7. Interestingly, HsfA1b shows an exceptional synergistic activity with HsfA3, suggesting that different Hsf complexes might regulate different HS-related gene networks. Altogether these results suggest that HsfA1a has unique characteristics within HsfA1 subfamily. This result is interesting considering the very high sequencing similarity among HsfA1s, and particularly among HsfA1a and HsfA1c.
To understand the molecular basis of this discrepancy, a series of domain swapping mutants between HsfA1a and HsfA1c were generated. Oligomerization domain and C-terminal swaps did not affect the basal activity or co-activity of the proteins. Remarkably, an HsfA1a mutant harbouring the N-terminus of HsfA1c shows reduced activity and co-activity, while the reciprocal HsfA1c with the N-terminus of HsfA1a cause a gain of activity and enhanced DNA binding capacity.
Sequence analysis of the DBD of HsfA1 proteins revealed a divergence in the highly conserved C-terminus of the turn of β3-β4 sheet. As the vast majority of HsfA1 proteins, HsfA1a at this position comprises an Arg residue (R107), while HsfA1c a Leu and HsfA1e a Cys. An HsfA1a-R107L mutant has reduced DNA binding capacity and consequently activity. Therefore, the results presented here point to the essential function of this amino acid residue for DNA binding function. Interestingly, the mutation did not affect the activity of the protein on Hsp70-1, suggesting that the functionality of the DBD and consequently the transcription factor on different promoters with variable heat stress element number and architecture is dependent on structural peculiarities of the DBD.
In conclusion, the unique properties including expression pattern, transcriptional activities, stability, DBD-peculiarities are likely responsible for the dominant function of HsfA1a as a master regulator of HSR in tomato. Instead, other HsfA1-members are only participating in HSR or developmental regulations by regulating a specific set of genes. Furthermore, HsfA1b and HsfA1e are likely function as stress primers in specific tissues while HsfA1c as a co-regulator in mild HSR. Thereby, tomato subclass A1 presents another example of function diversity not only within the Hsf family but also within the Hsf-subfamily of closely related members. The diversification based on DBD peculiarities is likely to occur in potato as well. Therefore this might have eliminated the functional redundancy observed in other species such as Arabidopsis thaliana but has probably allowed the more refined regulation of Hsf networks possibly under different stress regimes, tissues and cell types.
Eukaryotische Zellen sind durch, aus Lipiddoppelschichten bestehenden, Membranen in Kompartimente mit unterschiedlichen Funktionen eingeteilt. Um einen Transport von Molekülen über die Membranen hinweg zu gewährleisten, werden Kanälen und Transporter benötigt. Eine Familie von Transportern sind die ATP-binding cassette (ABC) Transporter, die in allen Lebewesen, von Bakterien bis zum Menschen, vorkommen. Ein Mitglied dieser Familie ist der transporter associated with antigen processing-like (TAPL oder ABCB9). TAPL ist ein lysosomaler Polypeptidtransporter der per ATP-Hydrolyse Peptide von 6 – 59 Aminosäuren Länge vom Zytosol in das Lumen der Lysosomen transportiert. Hierbei kann TAPL, das ein Homodimer ist, in zwei funktionale Domänen geteilt werden. Der Teil des Komplexes, der für den Transport zuständig ist, wird als coreTAPL bezeichnet. Dieser beinhaltet die zytosolischen nucleotide binding domains (NBDs), die ATP binden und hydrolysieren können, und die Transmembrandomänen (TMDs), die Peptide binden und sie durch konformationelle Änderungen auf der anderen Membranseite freilassen. Die zweite Domäne ist eine N-terminale TMD, die als TMD0 bezeichnet wird. Dieser, aus vier Transmembranhelices (TMHs) bestehende Teil des Proteins, ist für die Lokalisation von TAPL in der lysosomalen Membran verantwortlich, sowie für die Interaktion mit den dort lokalisierten Membranproteinen LAMP-1 und LAMP-2. CoreTAPL ohne die TMD0s erreicht nicht die Lysosomen, sondern liegt in der Plasmamembran (PM) der Zelle vor. Die TMD0 hingegen benötigt coreTAPL nicht um korrekt in der lysosomalen Membran lokalisiert zu sein.
Die korrekte Lokalisation in der Zelle ist ein kritischer Punkt für ein Protein, um seine Funktion ausüben zu können. Die Transportprozesse vom Ort der Synthese des Proteins, dem Endoplasmatischem Reticulum (ER), zum Organell wo es seine Funktion ausüben soll, umfassen dutzende Proteine und Proteinkomplexe und ein komplexes Zusammenspiel zwischen Proteinen und den einzigartigen Lipidzusammensetzungen der Membranen verschiedener Organellen. Auf das Einfachste heruntergebrochen benötigt ein Transmembranprotein eine kurze Aminosäuresequenz auf der zytosolischen Seite, die Signalsequenz. Diese Sequenz wird von sogenannten Adapterproteinen erkannt, die wiederum andere Bestandteile der zellulären Maschinerie rekrutieren, die letztlich Vesikelbildung, Transport und Fusion mit der Zielorganelle vermitteln. Allerdings weisen nicht alle lysosomalen Transmembranproteine eine solche Signalsequenz auf, sondern besitzen unkonventionelle Zieldeterminanten, wie posttranslationale Modifikationen, oder sie interagieren mit anderen Proteinen, die wiederum die Interaktion mit den Adapterproteinen vermitteln.
Die letzten Jahrzehnte brachten einen enormen Zuwachs des Wissens und Verständnisses über die molekularen Prozesse des Lebens.Möglich wurde dieser Zuwachs durch die Entwicklung diverser Methoden, mit denen beispielsweise gezielt die Konzentration einzelner Stoffe gemessen werden kann oder gar alle anwesenden Metaboliten eines biologischen Systems erfasst werden können. Die großflächige Anwendung dieser Methoden führte zur Ansammlung vieler unterschiedlicher -om-Daten, wie zum Beispiel Metabolom-, Proteom- oder Transkriptoms-Datensätzen. Die Systembiologie greift auf solche Daten zurück, um mathematische Modelle biologischer Systeme zu erstellen, und ermöglicht so ein Studium biologischer Systeme auch außerhalb des Labors.
Für größere biologische Systeme stehen jedoch meistens nicht alle Informationen über Stoffkonzentrationen oder Reaktionsgeschwindigkeiten zur Verfügung, um eine quantitative Modellierung, also die Beschreibung von Änderungsraten kontinuierlicher Variablen, durchführen zu können. In einem solchen Fall wird auf Methoden der qualitativen Modellierung zurückgegriffen. Eine dieser Methoden sind die Petrinetze (PN), welche in den 1960er Jahren von Carl Adam Petri entwickelt wurden, um nebenläufige Prozesse im technischen Umfeld zu beschreiben. Seit Anfang der 1990er Jahre finden PN auch Anwendung in der Systembiologie, um zum Beispiel metabolische Systeme oder Signaltransduktionswege zu modellieren. Einer der Vorteile dieser Methode ist zudem, dass Modelle als qualitative Beschreibung des Systems begonnen werden können und im Laufe der Zeit um quantitative Beschreibungen ergänzt werden können.
Zur Modellierung und Analyse von PN existieren bereits viele Anwendungen. Da das Konzept der PN jedoch ursprünglich nicht für die Systembiologie entwickelt wurde und meist im technischen Bereich verwendet wird, existierten kaum Anwendungen, die für den Einsatz in der Systembiologie entwickelt wurden. Daher ist auch die Durchführung der für die Systembiologie entwickelten Analysemethoden für PN nicht mit diesen Anwendungen möglich. Die Motivation des ersten Teiles dieser Arbeit war daher, eine Anwendung zu schaffen, die speziell für die PN-Modellierung und Analyse in der Systembiologie gedacht ist, also in ihren Analysemethoden und ihrer Terminologie sich an den Bedürfnissen der Systembiologie orientiert. Zudem sollte die Anwendung den Anwender bei der Auswertung der Resultate der Analysemethoden visuell unterstützen, indem diese direkt visuell im Kontext des PN gesetzt werden. Da bei komplexeren PN die Resultate der Analysemethoden in ihrer Zahl drastisch anwachsen, wird eine solche Auswertung dieser notwendig. Aus dieser Motivation heraus entstand die Anwendung MonaLisa, dessen Implementierung und Funktionen im ersten Teil der vorliegenden Arbeit beschrieben werden. Neben den klassischen Analysemethoden für PN, wie den Transitions- und Platz-Invarianten, mit denen grundlegende funktionale Module innerhalb eines PN gefunden werden können, wurden weitere, meist durch die Systembiologie entwickelte, Analysemethoden implementiert. Dazu zählen zum Beispiel die Minimal Cut Sets, die Maximal Common Transitions Sets oder Knock-out-Analysen. Mit MonaLisa ist aber auch die Simulation des dynamischen Verhaltens des modellierten biologischen Systems möglich. Hierzu stehen sowohl deterministische als auch stochastische Verfahren, beispielsweise der Algorithmus von Gillespie zur Simulation chemischer Systeme, zur Verfügung. Für alle zur Verfügung gestellten Analysemethoden wird ebenfalls eine visuelle Repräsentation ihrer Resultate bereitgestellt. Im Falle der Invarianten werden deren Elemente beispielsweise in der Visualisierung des PN eingefärbt. Die Resultate der Simulationen oder der topologischen Analyse können durch verschiedene Graphen ausgewertet werden. Um eine Schnittstelle zu anderen Anwendungen zu schaffen, wurde für MonaLisa eine Unterstützung einiger gängiger Dateiformate der Systembiologie geschaffen, so z.B. für SBML und KGML.
Der zweite Teil der Arbeit beschäftigt sich mit der topologischen Analyse eines Datensatzes von 2641 Gesamtgenom Modellen aus der path2models-Datenbank. Diese Modelle wurden automatisiert aus dem vorhandenen Wissen der KEGG- und der MetaCyc-Datenbank erstellt. Die Analyse der topologischen Eigenschaften eines Graphen ermöglicht es, grundlegende Aussagen über die globalen Eigenschaften des modellierten Systems und dessen Entstehungsprozesses zu treffen. Daher ist eine solche Analyse oft der erste Schritt für das Verständnis eines komplexen biologischen Systems. Für die Analyse der Knotengrade aller Reaktionen und Metaboliten dieser Modelle wurden sie in einem ersten Schritt in PN transformiert. Die topologischen Eigenschaften von metabolischen Systemen werden in der Literatur schon sehr gut beschrieben, wobei die Untersuchungen meist auf einem Netzwerk der Metaboliten oder der Reaktionen basieren. Durch die Verwendung von PN wird es möglich, die topologischen Eigenschaften von Metaboliten und Reaktionen in einem gemeinsamen Netzwerk zu untersuchen. Die Motivation hinter diesen Untersuchungen war, zu überprüfen, ob die schon beschriebenen Eigenschaften auch für eine Darstellung als PN zutreffen und welche neuen Eigenschaften gefunden werden können. Untersucht wurden der Knotengrad und der Clusterkoeffizient der Modelle. Es wird gezeigt, dass einige wenige Metaboliten mit sehr hohem Knotengrad für eine ganze Reihe von Effekten verantwortlich sind, wie beispielsweise dass die Verteilung des Knotengrades und des Clusterkoeffizienten, im Bezug auf Metaboliten, skalenfrei sind und dass sie für die Vernetzung der Nachbarschaft von Reaktionen verantwortlich sind. Weiter wird gezeigt, dass die Größe eines Modelles Einfluss auf dessen topologische Eigenschaften hat. So steigt die Vernetzung der Nachbarschaft eines Metaboliten, je mehr Metaboliten in einem biologischen System vorhanden sind, gleiches gilt für den durchschnittlichen Knotengrad der Metaboliten.