Refine
Document Type
- Doctoral Thesis (20)
- Master's Thesis (1)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Schmerz (2)
- Binding Kinetics (1)
- CNP (1)
- DDR (1)
- Fabclavine (1)
- Guanylatzyklasen (1)
- Juckreiz (1)
- Kaliumkanal (1)
- Kinase (1)
- Kinase Inhibitors (1)
Institute
- Biochemie, Chemie und Pharmazie (15)
- Pharmazie (3)
- Biochemie und Chemie (2)
- Biowissenschaften (2)
The p38α mitogen-activated protein kinase (MAPK) is activated through stress stimuli such as heat shock or hypoxia. In the nucleus, p38α modulates the activity of other kinases and transcription factors, a process that regulates the expression of specific target genes, most importantly pro-inflammatory cytokines. Dysregulation of p38α therefore plays a major role in the development of inflammatory diseases such as rheumatoid arthritis. Despite many years of intensive research, no p38 small-molecule inhibitors have been approved yet. Several inhibitor design strategies have been reported, leading to >100-fold selective compounds for α/β over the γ and δ isoforms. Achieving such a selectivity among the two structurally most related α and β isoforms, however, remains a challenging task. Targeting an inactive DFG-out conformation offers another strategy for the development of potent kinase inhibitors (type-II), exemplified by the BCR/ABL-inhibitor Imatinib. Achieving selectivity with type-II binders is challenging, because many kinases can adopt an inactive DFG-out conformation. This is exemplified by the p38 type-II inhibitor BIRB-796, which exhibits picomolar on-target affinity but only a poor kinome-wide selectivity. A potent and selective type-II chemical probe for p38α/β was still lacking at the start of this thesis.
The promising hit VPC-00628, was chosen for a combinatorial synthetic approach to develop a type-II chemical probe. The studies covered the optimization of the hinge-binding head group, the hydrophobic region I and the DFG-out deep pocket of the lead compound VPC-00628. Selectivity for the p38α and p38β isoforms was monitored during the optimization process, which identified several inhibitors with favorable isoform selectivity, providing valuable insights into the potential of isoform-selective inhibitor design for p38. A potent and highly selective p38 MAPK probe (SR-318) was discovered, which showed IC50 values in the low nanomolar range in HEK293T cells. An unusual P-loop conformation induced upon binding of SR-318 to p38α contributed most likely to the impressive selectivity profile within the kinome that surpassed both the parent compound and BIRB-796. A negative control compound, SR-321, was developed, to distinguish between on-target effects and non-specific effects due to cross-reactivity with other cellular proteins. Studies of the metabolic stability in human liver microsomes revealed a high stability of the compounds, with only a small amount of metabolites formed over several hours. Compound SR-318 also exhibited a good in vitro efficacy, quantitatively reducing the LPS-stimulated TNF-α release in whole blood. Taken together, SR-318 is a highly potent and selective type-II p38α/β chemical probe, which will help to gain a better understanding of the catalytic and non-catalytic functions of these key signaling kinases in physiology and pathology.
The next studies focused on the exploration of the highly dynamic allosteric back pocket of p38 MAPK, and allosteric BIRB-796 derived compounds for targeting the αC- and DFG-out pockets were synthesized. Kinase activities of allosteric pyrazole-urea fragments were analyzed against a comprehensive set of 47 diverse kinases by differential scanning fluorimetry (DSF), revealing that BIRB-796 off-targets remain a problem when targeting this back-pocket binding motif. Revisiting the recently published compound MCP-081, which combines the allosteric part of BIRB-796 with the active-site directed part of VPC-00628, showed that it displays a clean selectivity profile in our kinase panel. Because the potency of MCP-081 was slightly reduced compared with VPC-00628 and the allosteric tert-butyl pyrazole moiety seemed suboptimal, a set of VPC-00628 derivatives for targeting the αC-out pocket region was synthesized. Through structure-guided extension of the terminal amide of VPC-00628 toward this allosteric site, the potent and selective compound SR-43 was developed, which showed excellent cellular activity on p38 MAPK in NanoBRETTM assays (IC50 [p38α/β] = 14.0 ± 0.1/ 16.8 ± 0.1 nM). SR-43 showed a dose-dependent inhibition of activating phosphorylation of p38 in HCT-15 cells as well as inhibition of phosphorylation of p38 downstream substrates MK2 and Hsp27. In addition, SR-43 induced an anti-inflammatory response by blocking TNF-α release in whole blood and displayed a high metabolic stability. Selectivity profiling of SR-43 revealed a narrow selectivity for additional targets such as the discoidin domain receptor kinases (DDR1/2). DDR kinases play a central role in fibrotic disorders, such as renal and pulmonale fibrosis, atherosclerosis and different forms of cancer. Since selective and potent inhibitors for these important therapeutic targets are largely lacking and the existing inhibitors are of low scaffold diversity, the next study focused on the optimization of SR-43 toward DDR1/2 kinase inhibition. The synthetic work covered the optimization of the hinge-binding head group and the allosteric part of SR-43 toward DDR1/2 kinase inhibition. These studies provided novel insights into the P-loop folding process of p38 MAPK and how targeting of non-conserved amino acids affects inhibitor selectivity. Importantly, they led to the development of a selective dual DDR/p38 inhibitor probe, SR-302, with picomolar affinity for DDR2. SR-302 was efficient in vitro and showed a destabilizing effect on the surface adhesion protein E-cadherin in epithelial cells. In summary, SR-302 and its negative control SR-301 provide a valuable tool set for studying the phenotypic effects of DDR1/2 signaling, e.g., in cancer cell lines.
Human protein kinases play essential roles in cellular signaling pathways and - if deregulated - are linked to a large diversity of diseases such as cancer and inflammation or to metabolic diseases. Because of their key role in disease development or progression, kinases have developed into major drug targets resulting in the approval of 52 kinase inhibitors by the Food and Drug Administration (FDA) so far.
Within the drug discovery process, the affinity of the inhibitors is the parameter that is used most often to predict the later efficacy in humans. However, the kinetics of binding have recently emerged as an important but largely neglected factor of kinase inhibitor efficacy. To efficiently suppress a signaling pathway, the targeted kinase needs to be continuously inhibited. Thus, it has been hypothesized that fast binding on-rates and slow off-rates would be the preferred property of an efficacious inhibitor. Despite optimizing the potency of kinase inhibitors, in the past decade optimization of kinetic selectivity has therefore gained interest as a molecule cannot be active unless it is bound, as Paul Ehrlich once stated. There is increasing evidence of correlations between prolonged drug-target residence time and increased drug efficacy, and that inhibitor selectivity in cellular contexts can be modulated by altered residence times. In order to contribute to the understanding of the effect of long residence times on cellular targets we initiated two projects.
The first of these projects is related to the STE20 kinase Serine/threonine kinase 10 (STK10) and its close relative STE20 like kinase (SLK) which have been reported to be frequent off-targets for kinase inhibitors used in the clinics. Also, an inhibition of STK10 and SLK has been linked to a common side-effect of severe skin rash developed upon treatment with the EGFR inhibitor erlotinib, but not gefitinib and the severity of this rash correlated with the treatment outcome, which fits the known biology of STK10 and SLK to be regulators of lymphocyte migration and PLK kinases. However, there are yet no explanations why these two proteins show such high hit-rates across the kinome among the kinase inhibitors. Using structural analysis, we identified the flexibility of STK10 to be the main reason for this hit-rate. The observed strong in vitro potencies did however not translate to the cellular system which is why we investigated the inhibitors residence time on STK10. We found the same flexibility to be the main reason for slow residence times among several inhibitors. We observed large rearrangements in the hydrophobic backpocket of STK10 including the αC, the P-loop enclosing the inhibitor like a lid and strong π-π-stackings to be the main reasons for prolonged residence times on STK10. Interestingly, we observed an increased residence time for erlotinib, which showed skin-related side-effects, giving rise whether the binding kinetics should be investigated for weak cellular off-target effects in future drug discovery efforts.
In the second project we initiated, we illuminate a structural mechanism that allows kinetic selection between two closely related kinases, focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2). Using an inhibitor series designed to probe the mechanism, residence times measured in vitro and in cells showed a strong correlation. Crystal structures and mutagenesis identified hydrophobic interactions with L567, adjacent to the DFG-motif, as being crucial to kinetic selectivity of FAK over PYK2. This specific interaction was observed only when the DFG-motif was stabilized into a helical conformation upon ligand binding to FAK. The interplay between the protein structural mobility and ligand-induced effect was found to be the key regulator of kinetic inhibitor selectivity for FAK over PYK2.
These two projects showed that the parameter residence time should be considered for different problems among the drug discovery process. First, in an open in vivo system not only the potency of a drug alone, but as well its residence time might be of importance. Here we showed that the weak cellular potency translated to prolonged residence times for several inhibitors in cells and established a link between the phenotypic outcome of skin rash after erlotinib treatment and the residence time of this inhibitor on STK10 in cells. On the other hand, medicinal chemistry efforts should consider structure kinetic relationships (SKR) in the optimization process and aim to understand the molecular basis for prolonged target residence times. Here, we showed that a hydrophobic interaction that is enforced upon inhibitor binding is crucial for an unusual helical DFG conformation which arrests the inhibitor and prolongs its residence time providing the molecular basis for understanding the kinetic selectivity of two closely related protein kinases. Establishing the SKRs will help medicinal chemists to kinetically optimize their drug candidates to select a suitable molecule to proceed into further optimization programs. Hence, the projects showed that the target residence time parameter needs to be considered both as a molecular optimization parameter to improve compound potency and binding behavior as well as a parameter to be understood for proceeding to the open system of in vivo models to later modulate the in vivo efficacy of protein kinase targeting drugs.
A necessary requirement for a pharmacological effect is that a drug molecule tightly interacts with its disease relevant target molecule in the patient. Kinases are regulatory, signal transmitting enzymes and are a large protein family that belongs to the most frequent targets of pharmaceutical industry, as deregulation of kinases has been associated with the development of a variety of diseases, including cancer. In drug discovery, equilibrium binding metrics such as the affinity (Ki, KD) or potency (IC50, EC50) are usually applied for the systematic profiling for potent and selective drug candidates. In recent years, dynamic binding parameters, the drugs association (kon) and dissociation (koff) rates for desired primary-targets and undesired off-targets, were discussed to be better predictors than steady-state affinity per se (KD = koff / kon) for the onset and duration of the drug-target complex in the open in vivo environment and thereby for the therapeutic effect and safety of the drug. It is yet unclear whether and when the binding kinetics parameters can influence drug action in the complex context of pharmacokinetics and pharmacodynamics and how the kinetic rate constants can be optimized rationally. One major obstacle for providing proof for the hypothesis that drug binding kinetics is of importance for drug action is the generation of large and comparable binding kinetic datasets.
The aim of this thesis was the comprehensive analysis of the binding kinetic and affinity parameters of a diverse spectrum of 270 small-molecule kinase inhibitors against a panel of pharmacologically relevant kinases to study the role played by binding kinetics for drug discovery: The generated dataset was utilized to assess the effect of chemical properties on drug binding kinetics, and to evaluate the impact of kinetic rate constants on the success of compounds in the drug discovery pipeline.
Large scale profiling was made possible by a recently developed “kinetic Probe Competition Assay” (kPCA), whose evaluation is based on Motulsky’s and Mahan’s “kinetics of competitive binding” theory. Monte Carlo analyses performed in this dissertation widened the theoretical knowledge of this theory, provided new insights into its limitations and allowed to derive recommendations about how to best design assays. It was demonstrated that kPCA is indeed high-throughput compatible and that it is comparable to other biochemical and biophysical assay formats in terms of precision and accuracy.
Multivariable linear regression for the description of the determined kinase inhibitors’ target binding characteristics (kon or koff or KD) using molecular properties and/or particular kinase-inhibitor interactions as descriptors supported the assumption that molecular properties of compounds might affect binding kinetics, generated new hypothesis about molecular determinants influencing binding kinetic parameters and provided a rational basis for following structure-kinetic relationship studies. Remarkably, the binding kinetic rate constants were better described by the established models than binding affinities.
Interestingly, the systematic, quantitative analysis of kinase inhibitors’ target binding kinetics indicated that a slow dissociation rate for the main target is a feature which is more frequently observed in inhibitors that reached approval or late stage clinical testing than in earlier phases of clinical development. In addition, it was demonstrated that binding kinetics of kinase inhibitors is a better predictor for the time course of target engagement in cells as compared to affinity per se. Furthermore, in some study cases simulations using a standard pharmacokinetics model and a modified model considering the inhibitors binding kinetics lead to different in vivo kinase occupancy time profiles. It was illustrated by simulations how the concept of kinetic selectivity can be applied to turn an unselective compound in equilibrium conditions into a more selective compound in the open in vivo situation, where the thermodynamic equilibrium of drug-target binding is not necessarily reached.
Thus the generated data and models provide evidence for the importance of binding kinetics in drug discovery and represent a valuable resource for future studies in this field.
Bezüglich der Arzneimittelforschung galt für sehr lange Zeit das Paradigma "ein Gen, ein Medikament, eine Krankheit". In jüngerer Zeit ändert sich dieses Paradigma jedoch auf Grund von redundanten Funktionen und alternativen sich kompensierenden Signalmustern, die insbesondere bei Krebserkrankungen vorherrschend sind. Daher kann die logische Konsequenz nur sein, Multi-Target-Strategien gegenüber Single-Target-Ansätzen in Betracht zu ziehen. Auf Grund der Schwierigkeit, mit einer Kombination von zwei Einzelwirkstoffen, in diesem Fall BET- und HDAC-Inhibitoren eine konsistente Biodistribution und Pharmakokinetik zu erreichen, wurde nach Einzelmolekülen gesucht, die mehrere inhibitorische Aktivitäten aufweisen. Dies wurde hier zunächst durch die einfache Konjugation von zwei unterschiedlichen Pharmakophoren erreicht.
Insgesamt wurden vier verschiedene Liganden dieses Typs synthetisiert und einer von ihnen, Verbindung 14, zeigte sehr vielversprechende Ergebnisse. 14 vereint den BET Inhibitor JQ1- mit dem HDAC Inhibitor CI994 und hat eine hemmende Wirkung sowohl gegen BRD4- als auch HDAC-Proteine wie durch DSF- und nanoBRET-Assay gezeigt werden konnte. Außerdem zeigten in vitro Assays in PDAC-Zellen, dass 14 ein noch potenterer dualer BET/HDAC-Inhibitor ist als die Kombination aus JQ1 und CI994. Während die Effekte von 14 auf das BETi-Antwortgen MYC denen von JQ1 ziemlich ähnlich sind, sind insbesondere die HDAC-inhibitorischen Effekte nachhaltiger und verstärkt, wahrscheinlich aufgrund einer längeren Verweildauer von 14 auf HDAC als dies bei CI994 der Fall ist. Dies ist durch das hohe Niveau der acetylierten Lysine von Histon H3 im Western Blot erkennbar. Dieses veränderte Expressionsverhalten hatte einen großen Einfluss auf das Zellwachstum und überleben in allen getesteten PDAC-Zelllinien. Hier wurde die Überlegenheit von 14 gegenüber der gleichzeitigen Behandlung der Zellen mit JQ1 und CI994 sehr deutlich. Wurden PDAC-Zellen mit dem dualen Inhibitor 14 behandelt, hatte dies ein geringeres Wachstum und Überleben der Krebszellen zur Folge als mit beiden ursprünglichen Molekülen, unabhängig davon, ob diese einzeln oder simultan verabreicht wurden. Außerdem wurde 14 mit Gemcitabin, einem gut verträglichen Chemotherapeutikum, kombiniert, dass bei PDAC allein nur eine begrenzte Aktivität aufweist. Es stellte sich heraus, dass die Reihenfolge, in der die Medikamente verabreicht werden, einen großen Einfluss auf die Effektivität hatte. Der durch 14 induzierte Stopp des Zellzyklus verhindert den Einbau von Gemcitabin in die DNA, wenn 14 vor oder gleichzeitig mit Gemcitabin verabreicht wird. Wenn jedoch die Behandlung mit 14 nach der Verabreichung von Gemcitabin folgt, wird der durch Gemcitabin induzierte S-Phasen-Arrest und Replikationsstress aufrechterhalten. Im Vergleich zu den meisten früheren Studien, die sich mit dualen BET/HDAC-Inhibitoren beschäftigten, ist dies eine große Verbesserung, da es bisher keinen signifikanten Unterschied zwischen der Verwendung eines dualen BET/HDAC-Inhibitors und der Kombination von zwei Einzelinhibitoren gab.
Als Proof of Concept unterstützten die Daten weitere Bemühungen zur Entwicklung zusätzlicher dualer BET/HDAC-Inhibitoren. Daher wurden zwei weitere Generationen dualer BET/HDAC Inhibitoren entwickelt, die jedoch bisher nicht an die Eigenschaften von 14 anknüpfen konnten. Vor allem die 3. Generation bietet jedoch Raum für Optimierungen, so dass hier möglicherweise noch ein potenter dualer Inhibitor zu finden ist. Sollte es in Zukunft einen zugelassenen dualen BET/HDAC-Inhibitor geben, ist es jedoch nicht unwahrscheinlich, dass keine der hier verwendet BET inhibierenden Strukturen verwendet werden, aber Struktur des HDAC inhibierenden Teils immer noch vergleichbar ist. Der Grund dafür ist, dass die HDAC Inhibitoren größtenteils relativ einfach aufgebaut. So lange das wichtigste, die zinkbindende Gruppe vorhanden ist, scheint der Linker sowie die Capping-Gruppe zweitranging zu sein. Die größere Herausforderung wird vermutlich die Suche nach dem passenden BET Inhibitor sein und die Wahlmöglichkeiten sind schon jetzt vielfältig.
Generell lässt sich sagen, dass die Idee der dualen BET/HDAC-Inhibitoren äußerst vielversprechend und es wert ist, weiter verfolgt zu werden. Dies liegt vor allem an den guten Testergebnissen, die mit Verbindung 14 erzielt wurden. Mit Hilfe dieser Art von Inhibitoren könnte es in Zukunft möglich sein, die Überlebensrate von PDAC-Patienten zu erhöhen, wenn nicht als alleiniges Medikament, so vielleicht als Zusatz zur Chemotherapie. Darüber hinaus scheint der Einsatz von dualen BET/HDAC-Inhibitoren nicht nur auf die Behandlung von PDAC beschränkt zu sein und kann auch bei anderen Krebsarten angewendet werden. NMC zum Beispiel ist ein ebenso seltener wie tödlicher Subtyp des schlecht differenzierten Plattenepithelkarzinoms und zeichnet sich durch eine Fusion des NUT-Gens mit BRD4 aus, wodurch es potenziell anfällig für eine BET-Inhibition ist. Tatsächlich zeigte 14 auch hier einen größeren positiven Effekt auf die getesteten NMC-Zellen als JQ1 oder CI994 und veranlasste die Zellen unter anderem zur Differenzierung. ...
Epigenetic mechanisms largely influence how genetic information on DNA level is translated into different phenotypes. DNA methylations and histone post-translational modifications make up what is referred to as "epigenetic landscape", an interconnected pattern that regulates access to genes and serves as platform for specific binding partners. The epigenetic landscape is maintained by "writers", which add the modifications, "erasers", which delete the modifications and "readers" which specifically bind modifications and mediate their location to other proteins connected to transcription. In the context of acetylations, which are the focus of this thesis, the writers are called histone acetyl transferases (HATs), the erasers are called histone deacetylases (HDACs) and the readers comprise Bromodomains (BRDs) as well as Yaf9, ENL, AF9, Taf14, Sas5 (YEATS) domains. An aberrant epigenetic landscape and mutated forms of epigenetic readers can lead to diseases including cancer and inflammatory diseases, making epigenetic reader domains attractive drug targets.
The focus of this thesis were YEATS domains and the development of inhibitors for this new class of epigenetic readers. Eleven-nineteen-leukemia protein (ENL) and ALL1-fused gene from chromosome 9 protein (AF9) are also part of the super elongation complex and are common fusion partners of mixed lineage leukemia protein (MLL) in acute myeloid leukemia (AML) (Wan et al., 2017, Erb et al., 2017). In this thesis, the first ligand-free crystal structure of ENL YEATS revealed an inherent flexibility of the Y78 side chain in the aromatic triad and two conserved water molecules. Soaking experiments led to the first co-crystal structures between a YEATS domain and small molecule inhibitors and defined prerequisites for ENL YEATS inhibitor scaffolds. The discovered inhibitory fragments had a central amide bond in common, which replaced one of the two conserved water molecules to form beta-sheet-like hydrogen bonds between the loop 6 backbone and the S58 side chain. The amide bond was flanked by two aromatic moieties, of which one stacks with H56 in the front pocket and the other interacts with the aromatic triad in the rear pocket. The development of the first chemical probe for ENL/AF9, SGC-iMLLT, show that the affinity is increased to low nanomolar levels if the rear flanking aromatic moiety forms additional hydrogen bonds with loop 6 and the side chain of E75 (Moustakim et al., 2018). In case of the probe, this is achieved with a 2-methyl-pyrrolidine-benzimidazole moiety. The probe binds with high affinity to ENL (129 nM) and AF9 (77 nM) and shows no significant affinity towards other human YEATS domains or BRDs. Target engagement was shown by fluorescence recovery after photobleaching (FRAP), cellular thermal shift assay (CETSA) and in case of AF9 also with NanoBRET. The probe changed the expression of three AML-related genes (MYC, dendrin and CD86) in MV4;11 cells, encouraging application of this probe in more AML cell lines.
In dieser Arbeit sollten auf Grundlage eines in vitro Transkriptions-/Translations-Assays (TTA) neue Substanzen als Hemmer der bakteriellen Proteinbiosynthese gefunden werden. Um dieses Ziel verfolgen zu können, wurde zuerst ein zellfreies Testsystem aus kommerziellen Komponenten entwickelt und als Screening-Tool für Inhibitoren der bakteriellen Proteinbiosynthese evaluiert. Anhand des allgemein akzeptierten Bewertungskriteriums Z‘-Faktor konnte die Performance des etablierten Assays als exzellent eingeordnet werden. Mit diesem System war es nun möglich, Substanzen aus unterschiedlichen Quellen bei der Wirkstoffsuche als potentielle Antibiotika einzuordnen, welche die Proteinbiosynthese hemmen.
In zwei nachfolgenden Projekten wurde die Praktikabilität dieses neuen Assays bei der Auffindung möglicher Antibiotika-Kandidaten bewiesen. In dem ersten Ansatz wurde ein virtuelles Screening der Substanzdatenbanken Specs und Asinex anhand eines Pseudorezeptormodells für Aminoglykoside durchgeführt. In Kombination mit dem TTA sowie einem Ganzzell-Assay gegen den gram-positiven Keim Bacillus subtilis 168 konnte eine Struktur mit Ähnlichkeit zu Vanilloiden als interessanter Ausgangspunkt für weitergehende Untersuchungen identifiziert werden. Die Entdeckung korreliert mit den antimikrobiellen Eigenschaften eines anderen Vanilloid, dem Capsaicin, für welches bisher aber keine Hemmung der Proteinbiosynthese in der Literatur beschrieben ist. Somit konnte gezeigt werden, dass anhand eines virtuellen Screenings sowie weiterer Assays neue Hemmer der bakteriellen Proteinbiosynthese effizient und effektiv gefunden werden können. In einem zweiten Screening-Projekt dienten pflanzliche Naturstoffe als Substanzquelle. Hierfür wurden auf der Grundlage der diterpenoiden Fusidinsäure, einem Proteinbiosynthesehemmer (PBS-Hemmer), tetra-und pentazyklische Isoprenoide ausgewählt.
Aus einem Ensemble von terpenoiden Strukturen gingen nach TTA und einem zellbasierten Assay gegen Bacillus subtilis 168 in absteigender Aktivität die 18β-Glycyrrhetinsäure, 11-Keto-β-boswelliaäsure und Carnosolsäure als nennenswerte antimikrobiell wirksame Vertreter und PBS-Hemmer hervor. Auch zeigten sich diese Substanzen den Stoffen aus dem virtuellen Screening sowohl im TTA als auch in der Wirksamkeit gegen Bacillus subtilis 168 deutlich überlegen. Im nächsten Schritt erfolgte deshalb nur für diese drei Terpenoide eine Charakterisierung ihrer Auswirkungen auf das Proteom des gram-positiven Bakteriums Bacillus subtilis 168.
Dafür wurde eine komplette zweidimensionale gelelektrophoretische Methodik basierend auf der Differentiellen Gelelektrophorese (DIGE) etabliert. Sie umfasst eine Strategie zur schnellen Evaluierung der optimalen Anzucht des Testkeims Bacillus subtilis 168 unter Einfluss einer antimikrobiell wirksamen Substanz und ein einfaches Aufschlussverfahren, um einen kompatiblen Proteinextrakt für DIGE zu erhalten. Außerdem wurde ein preisgünstiges Markierungsverfahren mit dem 5(6)-Carboxyfluorescein-N-hydroxysuccinimid-Ester als Alternative zu den teuren DIGE-Cyan-Farbstoffen entwickelt, um die Fluoreszenzbildqualität eines neuen unbekannten Extraktes vor dem eigentlichen kostspieligen DIGE-Versuch zu überprüfen. Eine Quantifizierung regulierter Spots im Gel ist mit diesem billigen Verfahren ebenfalls möglich, stellt aber keinen Ersatz für den DIGE-Versuch dar.
Die Ergebnisse der quantitativ vergleichenden Proteomanalyse vom behandelten und unbehandelten Bacillus subtilis 168 mittels DIGE bieten erstmals einen Einblick in die Einflussnahme der drei Terpenoide 18β-Glycyrrhetinsäure, 11-Keto-ß-boswelliaäsure und Carnosolsäure auf die Stressregulation und die Stoffwechseländerungen dieses Bakteriums.
Außerdem beinhaltet die Arbeit einen Abgleich, inwieweit andere antimikrobiell wirksame Substanzen die regulierten Proteine der drei untersuchten Naturstoffe bei Bacillus subtilis 168 beeinflussen können. Aus den erhobenen Daten konnte dann ein Wirkmechanismus für 18β-Glycyrrhetinsäure und Carnosolsäure postuliert werden. 18β-Glycyrrhetinsäure greift wahrscheinlich am membranständigen Lipid-II-System der bakteriellen Zellwand an, da wie bei den Antibiotika Vancomycin, Nisin, Daptomycin, Ramoplanin und Bacitracin das Zellwandstress-Regulationsnetzwerk (LiaRS-System) als Warnsystem aktiviert wird. Außerdem konnte für 18β-Glycyrrhetinsäure und Carnosolsäure eine Theorie für Ihre PBS-Hemmung entwickelt werden. Beide beeinflussen gegebenenfalls die GTPase-Aktivität des Translationsfaktors EF-G durch Interaktion mit dem ribosomalen Bindezentrum für Translationsfaktoren. Dieses Bindungszentrum ist neben der dekodierenden Region auf der ribosomalen 30S-Untereinheit und dem Peptidyltransferase-Zentrum auf der ribosomalen 50S-Untereinheit eine extrem wichtige Region für die Funktionalität eines Ribosoms. Fusidinsäure greift auch an dieser Stelle an, indem es den EF-G-GDP-Ribosomkomplex stabilisiert. Natürlich wären weitere Studien nötig, z. B. eine Röntgenstrukturanalyse der Ribosomen von 18β-Glycyrrhetinsäure und Carnosolsäure behandelten Bakterien, um die Bindestelle für die PBS-Hemmung zweifelsfrei zu bestätigen.
Xenorhabdus and Photorhabdus are bacterial genera that live in symbiosis with entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, respectively. These nematodes infect insect larvae through the trachea and then enter the hemocoel. Once inside the hemocoel, the nematodes release the bacteria through their intestine. Thereafter, the bacteria become active and kill the larvae within 48 h. During this process, the immune system of the insect host is compromised by molecules produced and secreted by the bacteria. This illustrates that the bacteria possess not only a large arsenal of biological weaponry such as antibiotics and fungicides but also lipases, proteases, etc. Therefore, they are not only able to kill the insect but also protect the cadaver from other food competitors.
During the past decades, a large number of natural products have been identified from Xenorhabdus and Photorhabdus. However, the targets and functions for many of these biological molecules are still unknown. Therefore, the goal of the doctoral thesis is to elucidate the modes of action of these natural products from Xenorhabdus and Photorhabdus with the main focus on non-ribosomal peptides (NRPs). The work can be divided into two parts. Initially, it starts with the synthesis of natural compounds and various chemically modified derivatives. Besides that, a number of peptides were synthesized for other projects to either verify their structures or quantify the amount produced by the bacteria. Then, secondary analysis methods are applied and provide additional insight into the modes of action of these compounds.
During the thesis, I carried out peptide synthesis either manually or with an automatic synthesizer system from Biotage. Here, the Fmoc-protecting group strategy was preferred in most cases. Natural products, such as silathride, xenoautoxin, phenylethylamide, tryptamide, rhabdopeptide, 3-hydroxyoctanoic acid, and PAX, were produced during this process. Furthermore, new peptide derivatives derived from synthetic NRPS approaches using the XU concept or SYNZIP were generated as standards.
Most of these natural compounds were experimentally verified by MIC tests (broth microdilution, plate diffusion) to be biologically active. For example, silathride, phenylethylamide, and tryptamide showed quorum quenching effects when tested against Chromobacterium violaceum. Initial results from collaborators (PD Dr. Nadja Hellmann/Mainz) showed that tryptamide and phenylethylamide interact with membrane or membrane proteins.
(R)-3-hydroxyoctanoic acid was synthesized to verify the molecule structure of phototemtide A, a cyclic lipopeptide with antiprotozoal activity. The rhabdopeptides are another class, which showed remarkable antiprotozoal effects. However, their mode of action was unknown. These compounds are relatively short peptide sequences, which contain hydrophobic residues, such as valine, leucine, or phenylalanine. Moreover, they possess N methylation, resulting in a rod-shaped highly hydrophobic structure. In this work, I synthesized eight new derivatives of rhabdopeptides for photo-affinity labeling (PAL). These molecules should react covalently under UV-light irradiation with the biological target of the peptides. In addition, these derivatives can be enriched in a pull-down assay using click chemistry. Afterward, analytic methods such as mass detection (proteome analysis) can be applied to elucidate the protein targets.
The PAX peptides derivatives are well-known to have anti-microbial activities and believed to be secreted into the environment by the producing bacteria. However, I found that the majority of these peptides are located in the cell pellet fraction and not in the supernatant. This has been shown through quantification using HPLC MS. New PAX derivatives were synthesized, which carry a moiety suitable for covalent modification using click-chemistry, therefore being functionalizable with a fluorescence dye. In collaboration with Dr. Christoph Spahn (Prof. Dr. Mike Heilemann group), we used confocal, as well as super-resolution microscopy, in particular, single-molecule localization microscopy (SMLM) to investigate the spatial distribution of clickable PAX molecules and revealed that they localize at the bacterial membrane. Furthermore, bioactivity assays revealed that the promotor exchanged X. doucetiae PAX mutants, which do not produce PAX molecules without chemical induction (hereby termed as pax-), were more susceptible to several insect AMPs tested. Based on these findings, a new dual mechanism of action for PAX was proposed. Besides the previously shown antimicrobial activity, these molecules with a positive net charge of +5 (pH = 7) would bind to the negatively charged bacterial surface. Hereby, the surface charge (typically negative) would be inversed resulting in a protective effect for Xenorhabdus against other positively charged AMPs. Furthermore, PAX was investigated as AMP against E. coli to study its antimicrobial mechanism of action. Here, the results show that PAX can disrupt the E. coli membrane at higher concentrations (> 30 µg/ml), enter the cytosol, and lead to reorganization of subcellular structures, such as the nucleoid during this process.
Another aspect of secondary analysis is the application of proteomic analysis. Therefore, I induced X. nematophila, X. szentirmaii, and P. luminescens with insect lysate. These samples were analyzed using HPLC-MS/MS (Q Exactive) together with a database approach (Maxquant/Andromeda). The results showed that in all strains the lipid degradation and the glyoxylate pathway were induced. This is in line with the given insect lysate diet, which mostly contained lipids. Moreover, several interesting unknown peptides and proteins were also upregulated and might get into the focus of future research.
Die Funktion nukleärer Rezeptoren (NR) beruht auf einem empfindlichen Zusammenspiel zwischen ihren Domänen, Coregulatoren und Liganden. Die meisten Rezeptoren binden die DNA als Homo- oder Heterodimere und transregulieren die Gentranskription in Folge von Ligandenbindung. Klassische Assay-Systeme, die sich auf die Untersuchung der NR-Funktion oder auf die Charakterisierung von Substanzen richten, bilden nur die Coregulator-Rekrutierung zu isolierten NR-Ligandenbindungsdomänen (LBDs) ab und vernachlässigen dabei die NR:NR-Interaktion. Damit klammern sie die NR:NR-Wechselwirkung aus, obwohl die Rekrutierung von Cofaktoren durch allosterischen Crosstalk mit der Oligomerisierung verbunden ist. Dies war die Motivation dafür, Assay-Systeme zu entwickeln, welche die Untersuchung von NR-Interaktionen,
insbesondere der NR-Dimerisierung, und deren Modulation durch verschiedene Arten von Liganden ermöglichen. Im Rahmen dieser Doktorarbeit wird ein vielfältiges modulares Set von Assays für die Untersuchung der NR-Dimerisierung und NR-Coregulator-Rekrutierung vorgestellt und deren Anwendbarkeit auf eine Vielzahl von NRs demonstriert. Die Verwendung einer
rekrutierungsunfähigen RXRα-Variante mit einer mutierten AF-2-Domäne ermöglichte den spezifischen Nachweis der Coaktivatorrekrutierung durch PPARγ im Kontext des Heterodimers mit seinem obligatorischen Dimerpartner RXRα. Außerdem konnte gezeigt werden, dass die Aktivierung der RXRα LBD mit ihrem Agonisten SR11237 zu einer Destabilisierung des RXRα-Homodimers, aber zu einer Förderung der Bildung des Heterodimers mit der PPARγ LBD führte.
Ein zentrales Ergebnis war das Phänomen, dass der Einbau von PPARγ in das Heterodimer zu einem erheblichen Anstieg an Affinität gegenüber Coaktivatoren führt, auch in Abwesenheit von Liganden. Somit fördert die RXRα-Aktivierung die Coaktivator-Rekrutierung von PPARγ indirekt durch eine Verschiebung der Oligomerisierungspräferenz von RXRα in Richtung des Heterodimers. Zusätzlich wurde die Wirkung von Tetrac, einem nicht-klassischen Schilddrüsenhormon, auf PPARγ und RXRα untersucht und dessen Aktivierungsvermögen gegenüber beiden Rezeptoren mit einer deutlich vervielfachten Wirkung auf das Heterodimer demonstriert. Mit Hilfe des neu etablierten Cofaktor-Rekrutierungsscreens konnte die Dynamik
zwischen dem Nurr1 NR und 29 kanonischen Coregulatoren, von denen einige ligandenabhängig hohe Affinitäten zum Rezeptor aufwiesen, beleuchtet werden. Diese Interaktionen wurden
bidirektional durch eine Reihe von strukturell unterschiedlichen nicht-steroidalen Antirheumatika moduliert, die auch die Affinitäten sowohl des Nurr1-Homodimers als auch des Heterodimers mit der RXRα LBD beeinflussen konnten. Die Nurr1-Dimere zeigten zudem auch eine hohe Empfindlichkeit gegenüber dem Endocannabinoid Anandamid. Zusätzlich zu PPARγ, RXRα und Nurr1 wurden erste Schritte zur Untersuchung der TLX NR-Funktion unternommen. Unter Anwendung der entwickelten Assays konnte die Heterodimerbildung der TLX und der RXRα LBD
beschrieben und die ligandenabhängige Rekrutierung des Corepressors SMRT beobachtet werden.
Zusammenfassend beschreibt diese Arbeit einen Satz von Werkzeugen für die Untersuchung von ligandenabhängiger NR-Coregulator-Interaktion und Oligomerisierung. Auf diese Weise trug sie zu einer umfassenderen Identifizierung und Charakterisierung von NR-Liganden bei und stellt eine valide Basis für die weitere Assayentwicklung und Ligandendesign dar.
The compound class of the fabclavines was described as secondary or specialized metabolites (SM) for Xenorhabdus budapestensis and X. szentirmaii. Their corresponding structure was elucidated by NMR and further derivatives could be identified in both strains. Biochemically, fabclavines are hybrid SMs derived from two non-ribosomal-peptide-synthetases (NRPS), one type I polyketide-synthase (PKS) and polyunsaturated fatty acid (PUFA) synthases. In detail, a hexapeptide is connected via partially reduced polyketide units to an unsual polyamine. Structurally, they are related to the (pre-)zeamines, described for Serratia plymuthica and Dickeya zeae. Fabclavines exhibit a broad-spectrum bioactivity against a variety of different organisms like Grampositive and Gram-negative bacteria, fungi, protozoa but also against eukaryotic celllines.
In this work, the fabclavine biosynthesis was elucidated and assigned to two independently working assembly lines. The NRPS-PKS-pathway is initiated by the first NRPS FclI via generation of a tetrapeptide, which is elongated by the second NRPS FclJ, leading to a hexapeptide. Alternatively, FclJ can also act as direct start of the biosynthesis, resulting in the final formation of shortened fabclavine derivatives with a diinstead of a hexapeptide. In both cases, the peptide moiety is transferred to the iterative type I PKS FclK, leading to an elongation with partially reduced polyketide units. The resulting NRPS-PKS-intermediate is still enzyme-bound. The PUFA-homologues FclC, FclD and FclE in combination with FclF, FclG and FclH belong to the polyamine-forming pathway. Briefly, repeating decarboxylative Claisen thioester condensation reactions of acyl-coenzym A building blocks lead to the generation of an acyl chain in a PKS- or fatty acid biosynthesis-like manner. The corresponding β-keto-groups are either completely reduced or transaminated in a specific and repetitive way, resulting in the concatenation of so-called amine-units. The final β-keto-group is reduced to a hydroxy-group and the intermediate is reductively released by the thioester reductase FclG. A subsequent transamination step leads to the final polyamine. The NRPS-PKS- as well as the polyamine-pathway are connected by FclL. This condensation domain-like protein catalyzes the condensation of the polyamine with the NRPS-PKS-part, which results in the release of the final fabclavine. The results are described in detail in the first publication (first author).
Fabclavine biosynthesis gene cluster (BGC) are widely spread among the genus Xenorhabdus and Photorhabdus. In Xenorhabdus strains a high degree of conservation regarding the BGC synteny as well as the identity of single proteins can be observed. However, Photorhabdus strains harbor only the PUFA-homologues. While in Photorhabdus no product could be detected, our analysis revealed that the Xenorhabdus strains produce a large chemical diversity of different derivatives. Briefly, the general backbone of the fabclavines is conserved and only four chemical moieties are variable: The second and last amino acids of the NRPS-part, the number of incorporated polyketide units as well as the number of amine units in the polyamine. In combination with the elucidated biosynthesis, these variables could be assigned to single biosynthesis components as diversity mechanisms. Together with the 10 already described derivatives, a total of 32 derivatives could be detected. Interestingly, except for taxonomic closely related strains, all analyzed strains produce their own set of derivatives. Finally, we could confirm that the fabclavines are the major bioactive compound class in the analyzed strains under laboratory conditions. The results are described in detail in the second publication (first author).
Together with our collaboration partner Prof. Selcuk Hazir a potent bioactivity against Enterococcus faecalis, which is associated with endodontic infections, could be contributed to X. cabanillasii. Here, we could confirm that this bioactivity can be assigned to the fabclavines. The results are described in detail in the third publication(co-author).
Among the genus Xenorhabdus, X. bovienii represents an exception as its NRPS and PKS genes of the fabclavine BGC are missing or truncated, resulting in the exclusive production of polyamines. Furthermore, its PUFA-homologue FclC harbors an additional dehydratase (DH) domain. Upon extensive analysis a yet unknown deoxy-polyamine was identified and assigned to this additional domain. Finally, the DH domain was transferred into other polyamine pathways. Regardless of an in cis or in trans integration, the chimeric pathways produced deoxy-derivatives of its naturally occurring polyamines, suggesting that this represents another diversification mechanism. The results are described in detail in the attached manuscript (first author).
Für jeden Betroffenen ist die Diagnose Krebs ein schwerwiegender Einschnitt in der Lebensqualität und -führung, da die Behandlung oftmals mit langen Chemotherapien einhergeht. Moderne Durchbrüche in der Krebsbehandlung stammen aus dem Forschungsbereich der zielgerichteten Molekulartherapie oder aus dem Gebiet der Immuntherapien, die zu beachtlichen Erfolgen bei der Behandlung von Krebspatienten führten. Trotzdem bleiben auf dem Gebiet der Onkologie weiterhin Fragen zu den grundlegenden biologischen Prozessen unbeantwortet.
Zu den Onkoproteinen, die das Tumorwachstum in Leukemiezellen stark beeinflussen, gehören die Proteine der Klasse der mixed lineage leukemia (MLL) Histonmethyltransferasen. Genetische Fusionen des mll Gens, sogenannte Rearragments, führen zu MLL-fusion Produkten, die erheblich zum Verlauf der aggressiven akuten myeloischen Leukämie (AML) beitragen. Ein weiteres Onkoprotein, das für den Krankheitsverlauf vieler Krebsarten relevant ist, ist die Transkriptionsfaktorfamilie MYC. Überexprimierung von MYC wurde in einem Drittel aller humanen Tumore beobachtet. Zahlreiche Studien belegen, dass hohe MYC Level die Expression von Genen regulieren, die essentiell für den Transformationsprozess und somit das Tumorwachstum sind. Da der Transkriptionsfaktor weder eine sabile tertiäre Proteinstruktur noch eine für Inhibitoren adressierbare Bindetasche aufweist, gilt MYC bis heute als undruggable.
Sowohl die Histonmethyltransferase MLL1, als auch der Transkriptionsfaktor MYC interagieren mit einem ca. 37 kDa Protein namens WD40-repeat containing Protein 5 (WDR5), das durch seine propellerförmige Struktur eine Oberfläche mit insgesamt zwei Bindestellen aufweist. Mehrere Studien zeigten, dass WDR5 die Stabilität und somit die Funktion epigenetischer Proteinkomplexe wie SET/ MLL und NSL gewährleistet. In diesem Kontext wurde WDR5 als relevantes Target für die MLL-rearragend akute lymphatische Leukämie (ALL) postuliert. Weitere Studien zeigten zusätzliche Rollen von WDR5, wie die Interaktion zwischen WDR5 und dem Onkoprotein MYC sowie dessen Rekrutierung zum Chromatin. Seit 2015 wurden erfolgreich mehrere niedermolekulare Wirkstoffe für die Inhibierung von WDR5 entwickelt. Dabei zielten die meisten der literaturbekannten Inhibitoren auf die Argininmotiv-erkennende WDR5-interacting (Win) Bindestelle, eine große, hydrophobe Bindetasche im Zentrum des WDR5-Propellers. Die Resultate der besser erforschten Win Inhibitoren zeigten, dass WDR5 ein erfolgsversprechendes Target zur Inhibierung von leukämischen (MLL-r-abhängigen) und neuroblastomatischen (MYC-abhängigen) Zellwachstum ist.
Da beide Bindestellen des WDR5 Proteins Interaktionen mit onkologisch bedeutsamen Faktoren eingehen, würde eine einseitige Inhibierung nur die Effekte der jeweiligen Bindestelle aufzeigen. Diese Limitierung könnte jedoch durch die Entwicklung von WDR5 PROTACs (Proteolysis targeting chimeras) aufgehoben werden, da alle Gerüstfunktionen des Proteins und Protein-Protein-Interaktionen durch die Degradierung von WDR5 entfernt werden würden. Dabei induzieren die heterobifunktionellen Moleküle den Abbau des Zielproteins über das zelleigene Ubiquitin-Proteasom-System, statt die Enzymfunktion zu inhibieren. Nach dem zelleigenen Abbau des Zielproteins wird der PROTAC freigesetzt und kann einen neuen Zyklus der Proteindegradation einleiten, was die erforderliche Menge an Wirkstoff verringert.
Diese Dissertation beschäftigte sich mit dem Design, der Synthese sowie der biophysikalischen und biologischen Evaluierung von WDR5 PROTACs. Ausgehend von literaturbekannten WDR5 Liganden wurden zwei verschiedene PROTAC Typen entworfen. Diese beiden Molekültypen besitzen einen unterschiedlichen geometrischen Austrittswinkel, wodurch die Chance auf eine erfolgreiche Komplexbildung zwischen WDR5, PROTAC und E3 Ligase erhöht wird. Als Leitstruktur fungierten die Verbindungen OICR-9429 sowie DDO-2117 und ausgehend von Ligand (6d) wurden heterobifunktionelle Moleküle mit verschiedenen Linkersystemen ([PEG]- und alkyl-basiert, sowie aromatisch verbrückt) und verschiedenen E3 Ligase Liganden (Cereblon, VHL und MDM2) synthetisiert. Die anschließenden biochemischen und biophysikalischen Evaluierungen der verschiedenen PROTACs durch Thermofluor (DSF) und ITC zeigten eine hohe in vitro Affinität einiger Moleküle. Die zelluläre Permeabilität der großen Moleküle wurde in einem hier etablierten BRET Assay untersucht. Zur Assay-Etablierung wurden drei Tracer (21a-c), basierend auf BODIPY Konjugaten, synthetisiert und getestet, bevor die PROTACs in intakten und lysierten Zellen vermessen wurden. Während die zellulären Affinitäten von Cereblon- und VHL-adressierenden PROTACs sich im niedrigen μM Bereich bewegten, wurden die nicht zellgängigen MDM2 PROTACs von weiteren Experimenten ausgeschlossen.
Die Degradierungeffizienz der WDR5 PROTACs (7a-e) und (8a-j) wurden in der Leukämie Zellinie MV4-11 untersucht, da diese die am meisten auftretende MLL fusion Mutation AF4 birgt. Dabei wurde der Proteinabbau von WDR5 über den HiBiT Assay sowie Western Blots nachgewiesen. ...