Refine
Document Type
- Bachelor Thesis (6)
- Doctoral Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Institute
- Physik (8)
Ein zentraler Bestandteil der Teilchenphysik ist die Berechnung der Zerfallsbreiten bzw. Lebensdauern von Teilchen. Die meisten bekannten Teilchen sind instabil und zerfallen in zwei oder mehr leichtere Teilchen. Die Formel für die Berechnung einer Zerfallsbreite enthält zwei verschiedene Komponenten: Die kinematischen Faktoren, die lediglich vom Anfangs- und Endzustand abhängen und aus der Energie- und Impulserhaltung folgen, und die dynamischen Faktoren, die sich aus der Art der Wechselwirkung und eventuellen Zwischenstufen ergeben. Gibt es mehrere Zerfallskanäle, die zu den gleichen Endzuständen führen, so unterscheiden diese sich nur in den dynamischen Faktoren. Aus diesem Grunde werden kinematische und dynamische Faktoren getrennt, da nur letztere für die Analyse der Wechselwirkung relevant sind.
Die kinematischen Faktoren von Zwei- und Dreikörperzerfällen haben einen fundamentalen Unterschied: Beim Zweikörperzerfall ist durch die Erhaltungssätze die Verteilung der Energien der Produktteilchen komplett festgelegt, während sie bei einem Dreikörperzerfall innerhalb bestimmter Grenzen variieren kann.
Ein Dreikörperzerfall kann auf zwei verschiedeneWeisen auftreten: Bei einem direkten Zerfall entstehen gleichzeitig alle drei Endprodukte. Bei einem indirekten Zerfall zerfällt das Startteilchen zuerst in zwei Teilchen, von denen eines stabil ist und das andere erneut zerfällt. Im Falle des indirekten Zerfalls haben die resultierenden Teilchen eine andere Impulsverteilung als bei einem direkten Zerfall, woraus sich Informationen über den Zwischenzustand gewinnen lassen.
Im ersten Kapitel dieser Arbeit widmen wir uns der expliziten Berechnung der Zerfallsbreite für die verschiedenen Fälle. Wir beschränken uns hier und in allen weiteren Rechnungen auf skalare und pseudoskalare Teilchen, bei denen keine Spineffekte auftreten.
Die Zerfallsbreite eines Dreikörperzerfalls lässt sich in einer besonders praktischen Form, dem sogenannten Dalitz-Plot, darstellen. Hierbei sind alle kinematischen Faktoren konstant und eine Darstellung der Zerfallsbreite in Abhängigkeit der entsprechenden Variablen lässt direkten Aufschluss über die Art der Wechselwirkung zu. Die Form eines Dalitz-Plots sowie dessen Interpretation ist Gegenstand des zweiten Kapitels.
Im dritten Kapitel beschäftigen wir uns kurz mit der Frage, welche Auswirkungen Prozesse höherer Ordnung auf den gesamten Zerfall haben. Hierbei beschränken wir uns auf die Betrachtung von Loopbeiträgen des Zwischenzustandes eines indirekten Zerfalls.
Im letzten Kapitel werden wir die theoretischen Betrachtungen am Zerfall eines pseudoskalaren Glueballs anwenden. Ein Glueball ist ein gebundener Zustand aus Gluonen, den Austauschteilchen der starken Wechselwirkung. Da die Gluonen aufgrund der nichtabelschen Struktur der Farbsymmetriegruppe selbst Farbladung tragen, ist es theoretisch möglich, Zustände nur aus Gluonen zu konstruieren, die farbneutral sind und damit den Regeln des Confinements entsprechen. Im Falle der betrachteten Glueballs tritt ein weiterer interessanter Effekt auf: Da es mehrere Zerfallskanäle gibt, die zum gleichen Endzustand führen, treten Interferenzeffekte auf, deren Auswirkung auf das Gesamtergebnis näher untersucht wird.
In this work we study basic properties of unstable particles and scalar hadronic resonances, respectively, within simple quantum mechanical and quantum field theoretical (effective) models. The term 'particle' is usually assigned to entities, described by physical theories, that are able to propagate over sufficiently large time scales (e.g. from a source to a detector) and hence could be identified in experiments - one especially should be able to measure some of their distinct properties like spin or charge. Nevertheless, it is well known that there exists a huge amount of unstable particles to which it seems difficult to allocate such definite values for their mass and decay width. In fact, for extremely short-lived members of that species, so called resonances, the theoretical description turns out to be highly complicated and requires some very interesting concepts of complex analysis.
In the first chapter, we start with the basic ideas of quantum field theory. In particular, we introduce the Feynman propagator for unstable scalar resonances and motivate the idea that this kind of correlation function should possess complex poles which parameterize the mass and decay width of the considered particle. We also brie
y discuss the problematic scalar sector in particle physics, emphasizing that hadronic loop contributions, given by strongly coupled hadronic intermediate states, dominate its dynamics. After that, the second chapter is dedicated to the method of analytic continuation of complex functions through branch cuts. As will be seen in the upcoming sections, this method is crucial in order to describe physics of scalar resonances because the relevant functions to be investigated (namely, the Feynman propagator of interacting quantm field theories) will also have branch cuts in the complex energy plane due to the already mentioned loop contributions. As is consensus among the physical community, the understanding of the physical behaviour of resonances requires a deeper insight of what is going on beyond the branch cut. This will lead us to the idea of a Riemann surface, a one-dimensional complex manifold on which the Feynman propagator is defined.
We then apply these concepts to a simple non-relativistic Lee model in the third chapter and demonstrate the physical implications, i.e., the motion of the propagator poles and the behaviour of the spectral function. Besides that, we investigate the time evolution of a particle described by such a model. All this will serve as a detailed preparation in order to encounter the rich phenomena occuring on the Riemann surface in quantum field theory. In the last chapter, we finally concentrate on a simple quantm field theoretical model which describes the decay of a scalar state into two (pseudo)scalar ones. It is investigated how the motion of the propagator poles is in
uenced by loop contributions of the two (pseudo)scalar particles. We perform a numerical study for a hadronic system involving a scalar seed state (alias the σ-meson) that couples to pions. The unexpected emergence of a putative stable state below the two-pion threshold is investigated and it is claeifieed under which conditions such a stable state appears.
Phänomenologie der Pseudovektormesonen und Mischung mit Axialvektormesonen im kaonischen Sektor
(2012)
Ziel dieser Bachelorarbeit war die Vorstellung und die Untersuchung eines effektiven, mesonischen Drei-Flavor-Modells der Quantenchromodynamik und dessen Phänomenologie. Dazu wurden zunächst die Kopplungskonstanten a und b des Modells durch die Berechnung dominanter Zerfallsbreiten der im Modell enthaltenen Axialvektor- und Pseudovektor-Mesonen festgelegt. Dabei wurde für die Festlegung der Kopplungskonstanten a der Zerfall von f1 (1420) in KK*(892) verwendet. Die so berechnete Kopplungskonstante wurde anschließend unter Verwendung des ρπ-Zerfalls von a1 (1260) auf Konsistenz geprüft. Das dadurch erhaltene Resultat von Γa1--> ρπ= (443:962 ± 13:456) MeV liegt sehr gut in dem von der particle data group angegebenen Wertebereich der Gesamtbreite von a1 (1260). Die Festlegung und Berechnung der Kopplungskonstante b des Pseudovektor-Sektors war Gegenstand der Bachelorarbeit von Lisa Olbrich, so dass in dieser Arbeit nur die Resultate dieser Rechnung präsentiert wurden. Jedoch passen die dort erzielten Resultate auch mit guter Genauigkeit zu den experimentell bestimmten Werten der particle data group.
Das zweite Ziel dieser Bachelorarbeit war die Untersuchung der im Modell enthaltenen Mischungseffekte der Kaonen-Felder von K1 (1270) und K1 (1400). Zunächst waren im Axialvektor- und Pseudovektor-Nonet dieses Modells nur unphysikalische Kaonen-Felder K1;A und K1;B enthalten. Durch den Mischungsterm Lmix der Lagrange-Dichte des Modells existieren allerdings Mischterme beider Felder. Diese Mischterme wurden durch die Einführung der physikalischen Felder K1 (1270) und K1 (1400), welche durch eine SU(2)-Drehung aus den unphysikalischen Feldern hervorgehen, zum Verschwinden gebracht. Dies hat allerdings zur Folge, dass die Wechselwirkungsterme der physikalischen Felder K1 (1270) und K1 (1400) nun über eine gedrehte Kopplungskonstante koppeln. Diese gedrehte Kopplungskonstante ist eine Funktion der ursprünglich bestimmten Kopplungskonstanten a; b und eines Mischwinkels Φ. Dieser Mischungswinkel wurde von uns über den K? (892) π-Zerfall von K1 (1270) festgelegt. Anschließend konnten wir unter Verwendung des so berechneten Mischungswinkels Φ die Zerfallsbreite von K1 (1400) berechnen und mit den experimentell festgelegten Daten der particle data group vergleichen. Auch hier konnten wir eine gute Übereinstimmung unserer durch das Modell vorhergesagten Daten mit den experimentell bestimmten Werten erzielen.
Die Arbeit ist in zwei Teile gegliedert. Der erste Teil behandelt einige naturphilosophische und mathematische Probleme. Es wird außerdem das Pfeil-Paradoxon von Zeno vorgestellt, auf dem die moderne Variante des Quanten-Zeno-Paradoxons basiert. Im zweiten Teil wird zunächst eine allgemeine Analyse des Zerfallsgesetzes instabiler Quantensysteme gegeben. Es ist eine Mischung aus Zusammenfassungen von Reviews und neuen Ideen. Eine wichtige Rolle spielt dabei die Wellenfunktion in Energiedarstellung bzw. deren Betragsquadrat, genannt Energiedichte. Es wird auch auf den Fall eingegangen, wenn ein Quantensystem wiederholten (frequenten) Messungen ausgesetzt ist. Anschließend wird der Quanten-Zeno-Effekt und das Quanten-Zeno-Paradoxon als Folge des Verhaltens der Überlebenswahrscheinlichkeit für Zeiten kurz nach der Zustandspräparation beschrieben. Danach wird das Lee-Modell zur Beschreibung eines Teilchenzerfalls vorgestellt. Das Modell beschreibt den Zerfall eines instabilen Teilchens in zwei mögliche Kanäle, d.h. entweder in (genannt) a-Teilchen oder b-Teilchen. Es werden alle wichtigen Funktionen (Zerfallsgesetz, Energiedichte, etc.) analytisch hergeleitet. Es folgen darauf die Ergebnisse der numerischen Auswertung.
Das Ziel dieser Bachelorarbeit war es, einen Überblick über die Größe der, durch Einbeziehung des Loop-Level-Diagrammes entstehenden, Korrekturen zu erhalten. Die Ergebnisse sollen eingrenzen, wann diese Korrekturen wichtig oder sogar dominant sind. Der Einfluss der Korrekturen lässt sich gut mit Hilfe von g0 und g00 einschätzen. So gilt für g0 gerade Γntl = 1.33 Γ, die Korrekturen sind also für die Berechnung wichtig jedoch nicht dominant. Für g00 beginnen die Korrekturen gerade dominant gegenüber den Berechnungen in erster Ordnung zu werden (es gilt hier Γntl = 2 Γ). Wie anhand von Tabelle 7.2 zu sehen werden die Korrekturen, abhängig von der Massenkonfiguration, ab etwa 1.6 − 2.2mS wichtig und ab etwa 2.2 − 3.4mS dominant. Für sehr kleine Massen mΦ liegt diese Grenze natürlich niedriger, es wurde jedoch gezeigt, dass die Korrekturen selbst für mΦ = 10−13mS erst ab etwa 0.65mS dominant sind. Praktisch dürften die Korrekturen daher nur sehr selten, wenn überhaupt für Werte von g < mS, eine nennenswerte Rolle spielen. Welchen Einfluss die Korrekturen bei realen Zerfallskanälen haben, sollte nun anhand der Zerfälle von f0(500), f0(980), f0(1370) und f0(1500) in Pionen gezeigt werden. Zusätzlich wurde für den Zerfall von f0(500) die Berechnung ein weiteres Mal mit endlichem (niedrigen) Cutoff durchgeführt, um dessen Auswirkungen auf die Ergebnisse zu betrachten. Dies ist dann wichtig, wenn die beobachteten Teilchen eine endliche, räumliche Ausdehnung haben (beispielsweise wenn wie hier Hadronenzerfälle betrachtet werden). Für f0(980) und f0(1500) stellen sich die Korrekturen, wie aufgrund der vorherigen Ergebnisse und des sehr kleinen Verhältnisses von Zerfallsbreite und Masse bereits erwartet, mit 1.22% beziehungsweise 0.032% als sehr gering heraus. Für f0(1370) ist das Verhältnis bereits deutlich größer, hier sind die Korrekturen mit 7.43% bereits im hohen einstelligen Prozentbereich und damit für genaue Rechnungen durchaus wichtig. Für f0(500) zeigt sich nun wiederum, dass die Korrekturen sehr groß sind, die Loop-Level-Kopplungskonstanten ist um 24.57% kleiner. Für diesen Zerfalll sollte also bereits bei einer Abschätzung das Loop-Level Diagramm einbezogen werden. Stellt man die Berechnung mit endlichem Cutoff an, so stellt sich heraus, dass sich die exakten Werte zwar durchaus verändern, die Änderungen sind jedoch nicht so groß dass die Ergebnisse drastisch abweichen. Die Kopplungskonstante wird bei dem angenommenen Cutoff Λ = 0.95 GeV um 6.47% größer. In allen Varitionen fallen die Korrekturen kleiner als 33% aus. Als letztes ist die Genauigkeit der hier erhaltenen Ergebnisse zu beurteilen. Theoretisch sollten die numerischen Berechnungen mit beliebiger Genauigkeit durchführbar sein. Bei den im Rahmen dieser Arbeit durchgeführten Berechnungen trat jedoch das Problem auf, dass die numerischen Berechnungen des Integrals für Winkel sehr nahe 0° beziehungsweise 180° chaotisch wurden. Die Winkelintegration wurde daher nur von −0.99999 bis 0.99999 durchgeführt. Da das Impulsintegral bei diesen Winkeln etwa von der Größe 0.1 − 2 ist, abhängig von der Massenkonfiguration, entstehen dadurch Fehler der Größenordnung 10−5. Die Ursache für diesen Fehler liegt vermutlich darin begründet, dass sich für diese Winkel jeweils der dritte Pol auf den ersten und der vierte Pol auf den zweiten Pol verschiebt. In diesem Fall entsteht zwar an gleicher Stelle im Zähler eine Nullstelle (schaut man sich P1, P2 und P3 an, so befinden sich an diesen Stellen auch nur einfache Pole), die numerische Berechnung kann dadurch allerdings problematisch werden. Im Rahmen dieser Arbeit wurde eine Genauigkeit von 4 Nachkommastellen allerdings als ausreichend betrachtet. Abschließend lässt sich sagen, dass die Korrekturen in (fast) allen betrachteten Fällen klein sind. In Einzelfällen können sie allerdings durchaus relevante Dimensionen erreichen, wie am f0(500) Zerfall zu sehen ist. In zukünftigen Arbeiten sollte dieses Thema also auch für Wechselwirkungen mit Ableitungen und nicht-skalare Teilchen aufgegriffen werden.
Light scalar mesons can be understood as dynamically generated resonances. They arise as 'companion poles' in the propagators of quark-antiquark seed states when accounting for hadronic loop contributions to the self-energies of the latter. Such a mechanism may explain the overpopulation in the scalar sector - there exist more resonances with total spin J=0 than can be described within a quark model.
Along this line, we study an effective Lagrangian approach where the isovector state a_{0}(1450) couples via both non-derivative and derivative interactions to pseudoscalar mesons. It is demonstrated that the propagator has two poles: a companion pole corresponding to a_{0}(980) and a pole of the seed state a_{0}(1450). The positions of these poles are in quantitative agreement with experimental data. Besides that, we investigate similar models for the isodoublet state K_{0}^{*}(1430) by performing a fit to pion-kaon phase shift data in the I=1/2, J=0 channel. We show that, in order to fit the data accurately, a companion pole for the K_{0}^{*}(800), that is, the light kappa resonance, is required. A large-N_{c} study confirms that both resonances below 1 GeV are predominantly four-quark states, while the heavy states are quarkonia.
Im Rahmen dieser Arbeit wurden zwei verschiedene Zerfallsprozesse behandelt. Zunächst wurde im Rahmen des erweiterten Linearen Sigma-Modells die Antwort auf die Frage gesucht, welches Teilchen als chiraler Partner des Nukleons in Frage kommt. Dazu wurde der Zerfall des chiralen Partners in ein Nukleon und ein skalares Teilchen betrachtet. Das skalare Teilchen wurde mit dem Tetraquark-Zustand f0(600) identifiziert. In Augenschein genommen wurden die Resonanzen N(1535) und N(1640). Aufgrund der berechneten Zerfallsbreiten erkannte man im Falle von N(1650) eine größere Übereinstimmung mit den experimentellen Werten. Die Zerfallsbreite von 45.91 MeV liegt in der Größenordnung des im Particle Data Book verzeichneten Intervalls. Der Wert, den man bei Verwendung von N(1535) als Ausgangsteilchen erhielt, ist allerdings gegenüber der Vorhersage zu groß.
Ein nächster Schritt im Studium dieses Sachverhalts stellt das erweiterte Misch-Szenario dar. Es beinhaltet nicht nur zwei, sondern vier Spinoren. Zwei davon beschreiben Nukleon-Resonanzen, zwei sind mögliche chirale Partner. Da die Zustände mischen, wird der chirale Partner nicht eindeutig durch ein, sondern durch zwei Resonanzen repräsentiert. Weiterhin steht die eingehende Betrachtung des Ursprungs von m0 aus. Dazu muss außer derWechselwirkung mit dem Tetraquark-Zustand auch die Wechselwirkung eines Glueballs mit den beteiligten Hadronen berücksichtigt werden. Dadurch erhält die Masse von m0 einen Anteil, der aus dem Glueball-Kondensat stammt. Dies muss beim Rückschluss auf die Nukleonmasse beachtet werden.
Als nächstes wurde der Zerfall des pseudoskalaren Glueballs in zwei Nukleonen betrachtet. Da die Kopplungskonstante dieses Zerfalls noch nicht experimentell bestimmt wurde, wurde ein Verhältnis zwischen zwei Zerfallskanälen berechnet. Es zeigte sich, dass der Zerfall in zwei Nukleonen fast doppelt so wahrscheinlich ist wie der Zerfall in Nukleon und chiralen Partner, der an der Energieschwelle liegt. Die Berechnung wurde mit einem Teilchen der Masse 2.6 GeV als Glueball durchgeführt. Die Untersuchung derart schwerer Glueballs wird in naher Zukunft erstmalig im Rahmen des PANDA-Experiments der GSI möglich sein.
Zukünftige Studien sollten die Beteiligung des Glueballs an gemischten Zuständen berücksichtigen. Außerdem sollte ein möglicher skalarer Glueball in die Betrachtung miteinbezogen werden.