Refine
Document Type
- Doctoral Thesis (9)
- Master's Thesis (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- Approximation (1)
- Banach spaces (1)
- Donkers theorem (1)
- Genetischer Fingerabdruck (1)
- Poisson-Prozess (1)
- Zolotarev metric (1)
- analysis of algorithms (1)
- contraction method (1)
- functional limit theorems (1)
- limit order markets (1)
Institute
- Mathematik (8)
- Informatik und Mathematik (1)
- keine Angabe Institut (1)
In der folgenden Arbeit werden Eigenschaften von Verzweigungsprozessen in zufälliger Umgebung (engl. branching processes in random environment, kurz BPREs) untersucht. Das Modell geht auf Smith (1969) und Athreya (1971) zurück. Ein BPRE ist ein einfaches mathematisches Modell für die Entwicklung einer Population von apomiktischen (d.h. sich ungeschlechtlich fortpflanzenden) Individuen in diskreter Zeit, wobei die Umgebungsbedingungen einen Einfluß auf den Fortpflanzungserfolg der Individuen haben. Dabei wird angenommen, dass die Umgebungsbedingungen in den einzelnen Generationen zufällig sind, und zwar unabhängig und identisch verteilt von Generation zu Generation. Man denke z.B. an eine Population von Pflanzen mit einem einjährigen Zyklus, die in jedem Jahr anderen Witterungsbedingungen ausgesetzt sind, wobei angenommen wird, dass diese sich unabhängig und identisch verteilt ändern. In Kapitel 1 wird eines der wichtigsten Hilfsmittel zur Beschreibung von BPREs, die sogenannte zugehörige Irrfahrt, eingeführt und die Klassifizierung von BPREs beschrieben. In Kapitel 2 werden bekannte Resultate, insbesondere zu kritischen, schwach subkritischen und stark subkritischen Verzweigungsprozessen, wiederholt. In Kapitel 3 wird der sogenannte intermediär subkritische Fall behandelt. Mithilfe von funktionalen Grenzwertsätzen für bedingte Irrfahrten wird die genaue Asymptotik der Überlebenswahrscheinlichkeit des Prozesses, die bereits in Vatutin (2004) bewiesen wurde, unter etwas allgemeineren Voraussetzungen gezeigt. Anschließend wird untersucht, wie häufig der Prozess, bedingt auf Überleben, nur noch aus einem Individuum besteht. Im letzten Teil des Kapitels wird ein funktionaler Grenzwertsatz für die zugehörige Irrfahrt, bedingt aufs Überleben des Prozesses, gezeigt. Diese konvergiert, richtig skaliert, gegen einen Levy-Prozess, der darauf bedingt ist, sein Minimum am Ende anzunehmen. In Kapitel 4 werden große Abweichungen von BPREs untersucht. Die Ratenfunktion des BPRE wird sowohl für den Fall mindestens geometrisch schnell abfallender Tails, als auch für den Fall von Nachkommenverteilungen mit schweren Tails bestimmt. Wie sich herausstellt, hängt die Ratenfunktion von der Ratenfunktion der zugehörigen Irrfahrt, der exponentiellen Abfallrate der Überlebenswahrscheinlichkeit sowie, bei Nachkommenverteilungen mit schweren Tails, auch von den Tails derselben ab. In der Ratenfunktion spiegeln sich die wahrscheinlichsten Wege, um Ereignisse der großen Abweichungen zu realisieren, wider, was in Kapitel 4.3 beschrieben wird. In Kapitel 4.4 wird im speziellen Fall von Nachkommenverteilungen mit gebrochen-linearer Erzeugendenfunktion die Ratenfunktion für Ereignisse bestimmt, bei denen ein superkritischer BPRE überlebt, aber klein im Vergleich zum Erwartungswert bleibt. In Kapitel 4.5 werden die großen Abweichungen, bedingt auf die Umgebung untersucht (engl. quenched). In diesem Fall können unwahrscheinliche Ereignisse nur über den Verzweigungsmechanismus und nicht mehr über eine außergewöhnliche Umgebung realisiert werden. Zum Abschluss der Dissertation werden Verzweigungsprozesse in zufälliger Umgebung, bedingt auf Überle-ben, simuliert. Dazu wird eine Konstruktion nach Geiger (1999) angewendet. Diese erlaubt es, Galton-Watson Bäume in variierender Umgebung, bedingt auf Überleben, entlang einer Ahnenlinie zu konstruieren. Der Fall geometrischer Nachkommenverteilungen, auf den wir uns in Kapitel 5 beschränken, erlaubt die explizite Berechnung der benötigten Verteilungen. Als Anwendung des Grenzwertsatzes aus Kapitel 3.1 können nun intermediär subkritische Verzweigungsprozesse, bedingt auf Überleben, wie folgt simuliert werden: Zunächst wird die Umgebung zufällig bestimmt, und zwar als Irrfahrt, bedingt darauf ihr Minimum am Ende anzunehmen. Anschließend wird, der Geiger-Konstruktion folgend, ein Verzweigungsprozess in dieser Umgebung, bedingt auf Überleben, simuliert. Zum Abschluss wird in einem kurzen Ausblick auf aktuelle Forschung verwiesen. Im Anhang befinden sich einige technische Resultate.
Große Stammbäume
(2003)
Sei T ein kritischer oder subkritischer Galton-Watson Stammbaum (GW-Baum) mit einer Kinderzahlverteilung endlicher oder unendlicher Varianz. Wir sind an der Struktur von T , bedingt darauf, dass T "groß" ist, interessiert. Der klassische sowie naheliegende Zugang ist, T auf eine große Gesamtgröße oder eine große Höhe zu bedingen. In dieser Arbeit werden drei, zum GW-Baum eng verwandte Typen von zufälligen Stammbäumen vorgestellt, deren Analyse aufschlussreiche Einsichten über große GW-Stammbäume liefert. Zur Untersuchung dieser auf große Gesamtgröße bedingten Stammbäume schlagen wir eine Familie von zufälligen, größenverzerrten Bäumen vor, deren auf Größe bedingte Verteilung mit der des, auf gegebener Größe bedingten, Baumes T übereinstimmt. Diese zufälligen Stammbäume besitzen eine einfache probabilistische Struktur, wenn man sie entlang der Ahnenlinien von rein zufällig gezogenen Knoten zerlegt. Die Verwandschaftsstruktur des von den gezogenen Knoten und der Wurzel aufgespannten Teilbaumes hängt im wesentlichen von dem asymptotischen Verhalten der Kinderzahlverteilung ab. Während bei endlicher Varianz diese Teilbäume asymptotisch binär sind, können bei unendlicher Varianz im Limes auch andere Formen auftreten. Wir zeigen, dass diese Teilbäume GW-Bäume bedingt auf ihre Gesamtblätterzahl sind. Mit Hilfe der Zerlegung entlang der Ahnenlinien erhalten wir zudem einen Grenzwertsatz für die reskalierte Gesamtgröße des Baumes mit einer Gamma-Verteilung als Limes. Die Analyse großer Bäume führen wir unter dem Aspekt des Größenverzerrens fort, indem wir eine weitere Familie zufälliger Bäume vorschlagen. Diese erhalten wir durch Größenverzerrung in der n-ten Generationsgröße. Wir werden sehen, dass der dadurch gewonnene zufällige Stammbaum eine ähnliche probabilistische Struktur wie der in der Gesamtgröße größenverzerrte Baum besitzt. Hier beweisen wir mit einfachen Überlegungen Aussagen über die Generation des jüngsten gemeinsamen Vorfahren (MRCA) von uniform aus Generation n gezogenen Knoten, sowie die Struktur des von diesen Knoten aufgespannten Skeletts. Schließlich betrachten wir die in [15] vorgestellte probabilistische Zerlegung des auf Mindesthöhe n bedingten GW-Baumes. Damit werden wir klassische Sätze über die Höhe des MRCA und die Grenzverteilung der reskalierten n-ten Generationsgröße für den Fall einer Kinderzahlverteilung mit unendlicher Varianz auf alternativem und anschaulichem Weg beweisen. Zudem erhalten wir eine Grenzverteilung für die Anzahl der Kinder des MRCA.
We provide a mathematical framework to model continuous time trading in limit order markets of a small investor whose transactions have no impact on order book dynamics. The investor can continuously place market and limit orders. A market order is executed immediately at the best currently available price, whereas a limit order is stored until it is executed at its limit price or canceled. The limit orders can be chosen from a continuum of limit prices.
In this framework we show how elementary strategies (hold limit orders with only finitely many different limit prices and rebalance at most finitely often) can be extended in a suitable
way to general continuous time strategies containing orders with infinitely many different limit prices. The general limit buy order strategies are predictable processes with values in the set of nonincreasing demand functions (not necessarily left- or right-continuous in the price variable). It turns out that this family of strategies is closed and any element can be approximated by a sequence of elementary strategies.
Furthermore, we study Merton’s portfolio optimization problem in a specific instance of this framework. Assuming that the risky asset evolves according to a geometric Brownian
motion, a proportional bid-ask spread, and Poisson execution times for the limit orders of the small investor, we show that the optimal strategy consists in using market orders to keep the
proportion of wealth invested in the risky asset within certain boundaries, similar to the result for proportional transaction costs, while within these boundaries limit orders are used to profit from the bid-ask spread.
The work presented in this thesis is devoted to two classes of mathematical population genetics models, namely the Kingman-coalescent and the Beta-coalescents. Chapters 2, 3 and 4 of the thesis include results concerned with the first model, whereas Chapter 5 presents contributions to the second class of models.
Within the last twenty years, the contraction method has turned out to be a fruitful approach to distributional convergence of sequences of random variables which obey additive recurrences. It was mainly invented for applications in the real-valued framework; however, in recent years, more complex state spaces such as Hilbert spaces have been under consideration. Based upon the family of Zolotarev metrics which were introduced in the late seventies, we develop the method in the context of Banach spaces and work it out in detail in the case of continuous resp. cadlag functions on the unit interval. We formulate sufficient conditions for both the sequence under consideration and its possible limit which satisfies a stochastic fixed-point equation, that allow to deduce functional limit theorems in applications. As a first application we present a new and considerably short proof of the classical invariance principle due to Donsker. It is based on a recursive decomposition. Moreover, we apply the method in the analysis of the complexity of partial match queries in two-dimensional search trees such as quadtrees and 2-d trees. These important data structures have been under heavy investigation since their invention in the seventies. Our results give answers to problems that have been left open in the pioneering work of Flajolet et al. in the eighties and nineties. We expect that the functional contraction method will significantly contribute to solutions for similar problems involving additive recursions in the following years.
We study exchangeable coalescent trees and the evolving genealogical trees in models for neutral haploid populations.
We show that every exchangeable infinite coalescent tree can be obtained as the genealogical tree of iid samples from a random marked metric measure space when the marks are added to the metric distances. We apply this representation to generalize the tree-valued Fleming-Viot process to include the case with dust in which the genealogical trees have isolated leaves.
Using the Donnelly-Kurtz lookdown approach, we describe all individuals ever alive in the population model by a random complete and separable metric space, the lookdown space, which we endow with a family of sampling measures. This yields a pathwise construction of tree-valued Fleming-Viot processes. In the case of coming down from infinity, we also read off a process whose state space is endowed with the Gromov-Hausdorff-Prohorov topology. This process has additional jumps at the extinction times of parts of the population.
In the case with only binary reproduction events, we construct the lookdown space also from the Aldous continuum random tree by removing the root and the highest leaf, and by deforming the metric in a way that corresponds to the time change that relates the Fleming-Viot process with a Dawson-Watanabe process. The sampling measures on the lookdown space are then image measures of the normalized local time measures.
We also show invariance principles for Markov chains that describe the evolving genealogy in Cannings models. For such Markov chains with values in the space of distance matrix distributions, we show convergence to tree-valued Fleming-Viot processes under the conditions of Möhle and Sagitov for the convergence of the genealogy at a fixed time to a coalescent with simultaneous multiple mergers. For the convergence of Markov chains with values in the space of marked metric measure spaces, an additional assumption is needed in the case with dust.
Recently, Aumüller and Dietzfelbinger proposed a version of a dual-pivot Quicksort, called "Count", which is optimal among dual-pivot versions with respect to the average number of key comparisons required. In this master's thesis we provide further probabilistic analysis of "Count". We derive an exact formula for the average number of swaps needed by "Count" as well as an asymptotic formula for the variance of the number of swaps and a limit law. Also for the number of key comparisons the asymptotic variance and a limit law are identified. We also consider both complexity measures jointly and find their asymptotic correlation.