Refine
Document Type
- Doctoral Thesis (23)
- Master's Thesis (1)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
- Schmerz (3)
- Binding Kinetics (1)
- CNP (1)
- DDR (1)
- Fabclavine (1)
- Guanylatzyklasen (1)
- Juckreiz (1)
- KCNT1 (1)
- Kaliumkanal (1)
- Kaliumkanal-Aktivatoren (1)
Institute
- Biochemie, Chemie und Pharmazie (18)
- Pharmazie (3)
- Biochemie und Chemie (2)
- Biowissenschaften (2)
In dieser Arbeit sollten auf Grundlage eines in vitro Transkriptions-/Translations-Assays (TTA) neue Substanzen als Hemmer der bakteriellen Proteinbiosynthese gefunden werden. Um dieses Ziel verfolgen zu können, wurde zuerst ein zellfreies Testsystem aus kommerziellen Komponenten entwickelt und als Screening-Tool für Inhibitoren der bakteriellen Proteinbiosynthese evaluiert. Anhand des allgemein akzeptierten Bewertungskriteriums Z‘-Faktor konnte die Performance des etablierten Assays als exzellent eingeordnet werden. Mit diesem System war es nun möglich, Substanzen aus unterschiedlichen Quellen bei der Wirkstoffsuche als potentielle Antibiotika einzuordnen, welche die Proteinbiosynthese hemmen.
In zwei nachfolgenden Projekten wurde die Praktikabilität dieses neuen Assays bei der Auffindung möglicher Antibiotika-Kandidaten bewiesen. In dem ersten Ansatz wurde ein virtuelles Screening der Substanzdatenbanken Specs und Asinex anhand eines Pseudorezeptormodells für Aminoglykoside durchgeführt. In Kombination mit dem TTA sowie einem Ganzzell-Assay gegen den gram-positiven Keim Bacillus subtilis 168 konnte eine Struktur mit Ähnlichkeit zu Vanilloiden als interessanter Ausgangspunkt für weitergehende Untersuchungen identifiziert werden. Die Entdeckung korreliert mit den antimikrobiellen Eigenschaften eines anderen Vanilloid, dem Capsaicin, für welches bisher aber keine Hemmung der Proteinbiosynthese in der Literatur beschrieben ist. Somit konnte gezeigt werden, dass anhand eines virtuellen Screenings sowie weiterer Assays neue Hemmer der bakteriellen Proteinbiosynthese effizient und effektiv gefunden werden können. In einem zweiten Screening-Projekt dienten pflanzliche Naturstoffe als Substanzquelle. Hierfür wurden auf der Grundlage der diterpenoiden Fusidinsäure, einem Proteinbiosynthesehemmer (PBS-Hemmer), tetra-und pentazyklische Isoprenoide ausgewählt.
Aus einem Ensemble von terpenoiden Strukturen gingen nach TTA und einem zellbasierten Assay gegen Bacillus subtilis 168 in absteigender Aktivität die 18β-Glycyrrhetinsäure, 11-Keto-β-boswelliaäsure und Carnosolsäure als nennenswerte antimikrobiell wirksame Vertreter und PBS-Hemmer hervor. Auch zeigten sich diese Substanzen den Stoffen aus dem virtuellen Screening sowohl im TTA als auch in der Wirksamkeit gegen Bacillus subtilis 168 deutlich überlegen. Im nächsten Schritt erfolgte deshalb nur für diese drei Terpenoide eine Charakterisierung ihrer Auswirkungen auf das Proteom des gram-positiven Bakteriums Bacillus subtilis 168.
Dafür wurde eine komplette zweidimensionale gelelektrophoretische Methodik basierend auf der Differentiellen Gelelektrophorese (DIGE) etabliert. Sie umfasst eine Strategie zur schnellen Evaluierung der optimalen Anzucht des Testkeims Bacillus subtilis 168 unter Einfluss einer antimikrobiell wirksamen Substanz und ein einfaches Aufschlussverfahren, um einen kompatiblen Proteinextrakt für DIGE zu erhalten. Außerdem wurde ein preisgünstiges Markierungsverfahren mit dem 5(6)-Carboxyfluorescein-N-hydroxysuccinimid-Ester als Alternative zu den teuren DIGE-Cyan-Farbstoffen entwickelt, um die Fluoreszenzbildqualität eines neuen unbekannten Extraktes vor dem eigentlichen kostspieligen DIGE-Versuch zu überprüfen. Eine Quantifizierung regulierter Spots im Gel ist mit diesem billigen Verfahren ebenfalls möglich, stellt aber keinen Ersatz für den DIGE-Versuch dar.
Die Ergebnisse der quantitativ vergleichenden Proteomanalyse vom behandelten und unbehandelten Bacillus subtilis 168 mittels DIGE bieten erstmals einen Einblick in die Einflussnahme der drei Terpenoide 18β-Glycyrrhetinsäure, 11-Keto-ß-boswelliaäsure und Carnosolsäure auf die Stressregulation und die Stoffwechseländerungen dieses Bakteriums.
Außerdem beinhaltet die Arbeit einen Abgleich, inwieweit andere antimikrobiell wirksame Substanzen die regulierten Proteine der drei untersuchten Naturstoffe bei Bacillus subtilis 168 beeinflussen können. Aus den erhobenen Daten konnte dann ein Wirkmechanismus für 18β-Glycyrrhetinsäure und Carnosolsäure postuliert werden. 18β-Glycyrrhetinsäure greift wahrscheinlich am membranständigen Lipid-II-System der bakteriellen Zellwand an, da wie bei den Antibiotika Vancomycin, Nisin, Daptomycin, Ramoplanin und Bacitracin das Zellwandstress-Regulationsnetzwerk (LiaRS-System) als Warnsystem aktiviert wird. Außerdem konnte für 18β-Glycyrrhetinsäure und Carnosolsäure eine Theorie für Ihre PBS-Hemmung entwickelt werden. Beide beeinflussen gegebenenfalls die GTPase-Aktivität des Translationsfaktors EF-G durch Interaktion mit dem ribosomalen Bindezentrum für Translationsfaktoren. Dieses Bindungszentrum ist neben der dekodierenden Region auf der ribosomalen 30S-Untereinheit und dem Peptidyltransferase-Zentrum auf der ribosomalen 50S-Untereinheit eine extrem wichtige Region für die Funktionalität eines Ribosoms. Fusidinsäure greift auch an dieser Stelle an, indem es den EF-G-GDP-Ribosomkomplex stabilisiert. Natürlich wären weitere Studien nötig, z. B. eine Röntgenstrukturanalyse der Ribosomen von 18β-Glycyrrhetinsäure und Carnosolsäure behandelten Bakterien, um die Bindestelle für die PBS-Hemmung zweifelsfrei zu bestätigen.
Xenorhabdus and Photorhabdus are bacterial genera that live in symbiosis with entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, respectively. These nematodes infect insect larvae through the trachea and then enter the hemocoel. Once inside the hemocoel, the nematodes release the bacteria through their intestine. Thereafter, the bacteria become active and kill the larvae within 48 h. During this process, the immune system of the insect host is compromised by molecules produced and secreted by the bacteria. This illustrates that the bacteria possess not only a large arsenal of biological weaponry such as antibiotics and fungicides but also lipases, proteases, etc. Therefore, they are not only able to kill the insect but also protect the cadaver from other food competitors.
During the past decades, a large number of natural products have been identified from Xenorhabdus and Photorhabdus. However, the targets and functions for many of these biological molecules are still unknown. Therefore, the goal of the doctoral thesis is to elucidate the modes of action of these natural products from Xenorhabdus and Photorhabdus with the main focus on non-ribosomal peptides (NRPs). The work can be divided into two parts. Initially, it starts with the synthesis of natural compounds and various chemically modified derivatives. Besides that, a number of peptides were synthesized for other projects to either verify their structures or quantify the amount produced by the bacteria. Then, secondary analysis methods are applied and provide additional insight into the modes of action of these compounds.
During the thesis, I carried out peptide synthesis either manually or with an automatic synthesizer system from Biotage. Here, the Fmoc-protecting group strategy was preferred in most cases. Natural products, such as silathride, xenoautoxin, phenylethylamide, tryptamide, rhabdopeptide, 3-hydroxyoctanoic acid, and PAX, were produced during this process. Furthermore, new peptide derivatives derived from synthetic NRPS approaches using the XU concept or SYNZIP were generated as standards.
Most of these natural compounds were experimentally verified by MIC tests (broth microdilution, plate diffusion) to be biologically active. For example, silathride, phenylethylamide, and tryptamide showed quorum quenching effects when tested against Chromobacterium violaceum. Initial results from collaborators (PD Dr. Nadja Hellmann/Mainz) showed that tryptamide and phenylethylamide interact with membrane or membrane proteins.
(R)-3-hydroxyoctanoic acid was synthesized to verify the molecule structure of phototemtide A, a cyclic lipopeptide with antiprotozoal activity. The rhabdopeptides are another class, which showed remarkable antiprotozoal effects. However, their mode of action was unknown. These compounds are relatively short peptide sequences, which contain hydrophobic residues, such as valine, leucine, or phenylalanine. Moreover, they possess N methylation, resulting in a rod-shaped highly hydrophobic structure. In this work, I synthesized eight new derivatives of rhabdopeptides for photo-affinity labeling (PAL). These molecules should react covalently under UV-light irradiation with the biological target of the peptides. In addition, these derivatives can be enriched in a pull-down assay using click chemistry. Afterward, analytic methods such as mass detection (proteome analysis) can be applied to elucidate the protein targets.
The PAX peptides derivatives are well-known to have anti-microbial activities and believed to be secreted into the environment by the producing bacteria. However, I found that the majority of these peptides are located in the cell pellet fraction and not in the supernatant. This has been shown through quantification using HPLC MS. New PAX derivatives were synthesized, which carry a moiety suitable for covalent modification using click-chemistry, therefore being functionalizable with a fluorescence dye. In collaboration with Dr. Christoph Spahn (Prof. Dr. Mike Heilemann group), we used confocal, as well as super-resolution microscopy, in particular, single-molecule localization microscopy (SMLM) to investigate the spatial distribution of clickable PAX molecules and revealed that they localize at the bacterial membrane. Furthermore, bioactivity assays revealed that the promotor exchanged X. doucetiae PAX mutants, which do not produce PAX molecules without chemical induction (hereby termed as pax-), were more susceptible to several insect AMPs tested. Based on these findings, a new dual mechanism of action for PAX was proposed. Besides the previously shown antimicrobial activity, these molecules with a positive net charge of +5 (pH = 7) would bind to the negatively charged bacterial surface. Hereby, the surface charge (typically negative) would be inversed resulting in a protective effect for Xenorhabdus against other positively charged AMPs. Furthermore, PAX was investigated as AMP against E. coli to study its antimicrobial mechanism of action. Here, the results show that PAX can disrupt the E. coli membrane at higher concentrations (> 30 µg/ml), enter the cytosol, and lead to reorganization of subcellular structures, such as the nucleoid during this process.
Another aspect of secondary analysis is the application of proteomic analysis. Therefore, I induced X. nematophila, X. szentirmaii, and P. luminescens with insect lysate. These samples were analyzed using HPLC-MS/MS (Q Exactive) together with a database approach (Maxquant/Andromeda). The results showed that in all strains the lipid degradation and the glyoxylate pathway were induced. This is in line with the given insect lysate diet, which mostly contained lipids. Moreover, several interesting unknown peptides and proteins were also upregulated and might get into the focus of future research.
Die Funktion nukleärer Rezeptoren (NR) beruht auf einem empfindlichen Zusammenspiel zwischen ihren Domänen, Coregulatoren und Liganden. Die meisten Rezeptoren binden die DNA als Homo- oder Heterodimere und transregulieren die Gentranskription in Folge von Ligandenbindung. Klassische Assay-Systeme, die sich auf die Untersuchung der NR-Funktion oder auf die Charakterisierung von Substanzen richten, bilden nur die Coregulator-Rekrutierung zu isolierten NR-Ligandenbindungsdomänen (LBDs) ab und vernachlässigen dabei die NR:NR-Interaktion. Damit klammern sie die NR:NR-Wechselwirkung aus, obwohl die Rekrutierung von Cofaktoren durch allosterischen Crosstalk mit der Oligomerisierung verbunden ist. Dies war die Motivation dafür, Assay-Systeme zu entwickeln, welche die Untersuchung von NR-Interaktionen,
insbesondere der NR-Dimerisierung, und deren Modulation durch verschiedene Arten von Liganden ermöglichen. Im Rahmen dieser Doktorarbeit wird ein vielfältiges modulares Set von Assays für die Untersuchung der NR-Dimerisierung und NR-Coregulator-Rekrutierung vorgestellt und deren Anwendbarkeit auf eine Vielzahl von NRs demonstriert. Die Verwendung einer
rekrutierungsunfähigen RXRα-Variante mit einer mutierten AF-2-Domäne ermöglichte den spezifischen Nachweis der Coaktivatorrekrutierung durch PPARγ im Kontext des Heterodimers mit seinem obligatorischen Dimerpartner RXRα. Außerdem konnte gezeigt werden, dass die Aktivierung der RXRα LBD mit ihrem Agonisten SR11237 zu einer Destabilisierung des RXRα-Homodimers, aber zu einer Förderung der Bildung des Heterodimers mit der PPARγ LBD führte.
Ein zentrales Ergebnis war das Phänomen, dass der Einbau von PPARγ in das Heterodimer zu einem erheblichen Anstieg an Affinität gegenüber Coaktivatoren führt, auch in Abwesenheit von Liganden. Somit fördert die RXRα-Aktivierung die Coaktivator-Rekrutierung von PPARγ indirekt durch eine Verschiebung der Oligomerisierungspräferenz von RXRα in Richtung des Heterodimers. Zusätzlich wurde die Wirkung von Tetrac, einem nicht-klassischen Schilddrüsenhormon, auf PPARγ und RXRα untersucht und dessen Aktivierungsvermögen gegenüber beiden Rezeptoren mit einer deutlich vervielfachten Wirkung auf das Heterodimer demonstriert. Mit Hilfe des neu etablierten Cofaktor-Rekrutierungsscreens konnte die Dynamik
zwischen dem Nurr1 NR und 29 kanonischen Coregulatoren, von denen einige ligandenabhängig hohe Affinitäten zum Rezeptor aufwiesen, beleuchtet werden. Diese Interaktionen wurden
bidirektional durch eine Reihe von strukturell unterschiedlichen nicht-steroidalen Antirheumatika moduliert, die auch die Affinitäten sowohl des Nurr1-Homodimers als auch des Heterodimers mit der RXRα LBD beeinflussen konnten. Die Nurr1-Dimere zeigten zudem auch eine hohe Empfindlichkeit gegenüber dem Endocannabinoid Anandamid. Zusätzlich zu PPARγ, RXRα und Nurr1 wurden erste Schritte zur Untersuchung der TLX NR-Funktion unternommen. Unter Anwendung der entwickelten Assays konnte die Heterodimerbildung der TLX und der RXRα LBD
beschrieben und die ligandenabhängige Rekrutierung des Corepressors SMRT beobachtet werden.
Zusammenfassend beschreibt diese Arbeit einen Satz von Werkzeugen für die Untersuchung von ligandenabhängiger NR-Coregulator-Interaktion und Oligomerisierung. Auf diese Weise trug sie zu einer umfassenderen Identifizierung und Charakterisierung von NR-Liganden bei und stellt eine valide Basis für die weitere Assayentwicklung und Ligandendesign dar.
Viele Studien konnten nachweisen, dass die Produktion von cGMP eine entscheidende Funktion im nozizeptiven System einnimmt. Hierbei wurde vor allem die cGMP-Produktion über lösliche Guanylatzyklasen untersucht. Welche Rolle die partikulären Guanlyatzyklasen bei der Entstehung von Schmerzen haben ist weitgehend ungeklärt. Die vorliegende Arbeit zeigte, dass die partikuläre Guanylatzyklase NPR2 stark in DRG-Neuronen exprimiert wird und dort mit cGKI-alpha sowie CRP4 colokalisiert ist. Aktiviert wird NPR2 über den Peptidliganden CNP. Hervorzuheben ist, dass CNP nicht in primär afferenten Neuronen, dafür jedoch vermehrt im Dorsalhorn des Rückenmarks gebildet wird. Tierexperimentelle Untersuchungen zeigten, dass SNS-Npr2-/--Mäuse ein verringertes Schmerzverhalten bei thermischer Stimulation aufwiesen. Während sie im Capsaicin-Test keinen Phänotyp zeigten, wiesen sie in Phase II des Formalin-Modells ein signifikant reduziertes Leckverhalten auf. Diese Ergebnisse liefern Hinweise für eine Beteiligung des CNP/NPR2/cGKI Signalwegs an der Detektion von Hitzeschmerz und an der TRPA1-vermittelten Schmerzantwort. Dabei scheint NPR2 eine pronozizeptive Funktion zu besitzen. CRP4 als Zielprotein scheint hingegen eine antinozizeptive Wirkung zu haben. Zudem kann die Hypothese aufgestellt werden, dass CNP über einen retrograden Transport aus dem Rückenmark die Aktivierung von NPR2 auslösen könnte. Zusammengefasst zeigen die Daten dieser Arbeit, dass eine cGMP-abhängige Aktivierung durch NPR2 primär für die Detektion thermischer Reize zuständig ist, während die Literatur Hinweise darauf gibt, dass lösliche Guanylatzyklasen vor allem an inflammatorischen und neuropathischen Prozessen beteiligt sind. Daher scheinen partikuläre und lösliche Guanylatzyklasen unterschiedliche Eigenschaften im nozizeptiven System zu besitzen.
Entzündungen sind eine Gegenreaktion des Körpers auf einen schädlichen Stimulus. Eine akute Entzündung zeichnet sich durch typische Zeichen wie Schwellung, Rötung, Überwärmung, Schmerz und eingeschränkter Funktionsfähigkeit aus.Findet die Auflösung der Entzündung nur sehr langsam oder nicht statt, entsteht eine chronische Entzündung. Eine chronische Entzündung kann Auslöser vieler schwerwiegender Krankheiten, wie Diabetes mellitus, Krebs oder kardiovaskulärer Erkrankungen sein. Die symptomatische Behandlung einer chronischen Entzündung erfolgt unter anderem durch NSAIDs. Diese haben bei einer Langzeiteinnahme schwere Nebenwirkungen wie gastrointestinale Blutungen oder nephrotoxische Eigenschaften.NSAIDs greifen in den Metabolismus der Arachidonsäure-Kaskade ein. Die Arachidonsäure wird über mehrere Enzyme metabolisiert, die drei Hauptmetabolismuswege erfolgen über die Cyclooxygenase- (COX), 5-Lipoxygenase- (5-LOX) und Cytochrom P450-Enzyme (CYP450). Studien ergaben, dass die Inhibition eines Metabolismusweges eine Verschiebung der Lipidwerte innerhalb des Arachidonsäurestoffwechsels verursacht. Viele dieser Nebenwirkungen bei einer Langzeitmedikation kommen vermutlich durch die Verschiebung der Metabolite zustande.8 Diese Problematik könnte möglicherweise durch eine Inhibition mehrerer Metabolismuswege umgangen werden. Tierstudien belegen eine bessere Wirksamkeit dualer Inhibitoren gegenüber der Einzelverabreichung von „selektiven“ Inhibitoren und zudem wird ein erhöhtes Sicherheitsprofil für duale Inhibitoren postuliert.9,10 Im Rahmen dieser Arbeit wurden einerseits duale Inhibitoren der löslichen Epoxidhydrolase (sEH) und Leukotrien-A4-Hydrolase (LTA4H) und anderseits der sEH und der 5-Lipoxygenase entworfen, synthetisiert und in vitro gegenüber den betreffenden Enzymen in einem Aktivitätsassay evaluiert.
Es ist gelungen, duale Inhibitoren der sEH und LTA4H mit IC50-Wert im submikromolaren Bereich zu synthetisieren. Dies wurde durch die Erweiterung des Fragments 3-(4-(Benzyloxy)phenyl)propan-1-ol, welches Amano et al. publizierten, bewerkstelligt.11 Die synthetisierten Inhibitoren wurden analytisch charakterisiert und in vitro auf ihr inhibitorisches Potential untersucht. Des Weiteren konnte die Kristallstruktur eines dualen Inhibitors in der Bindetasche der sEH gelöst werden und damit weitere Erkenntnisse über den Bindungsmodus des Inhibitors gewonnen werden. Es konnten auch duale Inhibitoren der sEH und 5-LOX synthetisiert werden und jene auf ihr inhibitorisches Potential untersucht werden. Es wurden einige Inhibitoren mit submikromolaren bis nanomolaren IC50-Werten gegenüber beiden Zielproteinen entworfen, synthetisiert und analytisch charakterisiert. Da mehrere Inhibitoren zwei stereogene Zentren aufweisen, wurde ein Inhibitor mit definierten Stereozentren durch eine asymmetrische Synthese generiert. Ein stereogenes Zentrum wurde über drei Schritte synthetisiert und zum Nachweis der Reinheit des Enantiomeres zum Diastereomer gekuppelt. Per NMR-Spektroskopie wurde das Verhältnis (dr 9:1) der Diastereomere zueinander bestimmt. Das andere stereogene Zentrum wurde mit Hilfe eines Evans-Auxiliar über eine achtstufige Synthese dargestellt und mit dem Enantiomer aus der dreistufigen Synthese verknüpft. Per HPLC konnte ein dr-Verhältnis von 99:1 für den Inhibitor HK330 bestimmt werden. Das andere Diastereomer wurde mittels HPLC aus dem Recemat isoliert. Eine in vitro Evaluation zeigte, dass der Einfluss des stereogenen Zentrums auf das Inhibitionsvermögen marginal ist.
Nach einer Evaluation des Inhibitionsvermögens, der Löslichkeit, der Zelltoxizität, der metabolischen Stabilität und der synthetischen Zugänglichkeit, wurde der Inhibitor HK330 weiter untersucht. In einem Zellassay konnte jener die 5-LOX-Aktivität senken, die 12- und 15-LOX wurde jedoch nicht inhibiert. Des Weiteren wurde der Inhibitor in einer pharmakokinetischen Studie untersucht und erreichte Plasmawerte, die bis zu 4 h in der aktiven Konzentration des Inhibitors lagen. LC-MS/MS Untersuchungen der Plasmaproben ergaben ein erhöhtes EETs/DHETs-Verhältnis, welches die in vivo Inhibition der sEH bestätigt. Die Verbindung HK330 besitzt vielversprechende Eigenschaften und deshalb soll die Wirksamkeit des Inhibitors in einem Tiermodell getestet werden. Geeignete Tiermodelle wie die unilaterale Harnleiterobstruktion (unilateral ureteral obstruction, UUO) in Mäusen könnten Aufschlüsse über die Wirksamkeit von HK330 geben. Denn sowohl die Inhibition der 5-LOX als auch der sEH sind renoprotektiv.12,13 Die profibrinolytischen und anti-inflammatorischen Eigenschaften eines sEH-Inhibitors könnten auch in einem Tiermodell zur gestörten Wundheilung untersucht werden. In einem murinen Ohrwundmodell wurde gezeigt, dass eine Behandlung mit Epoxyeicosatriensäuren (EETs) die Wundheilung signifikant beschleunigte.15 Ramalho et al. zeigten, dass die Leukotriene des 5-LOX-Metabolisimusweges eine verminderte Wundheilung in diabetischen Mäusen (Typ 1) bewirkten.
An overexpression of the E3 ubiquitin ligase TRIM25 is implicated in several human cancers and frequently correlates with a poor prognosis and occurrence of therapy resistance in patients. Previous studies of our group have identified the mRNA encoding the pro-apoptotic caspase-2 as a direct target of the ubiquitous RNA binding protein human antigen R (HuR). The constitutive HuR binding observed in colon carcinoma cells negatively interferes with the translation of caspase-2 mainly through binding to the 5' untranslated region (UTR) of caspase-2 and thereby confers an increased survival of tumor cells. The main objective of this thesis was to unravel novel regulatory proteins critically involved in the control of caspase-2 translation and their impact on therapeutic drug resistance of human colon carcinoma cells. By employing RNA affinity chromatography in combination with mass-spectrometry, among several putative caspase-2 mRNA binding proteins, we have identified the tripartite motif-containing protein 25 (TRIM25) as novel caspase-2 translation regulatory protein in colon carcinoma cells. The constitutive TRIM25 binding to caspase-2 mRNA in two different human colorectal carcinoma cell lines was validated by ribonucleoprotein (RNP)-immunoprecipitation (RIP)-RT-PCR assay and by means of biotin-labeled RNA-pull-down assay. Since caspase-2 is a caspase which is particularly involved in the DNA-damage-induced apoptosis, I tested the functional relevance of negative caspase-2 regulation by TRIM25 for chemotherapeutic drug-induced cell death of different adenocarcinoma cells by RNA interference (RNAi)- mediated loss-of-function and gain-of-function approaches. In the first part of the thesis, I could demonstrate that transient silencing of TRIM25 caused a significant increase in caspase-2 protein levels without affecting the amount of corresponding mRNAs. Mechanistically, the TRIM25 silencing-triggered increase in caspase-2 was totally impaired by cycloheximide, indicating that the stimulatory effects on caspase-2 levels depend on protein synthesis. This finding was corroborated by RNP/polysomal fractionation, which revealed that the transient knockdown of TRIM25 caused a significant redistribution of caspase-2 transcripts from the fraction of RNP particles to that from translationally active polyribosomes.
The second part of my thesis aimed at the elucidation of the functional consequences of the negative caspase-2 regulation by TRIM25 for enhanced tumor cell survival. Thereby, I found that the siRNA-mediated knockdown of TRIM25 caused a significant increase in the chemotherapeutic drug-induced cleavage of caspase-3 and to elevations in cytoplasmic cytochrome c levels implicating that TRIM25 depletion did mainly affect the intrinsic apoptotic pathway. Concordantly, the ectopic expression of TRIM25 caused a reduction in caspase-2 protein levels, concomitant with an attenuated sensitivity of tumor cells to doxorubicin.
To test the functional impact of caspase-2 in the TRIM25 depletion-dependent sensitization to drug-induced apoptosis, I employed a siRNA-mediated knockdown of caspase-2. Interestingly, the strong induction of caspase-3 and -7 cleavage after doxorubicin treatment was fully impaired after the additional knockdown of caspase-2, indicating the sensitizing effects by TRIM25 knockdown depend on caspase-2.
Data from this thesis identified the TRIM25 as a novel RNA-binding protein of caspase-2 mRNA, which negatively interferes with the translation of caspase-2 and which functionally contributes to chemotherapeutic drug resistance of colon carcinoma cells. Interfering with the negative TRIM25-caspase-2 axis may represent a promising therapeutic avenue for sensitizing colorectal cancers to conventional anti-tumor therapies.
Die Beteiligung an Schlüsselfunktionen in zellulären Signalwegen macht Kinasen zu einem vielversprechenden Ansatzpunkt in der Wirkstoffentwicklung bei verschiedenen menschlichen Erkrankungen wie z.B. Krebs oder auch Autoimmun- und Entzündungskrankheiten. Die Prävention von post-translationalen Modifikationen durch Phosphorylierung und somit die Regulierung der nachgeschalteten Signalwege ist das Ziel von Kinaseinhibitoren. Die katalytische Aktivität von Kinasen ist abhängig von ATP, welches im hochkonservierten aktiven Zentrum bindet. Bedingt durch diese kinomweite hohe Konservierung stellt die Entwicklung von hoch selektiven ATP-mimetischen Inhibitoren eine Herausforderung dar. Typische ATP-Mimetika sind flach und die oft hydrophoben Moleküle weisen meist eine große Zahl an frei rotierbaren Bindungen auf. Um das aus dieser Flexibilität hervorgehende Problem der teils mangelnden Selektivität zu umgehen, kann eine bioaktive Konformation des Inhibitors durch Makrozyklisierung fixiert werden. Als Konsequenz dieser konformationellen Einschränkung können die entropischen Kosten während des Bindens reduziert werden und folglich zu einer gesteigerten Affinität gegenüber der Kinase führen.
Der Grundstein dieser Arbeit war der makrozyklische Pyrazolo[1,5-a]pyrimidin basierte FLT3 Kinaseinhibitor ODS2004070 (37). Im Rahmen eines kinomweiten Screenings konnten hohe Affinitäten zu verschiedensten Kinasen detektiert werden, was 37 zu einer guten Leitstruktur für das Design von potenten und selektiven Kinaseinhibitoren machte. Im Rahmen dieser Arbeit blieb das literaturbekannte Pyrazolo[1,5-a]pyrimidin basierte ATP-mimetische Bindemotiv sowie das makrozyklische Grundgerüst 37 bis auf einige wenige Variation unverändert.
Strukturelle Optimierungen zur Fokussierung der Selektivität wurden am sekundären Amin zwischen Bindemotiv und Linker als auch über die freie Carbonsäure durchgeführt. Mit einer Anzahl von mehr als 430 identifizierten Phosphorylierungsstellen ist die pleiotropisch und konstitutiv aktive Casein Kinase 2 (CK2) an verschiedensten zellulären Prozessen wie dem Verlauf des Zellzyklus, der Apoptose oder der Transkription regulatorisch beteiligt. Die Fehlregulation von CK2 wird häufig mit der Pathologie von Krankheiten wie zum Beispiel Krebs assoziiert, was CK2 zu einem vielversprechenden Ziel klinischer Untersuchungen macht.
Im Rahmen des CK2-Projekts war es möglich, durch spezifische Modifikationen an 37, die hoch selektiven und potenten CK2-Inhibitoren 47 und 60 zu entwickeln. Ebenfalls gezeigt wurde, dass kleine strukturelle Veränderungen, wie z.B. Makrozyklisierung, einen signifikanten Effekt auf Selektivität und Potenz des Inhibitors haben kann.
Weiter Untersuchungen der Verbindungen lenkten den Fokus weiterer Arbeiten u.a. auf die Serin/Threonin Kinase 17A (STK17A) oder auch death-associated protein kinase-related apoptosis-inducing protein kinase 1 (DRAK1) genannt. Sie ist Teil der DAPK Familie und gehört zusammen mit anderen Kinasen zu den weniger erforschten Kinasen. Bis heute ist nicht viel über ihre zellulären Funktionen und die Beteiligung an pathophysiologischen Prozessen bekannt. Berichtet wurde jedoch eine Überexpression in verschiedenen Formen von Hirntumoren des zentralen Nervensystems (Gliom). Strukturelle Modifikationen, unter Erhalt des makrozyklischen Grundgerüsts 37, führten zu dem hoch selektiven und potenten DRAK1 Inhibitor 121, der alle Kriterien für eine chemical probe Verbindung erfüllt.
Ein weiteres Ziel dieser Arbeit war die AP-2-assoziierte Protein Kinase 1 (AAK1) aus der NAK Familie, bestehend aus AAK1, BIKE und GAK. Sie ist als potenzielles therapeutisches Ziel für viele verschieden Krankheiten wie z.B. neuropathische Schmerzen, Schizophrenie und Parkinson identifiziert. Durch die Regulierung der Clathrin-mediierten Endozytose ist AAK1 an intrazellulären Bewegungen verschiedener nicht zusammenhängenden RNS- und DNSViren, wie beispielsweise HCV, DENV oder EBOV, beteiligt. Ebenfalls berichtet wurde eine mögliche Assoziation mit dem SARS-CoV-2 Virus, was das Interesse an neuen selektiven AAK1 Inhibitoren verstärkte. Die Entwicklung der hochpotenten und selektiven AAK1 Inhibitoren 61 und 63 basierte ebenfalls auf dem makrozyklischen Grundgerüst 37, das bereits im CK2- und DRAK1-Projekt verwendet wurde.
Zusammenfassend lässt sich sagen, dass es im Rahmen dieser Arbeit gelungen ist, ausgehend von einem höchst unselektiven makrozyklischen Grundgerüst, hochpotente und selektive Kinaseinhibitoren für CK2, DRAK1 und AAK1 zu entwickeln und zu charakterisieren. Im Zuge von Untersuchungen verschiedener Struktur-Wirkungsbeziehungen wurde gezeigt, dass es durch geringfügige strukturelle Modifikationen möglich ist, die kinomweite Selektivität zu variieren und auf eine Kinase zu fokussieren. Diese Arbeit brachte nicht nur die erwähnten Inhibitoren hervor, sondern bildet auch die Grundlage für weitere Projekte zur Entwicklung von hoch potenten und selektiven Verbindungen als potenzielle chemische Werkzeuge für den Einsatz in der Forschung.
The p38α mitogen-activated protein kinase (MAPK) is activated through stress stimuli such as heat shock or hypoxia. In the nucleus, p38α modulates the activity of other kinases and transcription factors, a process that regulates the expression of specific target genes, most importantly pro-inflammatory cytokines. Dysregulation of p38α therefore plays a major role in the development of inflammatory diseases such as rheumatoid arthritis. Despite many years of intensive research, no p38 small-molecule inhibitors have been approved yet. Several inhibitor design strategies have been reported, leading to >100-fold selective compounds for α/β over the γ and δ isoforms. Achieving such a selectivity among the two structurally most related α and β isoforms, however, remains a challenging task. Targeting an inactive DFG-out conformation offers another strategy for the development of potent kinase inhibitors (type-II), exemplified by the BCR/ABL-inhibitor Imatinib. Achieving selectivity with type-II binders is challenging, because many kinases can adopt an inactive DFG-out conformation. This is exemplified by the p38 type-II inhibitor BIRB-796, which exhibits picomolar on-target affinity but only a poor kinome-wide selectivity. A potent and selective type-II chemical probe for p38α/β was still lacking at the start of this thesis.
The promising hit VPC-00628, was chosen for a combinatorial synthetic approach to develop a type-II chemical probe. The studies covered the optimization of the hinge-binding head group, the hydrophobic region I and the DFG-out deep pocket of the lead compound VPC-00628. Selectivity for the p38α and p38β isoforms was monitored during the optimization process, which identified several inhibitors with favorable isoform selectivity, providing valuable insights into the potential of isoform-selective inhibitor design for p38. A potent and highly selective p38 MAPK probe (SR-318) was discovered, which showed IC50 values in the low nanomolar range in HEK293T cells. An unusual P-loop conformation induced upon binding of SR-318 to p38α contributed most likely to the impressive selectivity profile within the kinome that surpassed both the parent compound and BIRB-796. A negative control compound, SR-321, was developed, to distinguish between on-target effects and non-specific effects due to cross-reactivity with other cellular proteins. Studies of the metabolic stability in human liver microsomes revealed a high stability of the compounds, with only a small amount of metabolites formed over several hours. Compound SR-318 also exhibited a good in vitro efficacy, quantitatively reducing the LPS-stimulated TNF-α release in whole blood. Taken together, SR-318 is a highly potent and selective type-II p38α/β chemical probe, which will help to gain a better understanding of the catalytic and non-catalytic functions of these key signaling kinases in physiology and pathology.
The next studies focused on the exploration of the highly dynamic allosteric back pocket of p38 MAPK, and allosteric BIRB-796 derived compounds for targeting the αC- and DFG-out pockets were synthesized. Kinase activities of allosteric pyrazole-urea fragments were analyzed against a comprehensive set of 47 diverse kinases by differential scanning fluorimetry (DSF), revealing that BIRB-796 off-targets remain a problem when targeting this back-pocket binding motif. Revisiting the recently published compound MCP-081, which combines the allosteric part of BIRB-796 with the active-site directed part of VPC-00628, showed that it displays a clean selectivity profile in our kinase panel. Because the potency of MCP-081 was slightly reduced compared with VPC-00628 and the allosteric tert-butyl pyrazole moiety seemed suboptimal, a set of VPC-00628 derivatives for targeting the αC-out pocket region was synthesized. Through structure-guided extension of the terminal amide of VPC-00628 toward this allosteric site, the potent and selective compound SR-43 was developed, which showed excellent cellular activity on p38 MAPK in NanoBRETTM assays (IC50 [p38α/β] = 14.0 ± 0.1/ 16.8 ± 0.1 nM). SR-43 showed a dose-dependent inhibition of activating phosphorylation of p38 in HCT-15 cells as well as inhibition of phosphorylation of p38 downstream substrates MK2 and Hsp27. In addition, SR-43 induced an anti-inflammatory response by blocking TNF-α release in whole blood and displayed a high metabolic stability. Selectivity profiling of SR-43 revealed a narrow selectivity for additional targets such as the discoidin domain receptor kinases (DDR1/2). DDR kinases play a central role in fibrotic disorders, such as renal and pulmonale fibrosis, atherosclerosis and different forms of cancer. Since selective and potent inhibitors for these important therapeutic targets are largely lacking and the existing inhibitors are of low scaffold diversity, the next study focused on the optimization of SR-43 toward DDR1/2 kinase inhibition. The synthetic work covered the optimization of the hinge-binding head group and the allosteric part of SR-43 toward DDR1/2 kinase inhibition. These studies provided novel insights into the P-loop folding process of p38 MAPK and how targeting of non-conserved amino acids affects inhibitor selectivity. Importantly, they led to the development of a selective dual DDR/p38 inhibitor probe, SR-302, with picomolar affinity for DDR2. SR-302 was efficient in vitro and showed a destabilizing effect on the surface adhesion protein E-cadherin in epithelial cells. In summary, SR-302 and its negative control SR-301 provide a valuable tool set for studying the phenotypic effects of DDR1/2 signaling, e.g., in cancer cell lines.
A necessary requirement for a pharmacological effect is that a drug molecule tightly interacts with its disease relevant target molecule in the patient. Kinases are regulatory, signal transmitting enzymes and are a large protein family that belongs to the most frequent targets of pharmaceutical industry, as deregulation of kinases has been associated with the development of a variety of diseases, including cancer. In drug discovery, equilibrium binding metrics such as the affinity (Ki, KD) or potency (IC50, EC50) are usually applied for the systematic profiling for potent and selective drug candidates. In recent years, dynamic binding parameters, the drugs association (kon) and dissociation (koff) rates for desired primary-targets and undesired off-targets, were discussed to be better predictors than steady-state affinity per se (KD = koff / kon) for the onset and duration of the drug-target complex in the open in vivo environment and thereby for the therapeutic effect and safety of the drug. It is yet unclear whether and when the binding kinetics parameters can influence drug action in the complex context of pharmacokinetics and pharmacodynamics and how the kinetic rate constants can be optimized rationally. One major obstacle for providing proof for the hypothesis that drug binding kinetics is of importance for drug action is the generation of large and comparable binding kinetic datasets.
The aim of this thesis was the comprehensive analysis of the binding kinetic and affinity parameters of a diverse spectrum of 270 small-molecule kinase inhibitors against a panel of pharmacologically relevant kinases to study the role played by binding kinetics for drug discovery: The generated dataset was utilized to assess the effect of chemical properties on drug binding kinetics, and to evaluate the impact of kinetic rate constants on the success of compounds in the drug discovery pipeline.
Large scale profiling was made possible by a recently developed “kinetic Probe Competition Assay” (kPCA), whose evaluation is based on Motulsky’s and Mahan’s “kinetics of competitive binding” theory. Monte Carlo analyses performed in this dissertation widened the theoretical knowledge of this theory, provided new insights into its limitations and allowed to derive recommendations about how to best design assays. It was demonstrated that kPCA is indeed high-throughput compatible and that it is comparable to other biochemical and biophysical assay formats in terms of precision and accuracy.
Multivariable linear regression for the description of the determined kinase inhibitors’ target binding characteristics (kon or koff or KD) using molecular properties and/or particular kinase-inhibitor interactions as descriptors supported the assumption that molecular properties of compounds might affect binding kinetics, generated new hypothesis about molecular determinants influencing binding kinetic parameters and provided a rational basis for following structure-kinetic relationship studies. Remarkably, the binding kinetic rate constants were better described by the established models than binding affinities.
Interestingly, the systematic, quantitative analysis of kinase inhibitors’ target binding kinetics indicated that a slow dissociation rate for the main target is a feature which is more frequently observed in inhibitors that reached approval or late stage clinical testing than in earlier phases of clinical development. In addition, it was demonstrated that binding kinetics of kinase inhibitors is a better predictor for the time course of target engagement in cells as compared to affinity per se. Furthermore, in some study cases simulations using a standard pharmacokinetics model and a modified model considering the inhibitors binding kinetics lead to different in vivo kinase occupancy time profiles. It was illustrated by simulations how the concept of kinetic selectivity can be applied to turn an unselective compound in equilibrium conditions into a more selective compound in the open in vivo situation, where the thermodynamic equilibrium of drug-target binding is not necessarily reached.
Thus the generated data and models provide evidence for the importance of binding kinetics in drug discovery and represent a valuable resource for future studies in this field.
Epigenetic mechanisms largely influence how genetic information on DNA level is translated into different phenotypes. DNA methylations and histone post-translational modifications make up what is referred to as "epigenetic landscape", an interconnected pattern that regulates access to genes and serves as platform for specific binding partners. The epigenetic landscape is maintained by "writers", which add the modifications, "erasers", which delete the modifications and "readers" which specifically bind modifications and mediate their location to other proteins connected to transcription. In the context of acetylations, which are the focus of this thesis, the writers are called histone acetyl transferases (HATs), the erasers are called histone deacetylases (HDACs) and the readers comprise Bromodomains (BRDs) as well as Yaf9, ENL, AF9, Taf14, Sas5 (YEATS) domains. An aberrant epigenetic landscape and mutated forms of epigenetic readers can lead to diseases including cancer and inflammatory diseases, making epigenetic reader domains attractive drug targets.
The focus of this thesis were YEATS domains and the development of inhibitors for this new class of epigenetic readers. Eleven-nineteen-leukemia protein (ENL) and ALL1-fused gene from chromosome 9 protein (AF9) are also part of the super elongation complex and are common fusion partners of mixed lineage leukemia protein (MLL) in acute myeloid leukemia (AML) (Wan et al., 2017, Erb et al., 2017). In this thesis, the first ligand-free crystal structure of ENL YEATS revealed an inherent flexibility of the Y78 side chain in the aromatic triad and two conserved water molecules. Soaking experiments led to the first co-crystal structures between a YEATS domain and small molecule inhibitors and defined prerequisites for ENL YEATS inhibitor scaffolds. The discovered inhibitory fragments had a central amide bond in common, which replaced one of the two conserved water molecules to form beta-sheet-like hydrogen bonds between the loop 6 backbone and the S58 side chain. The amide bond was flanked by two aromatic moieties, of which one stacks with H56 in the front pocket and the other interacts with the aromatic triad in the rear pocket. The development of the first chemical probe for ENL/AF9, SGC-iMLLT, show that the affinity is increased to low nanomolar levels if the rear flanking aromatic moiety forms additional hydrogen bonds with loop 6 and the side chain of E75 (Moustakim et al., 2018). In case of the probe, this is achieved with a 2-methyl-pyrrolidine-benzimidazole moiety. The probe binds with high affinity to ENL (129 nM) and AF9 (77 nM) and shows no significant affinity towards other human YEATS domains or BRDs. Target engagement was shown by fluorescence recovery after photobleaching (FRAP), cellular thermal shift assay (CETSA) and in case of AF9 also with NanoBRET. The probe changed the expression of three AML-related genes (MYC, dendrin and CD86) in MV4;11 cells, encouraging application of this probe in more AML cell lines.