Refine
Year of publication
Document Type
- Doctoral Thesis (8)
- diplomthesis (3)
- Diploma Thesis (2)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Algorithmus (1)
- Approximability (1)
- Approximationsgüte (1)
- Approximierbarkeit (1)
- Bedienstrategie (1)
- Berechnungskomplexität (1)
- Engineering (1)
- External-memory graph algorithms (1)
- Formale Sprache (1)
- Graph generation (1)
Institute
- Informatik (8)
- Informatik und Mathematik (4)
- Mathematik (2)
Analyse von Heuristiken
(2006)
Heuristiken treten insbesondere im Zusammenhang mit Optimierungsproblemen in Erscheinung, bei solchen Problemen also, bei denen nicht nur eine Lösung zu finden ist, sondern unter mehreren möglichen Lösungen eine in einem objektiven Sinne beste Lösung ausfindig gemacht werden soll. Beim Problem kürzester Superstrings werden Heuristiken herangezogen, da mit exakten Algorithmen in Anbetracht der APX-Vollständigkeit des Problems nicht zu rechnen ist. Gegeben ist eine Menge S von Strings. Gesucht ist ein String s, so dass jeder String aus S Teilstring von s ist. Die Länge von s ist dabei zu minimieren. Die prominenteste Heuristik für das Problem kürzester Superstrings ist die Greedy-Heuristik, deren Approximationsfaktor derzeit jedoch nur unzureichend beschränkt werden kann. Es wird vermutet (die sogenannte Greedy-Conjecture), dass der Approximationsfaktor genau 2 beträgt, bewiesen werden kann aber nur, dass er nicht unter 2 und nicht über 3,5 liegt. Die Greedy-Conjecture ist das zentrale Thema des zweiten Kapitels. Die erzielten Ergebnisse sind im Wesentlichen: * Durch die Betrachtung von Greedyordnungen können bedingte lineare Ungleichungen nutzbar gemacht werden. Dieser Ansatz ermöglicht den Einsatz linearer Programmierung zum Auffinden interessanter Instanzen und eine Vertiefung des Verständnisses solcher schwerer Instanzen. Dieser Ansatz wird eingeführt und eine Interpretation des dualen Problems wird dargestellt. * Für die nichttriviale, große Teilklasse der bilinearen Greedyordnungen wird gezeigt, dass die Länge des von der Greedy-Heuristik gefundenen Superstrings und die des optimalen Superstrings sich höchstens um die Größe einer optimalen Kreisüberdeckung der Strings unterscheiden. Da eine optimale Kreisüberdeckung einer Menge von Strings stets höchstens so groß ist wie ein optimaler Superstring (man schließe einen Superstring zu einem einzelnen Kreis), ist das erzielte Ergebnis für die betrachtete Teilklasse der Greedyordnungen stärker als die klassische Greedy-Conjecture. * Es wird eine neue bedingte lineare Ungleichung auf Strings -- die Tripelungleichung -- gezeigt, die für das eben genannte Hauptergebnis wesentlich ist. * Schließlich wird gezeigt, dass die zum Nachweis der oberen Schranke von 3,5 für den Approximationsfaktor herangezogenen bedingten Ungleichungen (etwa die Monge-Ungleichung) inhärent zu schwach sind, um die Greedy-Conjecture selbst für lineare Greedyordnungen zu beweisen. Also ist die neue Tripelungleichung auch notwendig. Zuletzt wird gezeigt, dass das um die Tripelungleichung erweiterte System bedingter linearer Ungleichungen inhärent zu schwach ist, um die klassische Greedy-Conjecture für beliebige Greedyordnungen zu beweisen. Mit der Analyse von Queueing Strategien im Adversarial Queueing Modell wird auch ein Fall betrachtet, in dem Heuristiken auf Grund von anwendungsspezifischen Forderungen wie Online-Setup und Lokalität eingesetzt werden. Pakete sollen in einem Netzwerk verschickt werden, wobei jeder Rechner nur begrenzte Information über den Zustand des Netzwerks hat. Es werden Klassen von Queueing Strategien untersucht und insbesondere untersucht, wovon Queueing Strategien ihre lokalen Entscheidungen abhängig machen sollten, um ein gewisses Qualitätsmerkmal zu erreichen. Die hier erzielten Ergebnisse sind: * Jede Queueing Strategie, die ohne Zeitstempel arbeitet, kann zu einer exponentiell großen Queue und damit zu exponentiell großer Verzögerung (im Durchmesser und der Knotenzahl des Netzwerks) gezwungen werden. Dies war bisher nur für konkrete prominente Strategien bekannt. * Es wird eine neue Technik zur Feststellung der Stabilität von Queueing Strategien ohne Zeitnahme vorgestellt, die Aufschichtungskreise. Mit ihrer Hilfe können bekannte Stabilitätsbeweise prominenter Strategien vereinheitlicht werden und weitere Stabilitätsergebnisse erzielt werden. * Für die große Teilklasse distanzbasierter Queueing Strategien gelingt eine vollständige Klassifizierung aller 1-stabilen und universell stabilen Strategien.
Wir haben Interaktion in der Kommunikationskomplexität untersucht und dabei die drei Modi probabilistische, (beschränkt) nichtdeterministische und quantenmechanische Kommunikation betrachtet. Bei allen drei Modi haben wir herausgefunden, dass Interaktion für Effzienz oft unerlässlich ist, im nichtdeterministischen Fall gibt es eine Abhängigkeit zwischen dem Einfluss der Interaktion und der erlaubten Anzahl der nichtdeterministischen Ratebits. Abgesehen von dem erreichten besseren Verständnis des Kommunikationsmodells haben wir verschiedene Anwendungen auf andere Berechnungsmodelle beschrieben, bei denen untere Schranken der Kommunikation zu unteren Schranken für andere Ressourcen in diesen Modellen geführt haben. Ein Beispiel eines kommunikations- und interaktionsbeschränkten Modells sind endliche Automaten, welche wir in allen drei Modi untersucht haben. Ein weiteres Beispiel sind Formeln, für die wir eine Verbindung zwischen Einweg Kommunikation und Formellänge herstellen konnten. Diese Verbindung führte zu unteren Schranken für probabilistische, nichtdeterministische und Quanten Formeln. Dabei sind die unteren Schranken für Quanten Formeln und probabilistische Formeln im wesentlichen gleich. Für monotone Schaltkreise haben wir gezeigt, wie nichtdeterministisches Raten die Tiefe drastisch reduzieren kann, und wie eine geringfügige Einschränkung der nichtdeterministischen Ratebits zu einer Tiefenhierarchie führt. Insgesamt lässt sich feststellen, dass die Schwäche interaktionsbeschränkter Kommunikation mathematisch nachvollziehbar ist. Außerdem scheint ein solches Verhalten in der Welt einfacher Berechnungsmodelle häufig aufzutreten. Oder anders gesagt, viele Berechnungsmodelle sind deshalb einfacher zu verstehen, weil sie durch interaktionsbeschränkte Kommunikation analysierbar sind.
Im Gegensatz zur Minimierung von DFAs ist die exakte Minimierung von NFAs oder regulären Ausdrücken nachweislich schwierig, im allgemeinen Fall PSpace-schwer. Wir zeigen, dass selbst schwache Approximationen zur Minimierung von NFAs und regulären Ausdrücken wahrscheinlich nicht effizient möglich sind. Falls als Eingabe ein NFA oder regulärer Ausdruck der Größe n gegeben ist, löst ein Approximationsalgorithmus für das Minimierungsproblem mit Approximationsfaktor o(n) bereits ein PSpace-vollständiges Problem. Wenn wir uns auf NFAs oder reguläre Ausdrücke über einem unären - also einelementigen - Alphabet beschränken, so ist das Problem der exakten Minimierung NP-vollständig. Wir weisen nach, dass effiziente Approximationen für das unäre Minimierungsproblem mit Approximationsfaktor n^(1-delta) für jedes delta>0 nicht möglich sind, sofern P != NP gilt. Liegt die Eingabe als DFA mit n Zuständen vor, kann sie exponentiell größer sein als ein äquivalenter NFA oder regulärer Ausdruck. Dennoch bleibt das Minimierungsproblem PSpace-schwer, wenn die Anzahl der Übergänge oder Zustände in einem äquivalenten NFA oder die Länge eines äquivalenten regulären Ausdrucks zu bestimmen ist. Wir zeigen, dass auch hierfür keine guten Approximationen zu erwarten sind. Unter der Annahme der Existenz von Pseudozufallsfunktionen, die wiederum auf der Annahme basiert, dass Faktorisierung schwierig ist, zeigen wir, dass kein effizienter Algorithmus einen Approximationsfaktor n/(poly(log n)) für die Zahl der Übergänge im NFA oder die Länge des regulären Ausdrucks garantieren kann. Für die Zahl der Zustände im NFA weisen wir nach, dass effiziente Approximationen mit Approximationsfaktor (n^(1/2))/(poly(log n)) ausgeschlossen sind. Wir betrachten dann Lernprobleme für reguläre Sprachen als Konzeptklasse. Mit den entwickelten Methoden, die auf der Annahme der Existenz von Pseudozufallsfunktionen beruhen, zeigen wir auch, dass es für das Problem des minimalen konsistenten DFAs keine effizienten Approximationen mit Approximationsfaktor n/(poly(log n)) gibt. Für den unären Fall hingegen weisen wir nach, dass es einen effizienten Algorithmus gibt, der einen minimalen konsistenten DFA konstruiert und erhalten somit auch einen effizienten PAC-Algorithmus für unäre reguläre Sprachen, die von DFAs mit n Zuständen akzeptiert werden. Für unäre Beispielmengen weisen wir außerdem nach, dass es keine effizienten Algorithmen gibt, die minimale konsistente NFAs konstruieren, falls NP-vollständige Probleme nicht in Zeit (n^(O(log n)) gelöst werden können. Andererseits geben wir einen effizienten Algorithmus an, der zu unären Beispielmengen einen konsistenten NFA mit höchstens O(opt^2) Zuständen konstruiert, wenn ein minimaler konsistenter NFA opt Zustände hat. Abschließend betrachten wir das Lernen von DFAs durch Äquivalenzfragen. Für den nicht-unären Fall ist bekannt, dass exponentiell viele Fragen für DFAs mit n Zuständen benötigt werden. Für unäre zyklische DFAs mit primer Zykluslänge und höchstens n Zuständen zeigen wir, dass Theta((n^2)/(ln n)) Äquivalenzfragen hinreichend und notwendig sind. Erlauben wir größere zyklische DFAs als Hypothesen, kommen wir mit weniger Fragen aus: Um zyklische DFAs mit höchstens n Zuständen durch Äquivalenzfragen mit zyklischen DFAs mit höchstens n^d Zuständen für d <= n als Hypothesen zu lernen, sind O((n^2)/d) Fragen hinreichend und Omega((n^2 ln d)/(d (ln n)^2)) Fragen nötig.
Wir untersuchen das Verhalten von unären stochastischen endlichen Automaten mit Hilfe von Methoden der Theorie der homogenen Markovketten. Für unäre stochastische Automaten mit E-isoliertem Cutpoint lambda und n Zuständen bestimmen wir eine obere Schranke für die Größe des zyklischen Teils eines optimalen äquivalenten DFAs. Ein Ergebnis von Milani und Pighizzini zeigt bereits, dass für den zyklischen Teil des äquivalenten DFAs O(e exp(sqrt(n ln n))) Zustände ausreichen und in unendlich vielen Fällen auch Omega(eexp(sqrt(n ln n))) Zustände benötigt werden, wobei die Größe von E keine Rolle spielt. Wir zeigen die obere Schranke n exp (1/2E) für die Größe des zyklischen Teils und weisen nach, dass der optimale DFA für jedes c < 1 in unendlich vielen Fällen mehr als n exp (c/2E) viele Zustände im zyklischen Teil benötigt. Wir weisen auch nach, dass es eine unendliche Familie endlicher unärer Sprachen gibt, für die es jeweils einen PFA mit n Zuständen und 1/4-isoliertem Cutpoint gibt, während der optimale, DFA e exp(Omega x sqrt(n ln n)) Zustände im Anfangspfad benötigt.
Configuration, simulation and visualization of simple biochemical reaction-diffusion systems in 3D
(2004)
Background In biological systems, molecules of different species diffuse within the reaction compartments and interact with each other, ultimately giving rise to such complex structures like living cells. In order to investigate the formation of subcellular structures and patterns (e.g. signal transduction) or spatial effects in metabolic processes, it would be helpful to use simulations of such reaction-diffusion systems. Pattern formation has been extensively studied in two dimensions. However, the extension to three-dimensional reaction-diffusion systems poses some challenges to the visualization of the processes being simulated. Scope of the Thesis The aim of this thesis is the specification and development of algorithms and methods for the three-dimensional configuration, simulation and visualization of biochemical reaction-diffusion systems consisting of a small number of molecules and reactions. After an initial review of existing literature about 2D/3D reaction-diffusion systems, a 3D simulation algorithm (PDE solver), based on an existing 2D-simulation algorithm for reaction-diffusion systems written by Prof. Herbert Sauro, has to be developed. In a succeeding step, this algorithm has to be optimized for high performance. A prototypic 3D configuration tool for the initial state of the system has to be developed. This basic tool should enable the user to define and store the location of molecules, membranes and channels within the reaction space of user-defined size. A suitable data structure has to be defined for the representation of the reaction space. The main focus of this thesis is the specification and prototypic implementation of a suitable reaction space visualization component for the display of the simulation results. In particular, the possibility of 3D visualization during course of the simulation has to be investigated. During the development phase, the quality and usability of the visualizations has to be evaluated in user tests. The simulation, configuration and visualization prototypes should be compliant with the Systems Biology Workbench to ensure compatibility with software from other authors. The thesis is carried out in close cooperation with Prof. Herbert Sauro at the Keck Graduate Institute, Claremont, CA, USA. Due to this international cooperation the thesis will be written in English.
Im Rahmen dieser Arbeit wird der aktuelle Stand auf dem Gebiet des Lokalen Lovász Lemmas (LLL) beschrieben und ein Überblick über die Arbeiten zu konstruktiven Beweisen und Anwendungen gegeben. Ausgehend von Jószef Becks Arbeit zu einer algorithmischen Herangehensweise, haben sich in den letzten Jahren im Umfeld von Moser und Tardos und ihren Arbeiten zu einem konstruktiven Beweis des LLL eine erneute starke Beschäftigung mit dem Thema und eine Fülle von Verbesserungen entwickelt.
In Kapitel 1 wird als Motivation eine kurze Einführung in die probabilistische Methode gegeben. Mit der First- und Second Moment Method werden zwei einfache Vorgehensweisen vorgestellt, die die Grundidee dieses Beweisprinzips klar werden lassen. Von Paul Erdős eröffnet, beschreibt es Wege, Existenzbeweise in nicht-stochastischen Teilgebieten der Mathematik mithilfe stochastischer Überlegungen zu führen. Das Lokale Lemma als eine solche Überlegung entstammt dieser Idee.
In Kapitel 2 werden verschiedene Formen des LLL vorgestellt und bewiesen, außerdem wird anhand einiger Anwendungsbeispiele die Vorgehensweise bei der Verwendung des LLL veranschaulicht.
In Kapitel 3 werden algorithmische Herangehensweisen beschrieben, die geeignet sind, von der (mithilfe des LLL gezeigten) Existenz gewisser Objekte zur tatsächlichen Konstruktion derselben zu gelangen.
In Kapitel 4 wird anhand von Beispielen aus dem reichen Schatz neuerer Veröffentlichungen gezeigt, welche Bewegung nach der Arbeit von Moser und Tardos entstanden ist. Dabei beleuchtet die Arbeit nicht nur einen anwendungsorientierten Beitrag von Haeupler, Saha und Srinivasan, sondern auch einen Beitrag Terence Taos, der die Beweistechnik Mosers aus einem anderen Blickwinkel beleuchtet.
Paging is one of the most prominent problems in the field of online algorithms. We have to serve a sequence of page requests using a cache that can hold up to k pages. If the currently requested page is in cache we have a cache hit, otherwise we say that a cache miss occurs, and the requested page needs to be loaded into the cache. The goal is to minimize the number of cache misses by providing a good page-replacement strategy. This problem is part of memory-management when data is stored in a two-level memory hierarchy, more precisely a small and fast memory (cache) and a slow but large memory (disk). The most important application area is the virtual memory management of operating systems. Accessed pages are either already in the RAM or need to be loaded from the hard disk into the RAM using expensive I/O. The time needed to access the RAM is insignificant compared to an I/O operation which takes several milliseconds.
The traditional evaluation framework for online algorithms is competitive analysis where the online algorithm is compared to the optimal offline solution. A shortcoming of competitive analysis consists of its too pessimistic worst-case guarantees. For example LRU has a theoretical competitive ratio of k but in practice this ratio rarely exceeds the value 4.
Reducing the gap between theory and practice has been a hot research issue during the last years. More recent evaluation models have been used to prove that LRU is an optimal online algorithm or part of a class of optimal algorithms respectively, which was motivated by the assumption that LRU is one of the best algorithms in practice. Most of the newer models make LRU-friendly assumptions regarding the input, thus not leaving much room for new algorithms.
Only few works in the field of online paging have introduced new algorithms which can compete with LRU as regards the small number of cache misses.
In the first part of this thesis we study strongly competitive randomized paging algorithms, i.e. algorithms with optimal competitive guarantees. Although the tight bound for the competitive ratio has been known for decades, current algorithms matching this bound are complex and have high running times and memory requirements. We propose the algorithm OnlineMin which processes a page request in O(log k/log log k) time in the worst case. The best previously known solution requires O(k^2) time.
Usually the memory requirement of a paging algorithm is measured by the maximum number of pages that the algorithm keeps track of. Any algorithm stores information about the k pages in the cache. In addition it can also store information about pages not in cache, denoted bookmarks. We answer the open question of Bein et al. '07 whether strongly competitive randomized paging algorithms using only o(k) bookmarks exist or not. To do so we modify the Partition algorithm of McGeoch and Sleator '85 which has an unbounded bookmark complexity, and obtain Partition2 which uses O(k/log k) bookmarks.
In the second part we extract ideas from theoretical analysis of randomized paging algorithms in order to design deterministic algorithms that perform well in practice. We refine competitive analysis by introducing the attack rate
parameter r, which ranges between 1 and k. We show that r is a tight bound on the competitive ratio of deterministic algorithms.
We give empirical evidence that r is usually much smaller than k and thus r-competitive algorithms have a reasonable performance on real-world traces. By introducing the r-competitive priority-based algorithm class OnOPT we obtain a collection of promising algorithms to beat the LRU-standard. We single out the new algorithm RDM and show that it outperforms LRU and some of its variants on a wide range of real-world traces.
Since RDM is more complex than LRU one may think at first sight that the gain in terms of lowering the number of cache misses is ruined by high runtime for processing pages. We engineer a fast implementation of RDM, and compare it
to LRU and the very fast FIFO algorithm in an overall evaluation scheme, where we measure the runtime of the algorithms and add penalties for each cache miss.
Experimental results show that for realistic penalties RDM still outperforms these two algorithms even if we grant the competitors an idealistic runtime of 0.
Netzwerkmodelle spielen in verschiedenen Wissenschaftsdisziplinen eine wichtige Rolle und dienen unter anderem der Beschreibung realistischer Graphen.
Sie werden häufig als Zufallsgraphen formuliert und stellen somit Wahrscheinlichkeitsverteilungen über Graphen dar.
Meist ist die Verteilung dabei parametrisiert und ergibt sich implizit, etwa über eine randomisierten Konstruktionsvorschrift.
Ein früher Vertreter ist das G(n,p) Modell, welches über allen ungerichteten Graphen mit n Knoten definiert ist und jede Kante unabhängig mit Wahrscheinlichkeit p erzeugt.
Ein aus G(n,p) gezogener Graph hat jedoch kaum strukturelle Ähnlichkeiten zu Graphen, die zumeist in Anwendungen beobachtet werden.
Daher sind populäre Modelle so gestaltet, dass sie mit hinreichend hoher Wahrscheinlichkeit gewünschte topologische Eigenschaften erzeugen.
Beispielsweise ist es ein gängiges Ziel die nur unscharf definierte Klasse der sogenannten komplexen Netzwerke nachzubilden, der etwa viele soziale Netze zugeordnet werden.
Unter anderem verfügen diese Graphen in der Regel über eine Gradverteilung mit schweren Rändern (heavy-tailed), einen kleinen Durchmesser, eine dominierende Zusammenhangskomponente, sowie über überdurchschnittlich dichte Teilbereiche, sogenannte Communities.
Die Einsatzmöglichkeiten von Netzwerkmodellen gehen dabei weit über das ursprüngliche Ziel, beobachtete Effekte zu erklären, hinaus.
Ein gängiger Anwendungsfall besteht darin, Daten systematisch zu produzieren.
Solche Daten ermöglichen oder unterstützen experimentelle Untersuchungen, etwa zur empirischen Verifikation theoretischer Vorhersagen oder zur allgemeinen Bewertung von Algorithmen und Datenstrukturen.
Hierbei ergeben sich insbesondere für große Probleminstanzen Vorteile gegenüber beobachteten Netzen.
So sind massive Eingaben, die auf echten Daten beruhen, oft nicht in ausreichender Menge verfügbar, nur aufwendig zu beschaffen und zu verwalten, unterliegen rechtlichen Beschränkungen, oder sind von unklarer Qualität.
In der vorliegenden Arbeit betrachten wir daher algorithmische Aspekte der Generierung massiver Zufallsgraphen.
Um Anwendern Reproduzierbarkeit mit vorhandenen Studien zu ermöglichen, fokussieren wir uns hierbei zumeist auf getreue Implementierungen etablierter Netzwerkmodelle,
etwa Preferential Attachment-Prozesse, LFR, simple Graphen mit vorgeschriebenen Gradsequenzen, oder Graphen mit hyperbolischer (o.Ä.) Einbettung.
Zu diesem Zweck entwickeln wir praktisch sowie analytisch effiziente Generatoren.
Unsere Algorithmen sind dabei jeweils auf ein geeignetes Maschinenmodell hin optimiert.
Hierzu entwerfen wir etwa klassische sequentielle Generatoren für Registermaschinen, Algorithmen für das External Memory Model, und parallele Ansätze für verteilte oder Shared Memory-Maschinen auf CPUs, GPUs, und anderen Rechenbeschleunigern.
A lot of software systems today need to make real-time decisions to optimize an objective of interest. This could be maximizing the click-through rate of an ad displayed on a web page or profit for an online trading software. The performance of these systems is crucial for the parties involved. Although great progress has been made over the years in understanding such online systems and devising efficient algorithms, a fine-grained analysis and problem specific solutions are often missing. This dissertation focuses on two such specific problems: bandit learning and pricing in gross-substitutes markets.
Bandit learning problems are a prominent class of sequential learning problems with several real-world applications. The classical algorithms proposed for these problems, although optimal in a theoretical sense often tend to overlook model-specific proper- ties. With this as our motivation, we explore several sequential learning models and give efficient algorithms for them. Our approaches, inspired by several classical works, incorporate the model-specific properties to derive better performance bounds.
The second part of the thesis investigates an important class of price update strategies in static markets. Specifically, we investigate the effectiveness of these strategies in terms of the total revenue generated by the sellers and the convergence of the resulting dynamics to market equilibrium. We further extend this study to a class of dynamic markets. Interestingly, in contrast to most prior works on this topic, we demonstrate that these price update dynamics may be interpreted as resulting from revenue optimizing actions of the sellers. No such interpretation was known previously. As a part of this investigation, we also study some specialized forms of no-regret dynamics and prediction techniques for supply estimation. These approaches based on learning algorithms are shown to be particularly effective in dynamic markets.
In dieser Arbeit werden drei Themenkomplexe aus dem Bereich der Externspeicheralgorithmen näher beleuchtet: Approximationsalgorithmen, dynamische Algorithmen und Echtzeitanfragen. Das Thema Approximationsalgorithmen wird sowohl im Kapitel 3 als auch im Kapitel 5 behandelt.
In Kapitel 3 wird ein Algorithmus vorgestellt, welcher den Durchmesser eines Graphen heuristisch bestimmt. Im RAM- Modell ist eine modifizierte Breitensuche selbst ein günstiger und äußerst genauer Algorithmus. Dies ändert sich im Externspeicher. Dort ist die Hauptspeicher-Breitensuche durch die O(n + m) unstrukturierten Zugriffe auf den externen Speicher zu teuer. 2008 wurde von Meyer ein Verfahren zu effizienten Approximation des Graphdurchmessers im Externspeicher gezeigt, welches O(k · scan(n + m) + sort(n + m) + √(n·m/k·B)· log(n/k) + MST(n, m)) I/Os bei einem multiplikativen Approximationsfehler von O(√k · log (k)) benötigt. Die Implementierung, welche in dieser Arbeit vorgestellt wird, konnte in vielen praktischen Fällen die Anzahl an I/Os durch Rekursion auf O(k · scan(n + m) + sort(n + m) + MST(n, m)) I/Os reduzieren. Dabei wurden verschiedene Techniken untersucht, um die Auswahl der Startpunkte (Masterknoten) zum rekursiven Schrumpfen des Graphen so wählen zu können, dass der Fehler möglichst klein bleibt. Weiterhin wurde eine adaptive Regel eingeführt, um nur so viele Masterknoten zu wählen, dass der geschrumpfte Graph nach möglichst wenigen Rekursionsaufrufen in den Hauptspeicher passt. Es wirdgezeigt, dass die untere Schranke für den worst case-Fehler dabei auf Ω(k^{4/3−e}) mit hoher Wahrscheinlichkeit steigt. Die experimentelle Auswertung zeigt jedoch, dass in der Praxis häufig deutlich bessere Ergebnisse erzielt werden.
In Kapitel 4 wird ein Algorithmus vorgestellt, welcher, nach dem Einfügen einer neuen Kante in einen Graphen, den zugehörigen Baum der Breitensuche unter Verwendung von O(n · (n/B^{2/3} + sort(n) · log (B))) I/Os mit hoher Wahrscheinlichkeit aktualisiert. Dies ist für hinreichend große B schneller als die statische Neuberechnung. Zur Umsetzung des Algorithmus wurde eine neue deterministische Partitionsmethode entwickelt, bei der die Größe der Cluster balanciert und effizient veränderbar ist. Hierfür wird ein Dendrogramm des Graphen auf einer geeigneten Baumrepräsentation, wie beispielsweise Spannbaum, berechnet. Dadurch hat jeder Knoten ein Label, welches aufgrund seiner Lage innerhalb der Baumrepräsentation berechnet worden ist. Folglich kann mittels schneller Bit-Operationen das Label um niederwertige Stellen gekürzt werden, um Cluster der Größe µ = 2 i zu berechnen, wobei der Clusterdurchmesser auf µ beschränkt ist, was für die I/O-Komplexität gewährleistet sein muss, da der Trade-off aus MM_BFS zwischen Cluster- und Hotpoolgröße genutzt wird. In der experimentellen Auswertung wird gezeigt, dass die Performanz von dynamischer Breitensuche sowohl auf synthetischen als auch auf realen Daten oftmals schneller ist als eine statische Neuberechnung des Baums der Breitensuche. Selbst wenn dies nicht der Falls ist, so sind wir nur um kleine, konstante Faktoren langsamer als die statische Implementierung von MM_BFS.
Schließlich wird in Kapitel 5 ein Approximationsalgorithmus vorgestellt, welcher sowohl dynamische Komponenten beinhaltet als auch die Eigenschaft besitzt, Anfragen in Echtzeit zu beantworten. Um die Echtzeitfähigkeit zu erreichen, darf eine Anfrage nur O(1) I/Os hervorrufen. Im Szenario dieser Arbeit wurden Anfragen zu Distanzen zwischen zwei beliebigen Knoten u und v auf realen Graphdaten mittels eines Distanzorakels beantwortet. Es wird eine Implementierung sowohl für mechanische Festplatten als auch für SSDs vorgestellt, wobei kontinuierliche Anfragen im Onlineszenario von SSDs in Millisekunden gelöst werden können, während ein großer Block von Anfragen auf beiden Architekturen in Mikrosekunden pro Anfrage amortisiert gelöst werden kann.