Refine
Year of publication
Document Type
- Doctoral Thesis (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Carotinoide (3)
- 2-Hydroxylase (1)
- 2-hydroxylase (1)
- Biosynthese (1)
- Brevibacterium flavum (1)
- Brevibacterium linens (1)
- Carotinoidbiosynthese (1)
- Flavobacterium (1)
- Flavobacterium spec P99-3 (1)
- Genklonierung (1)
Institute
- Biowissenschaften (13)
In der vorliegenden Arbeit wird die Identifizierung von Genen der Carotinoid Biosynthese (crt) aus den Coryneformen Bakterien Brevibacterium linens und Brevibacterium flavum beschrieben. Hierbei konnten sechs neue crt Gene durch funktionelle Komplementierung bestimmt werden. Außerdem wurde erstmalig die Carotinoid Biosynthese von B. flavum, darunter auch drei neue Carotinoide, beschrieben. Voraussetzung für die Klonierung der crt Gene aus B. linens war die Entwicklung eines geeigneten Komplementierungssystems. Dieses System wurde in Carotinoidmutanten von B. flavum entwickelt. So konnte eine B. linens ExpressionsBibliothek nach Passage durch mehrere E. coliStämme, unter Umgehung des starken B. flavumRestriktionssystems, in B. flavumCarotinoidmutanten auf crt Genexpression hin untersucht werden. . Durch Komplementierung der Carotinoidmutanten von B. flavum konnte das Gen der Phytoen Synthase (crtB) aus B. linens funktionell kloniert werden. Mit diesem Gen als Sonde wurde aus einer B. linensCosmid Bibliothek das gesamte crt Gencluster isoliert. Auf dem sequenzierten DNAFragment von B. linens befanden sich 14 offene Leseraster mit Ähnlichkeiten zu Sequenzen aus Datenbanken. Durch Sequenzähnlichkeiten zu bekannten Genen konnte die Gene einer GGPP Synthase (crtE), einer Phytoen Synthase (crtB) und einer Phytoen Desaturase (crtI) bestimmt werden. Außerdem wurden erstmalig die Gene einer IPP Isomerase und einer DNAPhotolyase in einem crt Gencluster identifiziert. Durch heterologe Expression in B. flavum konnte das neue Gen einer bCarotin Desaturase (crtU) funktionell nachgewiesen werden. Dieses Gen kodiert für ein Enzym, das bCarotin in das aromatische Carotin Isorenieraten umsetzt. Ebenfalls durch heterologe Expression in B. flavum wurden zwei neue Gene (crtYc und crtYd) gefunden, deren Genprodukte gemeinsam die Zyklisierung von Lycopin zu bCarotin katalysieren. Die errechnete Molmasse dieser beiden Lycopin Zyklasen ist mit 12,5 und 13,9 kDa ungewöhnlich klein. Die zwei Lycopin Zyklasegene aus B. linens kodieren für eine neue Klasse von Lycopin Zyklasen. Es bestehen keine Sequenzähnlichkeiten dieser neuen Gene zu bisher bekannten Lycopin Zyklasegenen oder zu anderen Genen bekannter Funktion. Durch die partielle Deletion einer cDNA mit Lycopin Zyklase und Phytoen Synthaseaktivität (crtYB) aus dem Pilz Xanthophyllomyces dendrorhous konnte gezeigt werden, daß die Zentren der beiden Aktivitäten in unterschiedlichen Regionen des gebildeten Polypeptids sitzen. Die Phytoen Synthaseaktivität des Genproduktes geht auf einen Bereich des Polypeptids zurück, der Sequenzähnlichkeiten zu Phytoen Synthasen anderer Organismen aufweist. Das Zentrum der Lycopin Zyklaseaktivität liegt in dem Nterminalen Bereich des Polypeptids, der interessanterweise Sequenzähnlichkeiten zu den beiden Lycopin Zyklasen aus B. linens aufweist. Dieses Fusionsgen crtYB ist das erste bekannte Gen einer pilzlichen Lycopin Zyklase. Die Entwicklung der pilzlichen crtYB Fusionsgene aus crtB und Lycopin Zyklasegenen des in B. linens gefundenen Typs wird diskutiert. Die Hauptcarotinoide von B. flavum wurden als die C 50 Carotinoide Decaprenoxanthin, Decaprenoxanthin Monoglucosid und Decaprenoxanthin Diglucosid bestimmt. Bei der Analyse von B. flavumPigmentmutanten wurden außerdem die neuen Carotinoide Nonapren [2(3Methyl2butenyl)e, ycarotin], Flavuxanthin [2,2'Bis(4hydroxy3 methyl2butenyl)y, ycarotin] und Nonaflavuxanthin [2(4Hydroxy3methyl2 butenyl)y, ycarotin] als Intermediate identifiziert. Basierend auf den nachgewiesenen Carotinoiden konnte der vermutliche C 50 Carotinoid Biosyntheseweg für B. flavum vorgeschlagen werden. Durch Sequenzanalyse von B. flavumTransposonmutanten konnten erstmalig crt Gene der C 50 Carotinoid Biosynthese isoliert werden. Auf dem crt Gencluster von B. flavum konnten die Gene crtE, crtB und crtI aufgrund von Sequenzähnlichkeiten zu bekannten Genen bestimmt werden. Heterologe Expression in E. coli und Geninaktivierung durch homologe Rekombination in B. flavum zeigten, daß die Produkte von drei weiteren Genen ausreichen, um die C 50 Carotinoide von B. flavum zu bilden. Das Produkt eines neuen Lycopin Elongasegens (crtEb) verlängert Lycopin an Position C2 und C2' um jeweils eine C 5 Isopreneinheit und bildet ein azyklisches C 50 Carotinoid. Dieses wird von den Produkten der neuen C 50 Zyklasegene crtYe und crtYf zu einem zyklischen C 50 Carotinoid umgesetzt. Die Ergebnisse zeigen, daß entgegen früherer Vorstellungen, die Addition einer Isopreneinheit und die Zyklisierung bei der Bildung von zyklischen C 50 Carotinoiden zwei getrennte Schritte sind.
1. In dieser Arbeit konnten durch chemische Mutagenese drei Pigmentmutanten erzeugt werden, die entsprechend ihrer Pigmentierung in drei Kategorien eingeteilt wurden:hellorange (OC-Mutante), gelb (YC-Mutante) und weiß (WH-Mutante). 2. Durch MS- und NMR-Analysen konnte die Struktur des von H. halophilus produzierten Carotinoids als Methylglykosyl-3,4-dehydro-apo-8’-lycopenoat aufgeklärt werden. Zusätzlich wurden auch die von der OC-Mutante produzierten Carotinoide als Hydroxy-3,4-dehydro-apo-8’-lycopin und Methylhydroxy-3,4-dehydro-apo-8’- lycopinoat identifiziert. Bei allen Pigmenten handelt sich um 8’-Apoderivate mit einer asymmetrischen Anordnung der Methylgruppen. Diese Art von Carotinoiden konnte zuvor nur in dem marinen Isolat P. maritimus gefunden werden (Shindo et al., 2008) 3. Auf Basis der genetischen und biochemischen Daten hinsichtlich der Carotinoide in H. halophilus konnte ein neuartiger Biosyntheseweg postuliert werden. Dabei beginnt die Synthese des C30-Carotinoids nicht wie bei allen bekannten Pigmenten dieser Art mit der Kondensation von zwei C15-Körpern, sondern durch die Kondensation von einem C10- mit einem C20-Molekül. Durch anschließende Desaturierungen, Hydroxylierungen, Methylierungen und Glykosylierungen entsteht das in H. halophilus identifizierte Carotinoid Methylglykosyl-3,4-dehydro-apo-8’-lycopenoat. Dieser Biosyntheseweg ist bisher einzigartig. 4. Die Carotinoide in H. halophilus sind essentiell für den Schutz der Zellen vor oxidativen Schäden. Während das Wachstum des pigmentierten Wildtyps nur wenig durch die Zugabe von bis zu 150 μM Duroquinon beeinträchtigt wurde, wurde das Wachstum der farblosen Pigmentmutante WH schon ab einer Duroquinonkonzentration von 120 μM vollständig gehemmt. Auch durch in vitro-Versuche konnte die antioxidative Eigenschaft von Methylglykosyl-3,4-dehydro-apo-8’-lycopenoat und der Derivate Hydroxy-,4-dehydro-apo-8’-lycopin und Methylhydroxy-3,4-dehydro-apo-8’-lycopinoat bestätigt werden. Dabei war die Wirksamkeit des Carotinoids aus H. halophilus sogar besser als die der biotechnologisch genutzten Pigmente ß-Carotin und Astaxanthin. 5. Durch Wachstumsexperimente konnte gezeigt werden, dass die Carotinoide auch eine Rolle in der Salzadaptation des Bakteriums spielen. Bei niedrigen Salinitäten zeigten der Wildtyp und die farblose Pigmentmutante keine Unterschiede im Wachstum. Eine hohe NaCl-Konzentration von 3,0 M NaCl führte jedoch zu einem verlangsamten Wachstum der Carotinoidmutante WH. 6. Im Genom von H. halophilus konnten anhand von Sequenzvergleichen mit bereits bekannten Kompetenzproteinen aus B. subtilis eine Reihe von putativen Genen identifiziert werden, die dem Bakterium theoretisch die Fähigkeit zur Ausbildung einer natürlichen Kompetenz verleihen. 7. Um die Fähigkeit von H. halophilus zur natürlichen DNA-Aufnahme zu testen, wurde eine Methode entwickelt, durch die es möglich war, viele unterschiedliche Bedingungen zu analysieren. Als Donor-DNA wurde die chromosomale DNA einer Erythromycin-resistenten Mutante von H. halophilus eingesetzt, die innerhalb dieser Arbeit erzeugt wurde. Insgesamt konnten so über 3000 Ansätze getestet werden. Jedoch konnte bei keiner dieser Bedingungen eine natürliche Kompetenz von H. halophilus festgestellt werden. 8. Innerhalb dieser Arbeit ist es gelungen eine Methode zur effizienten Transformation von H. halophilus zu etablieren. Dabei erfolgte die DNA-Aufnahme durch eine PEGvermittelte Protoplastenfusion. Mit dieser Methode konnten für H. halophilus Transformationseffizienzen von 2-102 Transformanden/μg DNA erreicht werden. 9. Durch die Möglichkeit H. halophilus transformieren zu können, ist es in dieser Arbeit erstmalig gelungen, ein System zur markerlosen Deletion von Genen in H. halophilus zu etablieren. Dabei wurde in einem ersten Schritt ein nicht-replizierendes Plasmid, das den gewünschten mutierten Locus enthält, durch Protoplastenfusion in H. halophilus transformiert. Durch einfach homologe Rekombination konnte das Plasmid in das Genom integrieren. Die so erhaltenen Integranten wurden im zweiten Schritt unter nicht-selektiven Bedingungen für etwa 90 Generationen kultiviert. Hierbei kam es zu einer zweiten homologen Rekombination, wodurch das Plasmid wieder aus dem Genom geschnitten wurde (Segregation). Dies resultierte entweder in den Wildtyp-Locus oder in den gewünschten mutierten Locus. Potentielle Integranten wurden auf einen CmS-Phänotyp getestet und mit Hilfe von Southern-Blot-Analysen verifiziert. 10. Mit Hilfe des in dieser Arbeit etablierten Systems zur markerlosen Mutagenese von H. halophilus wurde eine pro-Mutante generiert, deren proHJA-Operon deletiert war. 11. Überraschenderweise konnte die Mutante immer noch Prolin synthetisieren und war demnach nicht prolinauxotroph. Jedoch war H. halophilus pro nicht mehr in der Lage, Prolin als ein kompatibles Solut zu synthetisieren. Trotzdem zeigte das Wachstum der Mutante unter Hochsalzbedingungen keine Beeinträchtigung. Dies konnte auf eine gesteigerte Akkumulation von Glutamat, Glutamin und Ectoin zurückgeführt werden, wodurch der Verlust von Prolin als Osmolyt kompensiert wurde. 12. Die Expression der Gene glnA2, gltA und ectA, die für Biosyntheseenzyme von Glutamin, Glutamat und Ectoin kodieren, ist in H. halophilus pro induziert. Dabei hatte die Salinität einen stärkeren Einfluss auf die relativen RNA-Mengen von glnA2 und ectA in der pro-Mutante als im Wildtyp. gltA zeigte keine salzabhängige Expression im Wildtyp, der mRNA-Level des Gens stieg jedoch in H. halophilus pro bei hohen Salinitäten um das Doppelte im Vergleich zu Niedrigsalzbedingungen an. 13. Für die Glutaminsynthetase, dem Enzym der Glutaminsynthese, konnte eine gesteigerte spezifische Aktivität nachgewiesen werden. Dabei erhöhte sich die Aktivität mit steigender Salinität, sie war jedoch immer 30 bis 50% höher als im Wildtyp. 14. In dieser Arbeit wurde ein möglicher Biosyntheseweg zur salzunabhängigen Prolinsynthese aufgestellt. Hierbei dient Ornithin als Ausgangsmolekül, das entweder durch eine Ornithin-Aminotransferase (RocD) und eine Pyrrolin-5-Carboxylat-Reduktase (ProC und ComER) oder direkt durch eine Ornithin-Cyclodeaminase (ArcB) zu Prolin umgesetzt wird. Für alle Enzyme konnten die entsprechenden Gene im Genom von H. halophilus identifiziert werden. 15. Vor dieser Arbeit konnte bereits gezeigt werden, dass Prolin das dominante kompatible Solut unter Hochsalzbedingungen ist. Dabei war die Expression des pro-Operons sowohl von der Salzkonzentration als auch vom Anion Chlorid abhängig. Es zeigte sich, dass auch die zelluläre Konzentration von ProJ salzabhängig war, mit einem Maximum bei 2,0 – 3,0 M NaCl. Zudem war der ProJ-Gehalt wachstumsphasenabhängig. Während das Enzym besonders in frühexponentiellen Zellen detektiert werden konnte, sank die zelluläre ProJ-Konzentration kontinuierlich in stationären Zellen. Nach einem Salzschock von 0,8 auf 2,0 M NaCl stieg die ProJMenge nach 2 h leicht an und sank nach 4 h wieder kontinuierlich. Der ProJ-Level war in Gegenwart von NaCl maximal, sank aber nur leicht um 25%, wenn die Zellen mit 2 M Na-Glutamat oder Na-Nitrat inkubiert wurden. Die Prolinbiosynthese in H. halophilus wird demnach auch auf Ebene der Translation und/oder der Proteinstabilität reguliert. 16. Die Aminosäure Prolin wird nicht nur als kompatibles Solut in H. halophilus synthetisiert, sondern kann auch als C- und Energiequelle und als Stickstoffquelle genutzt werden. 17. Liegt Prolin als alleinige C- und Energiequelle im Medium vor, erfolgt eine salzabhängige Akkumulation des Osmolyts in H. halophilus, während der zelluläre mRNA-Level der pro-Gene stark reduziert ist. Prolin wird demnach nicht nur als Cund Energiequelle aufgenommen, sondern auch als kompatibles Solut. 18. Im Genom von H. halophilus konnten zwei Gene, die für die potentiellen Na+/Prolin- Symporter 3541 und 1381 kodieren, identifiziert werden, deren mRNA-Level bei Wachstum auf Prolin induziert war. 19. Durch Aminosäuresequenzvergleiche konnten in dieser Arbeit im Genom von H. halophilus jeweils zwei Isogene gefunden werden, die für potentielle Prolindehydrogenasen (prodh1/prodh2) und Pyrrolin-5-Carboxylat-Dehydrogenasen (p5cdh1/p5cdh2) kodieren. Mittels reverser Transkription von mRNA und anschließender PCR-Analysen konnte gezeigt werden, dass prodh2 und p5cdh2 ein Operon bilden (put-Operon). Eine Quantifizierung der Transkriptmengen der Abbaugene prodh1/p5cdh1 und prodh2/p5cdh2 mittels quantitativer PCR in Zellen, die in Gegenwart von Prolin als alleiniger C- und Energiequelle oder Stickstoffquelle gezogen wurden, zeigten deutlich, dass unter diesen Bedingungen nur die Expression von prodh2/p5cdh2 induziert wurde. Wurden die Zellen in Gegenwart von Glukose als C- und Energiequelle gezogen, stieg die mRNA-Menge von prodh2/p5cdh2 unter Hochsalzbedingungen um den Faktor 10 – 20 im Vergleich zu Zellen, die bei niedrigen Salinitäten kultiviert wurden, an. Die mRNA-Menge des put- Operons war in Glukose-gewachsenen Zellen wachstumsphasenabhängig mit einem Maximum in der stationären Wachstumsphase. In Gegenwart von 1,0 M NaCl stieg die mRNA-Menge um das 20-Fache, in Gegenwart von 3,0 M NaCl um das Doppelte. 20. Mit Hilfe des Systems zur markerlosen Mutagenese in H. halophilus konnte eine glnA2-Mutante generiert und verfiziert werden. H. halophilus glnA2 zeigte keinen Wachstumsphänotyp bei Anzucht in Gegenwart von unterschiedlichen NaCl-Konzentrationen. Die Deletion von glnA2 führte zu einer Inhibierung der salzabhängigen Prolinbiosynthese, während der Glutamat- und Glutaminpool bei allen getesteten Salinitäten im Vergleich zum Wildtyp nicht verändert war. Der Verlust von Prolin als kompatibles Solut konnte teilweise durch einen Anstieg des Ectoinlevels kompensiert werden. Die zelluläre Transkriptmenge von glnA1 und ectA war in H. halophilus glnA2 stärker von der Salinität beeinflusst als im Wildtyp, während die salzabhängige Regulation der proH-Expression aufgehoben wurde. Im Gegensatz zum Wildtyp wurde die spezifische Aktivität der Glutaminsynthetase in H. halophilus glnA2 durch steigende NaCl-Konzentrationen inhibiert.
Ziel dieser Arbeit war es erstmals durch eine Kombination aus chemischer Mutagenese und gezielter genetischer Modifikation (hier: „metabolic engineering“) einen Phaffia-Stamm herzustellen, welcher über die Mutagenese hinaus über eine weiter verstärkte Astaxanthin-Synthese verfügt.
Die von „DSM Nutritional Products“ bereitgestellten chemischen Mutanten wurden analysiert und über einen Selektionsprozess auf Pigmentstabilität und Wachstum hin optimiert, da die Stämme aus cryogenisierter Dauerkultur starke Pigmentinstabilitäten und ein verzögertes Wachstum aufwiesen.
Über eine exploratorische Phase wurde die Carotinoidsynthese analysiert und festgestellt, dass in den Mutanten keine Einzelreaktionen betroffen sind, welche für die Heraufregulierung der Carotinoidsynthese in den Mutanten verantwortlich sind. Hierbei wurden Limitierungen identifiziert und diese durch Transformation von Expressionsplasmiden mit geeigneten Genen aufgehoben, um damit eine noch effizientere Metabolisierung von Astaxanthin-Vorstufen hin zu Astaxanthin zu erreichen. Eine Überexpression der Phytoensynthase/Lycopinzyklase crtYB resultierte in einem gesteigerten Carotinoidgehalt bei gleichbleibendem Astaxanthin- Anteil. Durch eine zweite Transformation mit einer Expressionskassette für die Astaxanthin-Synthase asy konnte der Carotinoidgehalt weiter gesteigert und zusätzlich eine Limitierung der Metabolisierung von Astaxanthin-Vorstufen behoben werden, sodass die Transformante nahezu alle Intermediate der Astaxanthinsynthese zu Astaxanthin metabolisieren konnte (Gassel et al. 2013). Es konnte gezeigt werden, dass auch in den Mutanten, aus Experimenten mit dem Wildtyp bekannte, Limitierungen identifiziert und ausgeglichen werden konnten.
Es ist wohl unumstritten, dass das Leben, wie wir es kennen, ohne die sauerstoffproduzierenden Organismen unserer Erde nicht möglich wäre. Zu ihnen gehören nicht nur die Landpflanzen, deren mannigfaltige Nutzung wichtiger Bestandteil unseres Alltags ist. Auch mikroskopisch kleine Algenarten leisten einen entscheidenden Beitrag zu den Stoffwechselkreisläufen dieser Welt. Unter ihnen befinden sich die Kieselalgen (Diatomeen), die mit einer Varietät von bis zu 10000 Spezies etwa 40 % der marinen Primärproduktion verantworten. Der Ursprung der heutigen zur oxygenen Photosynthese befähigten Eukaryoten geht auf Endosymbioseereignisse zurück, von denen aus sich diese Organismen ausgesprochen vielfältig entwickelt haben. Diese Vielfalt wird dabei nicht nur anhand ihrer äußeren Morphologie, sondern auch auf subzellulärer Ebene, deutlich. So zum Beispiel durch die unterschiedlichen Strukturen der Thyakoidmembranen, die sich in Kieselalgen wie Cyclotella meneghiniana in dreilagigen Bändern arrangieren. In Pflanzen wie Nicotiana tabacum (Tabak) hingegen bilden sie große, stapelartige Bereich aus, die zur räumlichen Separation der in den Thylakoiden eingebetteten Photosystemen beitragen. Auch die an die Photosysteme (PS) gebundenen Lichtsammelproteine (Lhcs) haben sich in Tabak und Cyclotella unterschiedlich entwickelt. Gemäß ihrem Namen zeichnen sie sich zwar allesamt durch die Sammlung und Weiterleitung der Lichtenergie an die Photosysteme aus, grenzen sich aber in Hinblick auf Proteingröße und Pigmentierung voneinander ab.
Die Lhcs der höheren Pflanzen werden entsprechend ihrer Zuordnung zu den Photosystemen in den aus zwei Heterodimeren bestehenden LHCI des PSI und die Lhcb-Antennenproteine des PSII unterschieden. Zu letzteren gehören der trimere Hauptantennenkomplex LHCII und die monomeren, minoren Antennenproteine. Die Lhcs binden die zur Lichtsammlung benötigten Pigmente, vor allem Chlorophyll a und Chlorophyll b, aber auch primäre Carotinoide wie Violaxanthin, Lutein und Neoxanthin, in unterschiedlichen Stöchiometrien. Es ist bereits bekannt, dass die Pigmentierung entscheidend zur Stabilität der Lichtsammelproteine beiträgt, wenngleich zum Teil auch eine gewisse Flexibilität in Bezug auf die Art der gebundenen Pigmente an den entsprechenden Bindestellen der Proteine besteht.
Im Rahmen dieser Arbeit liegt der Fokus auf der Fragestellung inwieweit die in der Regel nicht in Pflanzen vorkommenden Ketocarotinoide die Struktur und Funktion des LHCII aus einer Ketocarotinoide produzierenden N. tabacum - Transformante (bkt-Linie) beeinflussen und welche Auswirkungen sie auf dessen Photosyntheseapparat im Allgemeinen haben. Die bkt-Linie bildet dabei zum Teil auf Kosten ihrer primären Carotinoide sowohl das als antioxidativ und als anti-kanzerogen beschriebene Astaxanthin, als auch dessen Vorstufe Canthaxanthin und einige Derivate dieser Pigmente, die, nach vergleichenden HPLC-Analysen von Blättern und Thylakoidfraktionen, zu einem großen Teil mit der Thylakoidmembran assoziiert sind. Durch spektroskopische Untersuchungen konnte gezeigt werden, dass diese Ketocarotinoide in Hinblick auf die Energieweiterleitung zum Chlorophyll a nicht funktionell an den LHCII binden, ihre Produktion aber die Trimerisierung dieses Lichtsammelkomplexes in N. tabacum nachhaltig beeinträchtigt. Auch die Assemblierung der PSII-LHCII-Superkomplexe wird dadurch maßgeblich gestört. Elektronenmikroskopische Aufnahmen von Chloroplasten der bkt-Linie verdeutlichten zudem die Beeinträchtigung der Granathylakoid-Stapelung: Sie fällt ungeordneter aus als im Wildtyp, was durch den Mangel an intakten LHCII-Trimeren begründet sein kann.
In funktioneller Hinsicht stören die Ketocarotinoide die Energieweiterleitung innerhalb des PSII und bewirken die Reduktion der photoprotektorischen, nicht-photochemischen Fluoreszenzlöschung des Wirtsorganismus nachhaltig. Zeitgleich reduzieren sie durch einen abschirmenden Effekt auf Grund ihrer Assoziation mit der Thylakoidmembran und/oder durch einen eventuellen S1-S1-Energietransfer von Chl a auf die Ketocarotinoide aber auch die Menge der Lichtenergie, die über die Lhcs an die Photosysteme weitergeleitet wird. Dadurch kommt ihnen neben dem nachhaltig störenden Einfluss auf die Intaktheit des Photosyntheseapparats zugleich auch eine schützende Wirkung vor einem Übermaß an Lichtenergie zu.
Aus Cyclotella meneghiniana sind zwei Hauptantennenkomplexe bekannt: FCPa und FCPb. Im Gegensatz zu den Lhcs der Chl a/b-haltigen Organismen binden die Lichtsammelproteine der Diatomeen das Xanthophyll Fucoxanthin anstelle des Luteins, und Chlorophyll c anstelle des Chlorophyll b. Im Gegensatz zu der bereits sehr detailliert aufgeklärten Struktur des trimeren LHCII in höheren Pflanzen, existieren für den Aufbau des FCPb in C. meneghiniana bisher nur fundierte Modellvorschläge. Diese postulieren eine homotrimere Grundstruktur für den FCPb, die zu höheren Oligomeren assembliert.
In der vorliegenden Arbeit konnte anhand elektronenmikroskopischer Aufnahmen und der anschließenden Einzelpartikelanalyse nun erstmalig die Struktur des etwa 6-7 nm großen, trimeren FCPb gezeigt und die Richtigkeit der bisher postulierten Modellvorschläge in Hinblick auf die Struktur des Trimers bewiesen werden. Nach den hier dargelegten Erkenntnissen gleicht die Anordnung der Untereinheiten des FCPb-Trimers der des LHCII. Zudem ergibt sich aus dem Zusammenhang der hier erhobenen Daten und den in der Fachliteratur veröffentlichten Ergebnissen zum Thema FCPb ein klares Bild über die Anordnung der höheren Oligomere in Form von Nonameren. Auch diese Erkenntnisse unterstützen das ursprünglich von C. Büchel vorgeschlagene Modell für die oligomere Struktur des FCPb in C. meneghiniana.
Carotinoide sind Pigmente, die in Pflanzen, Algen, einigen Pilzen und Bakterien vorkommen. Sie spielen eine wichtige Rolle bei der Photosynthese durch Absorption von Licht und beim Lichtschutz. Sie sind verantwortlich für die braunen, roten, orangen und gelben Farben von Obst, Gemüse, Herbstblättern und die Farbe einiger Blumen und Algen. Tiere können keine Carotinoide synthetisieren, daher ist ihre Anwesenheit auf die Nahrungsaufnahme zurückzuführen. Carotinoide sind Tetraterpenoide (40C), die aus Isoprenoidmolekülen (5C) synthetisiert werden. Der Methylerythritol-phosphatweg ist der Carotinoid-Vorläuferweg, der die Isoprenoideinheiten bildet. Carotinoide haben aufgrund ihrer gesundheitlichen Vorteile das Interesse der Nutrazeutika-Industrie geweckt.
Fucoxanthin ist ein Carotinoid, das nur in Kieselalgen, Braunalgen, Haptophyten und einigen Dinoflagellaten vorkommt. Aufgrund seiner Vorteile zur Vorbeugung von Krebs, kognitiven Erkrankungen und Fettleibigkeit sowie seiner antioxidativen Eigenschaften ist Fucoxanthin ein sehr interessantes Molekül fur die Nutrazeutikabranche.
Fucoxanthin hat eine komplexe chemische Struktur mit einer Allenbindung und einer Epoxyketogruppe. Daher wäre seine chemische Synthese kompliziert, da es auch eine stereokontrollierte Synthese erfordert86. Aus diesem Grund ist die Extraktion aus Makroalgen oder Mikroalgen die Methode der Wahl für die kommerzielle Herstellung von Fucoxanthin.
In dieser Arbeit bestand das Ziel darin, die Fucoxanthin-Produktivität in Kieselalgen mit gentechnischen Methoden zu steigern, damit die Zellen mehr Fucoxanthin produzieren. Zu diesem Zweck wurde der Effekt der Insertion zusätzlicher Kopien von Genen in das Genom untersucht, die für geschwindigkeitsbestimmende oder Schlüsselenzyme im Carotinoid- und MEP-Weg kodieren.
Zu Beginn wurden diese Effekte bei einzelnen Mutanten beobachtet. Letztendlich ist es jedoch das Ziel, eine Mutante zu erzeugen, die mehrere geschwindigkeitsbestimmende Enzyme überexprimiert, um auf diese Weise Engpässe zu vermeiden. In früheren Studien erreichten Eilers et al.54 durch die einmalige Überexpression der psy- und dxs-Gene in der Kieselalge P. tricornutum einen 2.4- und 1.8-fachen Anstieg der Fucoxanthin-Spiegel.
In dieser Arbeit führte die Insertion zusätzlicher Kopien der Gene idi und pds2 nicht dazu, dass die Zellen mehr Fucoxanthin produzieren. Im Gegensatz dazu erreichten die Mutanten mit zusätzlichen Kopien der Gen ggpps und mit zusätzlichen Kopien sowohl von psy als auch von dxs seine um 28% bzw. 10% höhere Fucoxanthin-Produktivität pro Million Zellen. Bei diesen Mutanten ist die Gesamtproduktivität jedoch geringer als beim Wildtyp, da ihr Wachstum langsamer als beim Wildtyp ist.
Unter Berücksichtigung der besten Zielgene wurden Mutanten erzeugt, die gleichzeitig zusätzliche Kopien von psy, dxs und ggpps enthielten. Die Mutanten hatten unter sehr niedriegen Lichtbedingungen eine um bis zu 61% höhere Produktivität pro Million Zellen als der Wildtyp. Ausnahmsweise wurden diese Mutanten bei sehr schwachem Licht (10 µE m-2 s-1) gezüchtet, da sie sehr gestresst waren und als Zellklumpen wuchsen. Obwohl die Gesamt-Fucoxanthin-Spiegel in diesen Mutanten unter diesen Bedingungen höher sind als im Wildtyp, sind sie daher niedriger als die Fucoxanthin-Spiegel bei den in anderen Experimenten verwendeten Lichtbedingungen (50 µE m-2 s-1). Als Ergebnis dieser Experimente kann gesagt werden, dass die Belastung der Zellen nach den genetischen Veränderungen untersucht werden muss, da dies zu einer Abnahme der Biomasse und folglich zu einer Abnahme der Fucoxanthinproduktion führt. Alternativ könnte auch eine 2-Stufen-Kultur etabliert werden, in der in einem ersten Schritt eine hohe Biomasse erreicht wird und im zweiten Schritt die Expression der interessierenden Gene induziert wird.
Aufgrund der antioxidativen Eigenschaften von Carotinoiden besteht eine übliche Strategie zur Akkumulation von Carotinoiden darin, die Zellen unter oxidative Stressbedingungen zu setzen. Diese Strategie ist jedoch nicht wirksam für die Anreicherung von Fucoxanthin unter hohen Salzkonzentrationen oder hohen Lichtbedingungen. Bessere Versuchspläne könnten jedoch eine 2-Stufen-Kultur oder adaptive Laborbedingungen gewesen sein.
Eine andere mögliche Strategie zur Erhöhung des Fucoxanthinspiegels wäre die Durchführung einer zufälligen Mutagenese der Zellen. Auf diese Weise sind keine Vorkenntnisse über den Carotinoidsyntheseweg und seine Regulation erforderlich und es kann zu Veränderungen in Genen führen, die keine offensichtlichen Ziele sind.
Experimente mit zufälliger Mutagenese erfordern ein Hochdurchsatz-Screeningsystem, da Hunderte oder sogar Tausende von Mutanten erhalten werden. Eine mögliche Strategie, um die Kultivierung der hohen Anzahl von Mutanten zu vereinfachen, ist die Einkapselung dieser Mutanten in Alginatkügelchen. Auf diese Weise können alle Mutanten in demselben Gefäß kultiviert werden. Die eingekapselten Zellen können dann beispielsweise mit einem Durchflusszytometer auf große Partikel durch Fluoreszenz- oder Absorptionsmessungen gescreent werden.
...
Mikroalgen wird aufgrund ihrer photoautotrophen Lebensweise, ihrer meist einfachen Anzucht und ihres schnellen Wachstums ein großes Potential als Produzenten verschiedener Stoffe, wie beispielsweise den Sekundärmetaboliten der Carotinoidbiosynthese, zugesprochen. Zur Produktion solcher Stoffe bedarf es der Aufklärung der in einem Biosyntheseweg operierenden Enzyme und ihrer zugehörigen Gene.
In dieser Arbeit sollte einerseits durch genetische Modifikation der Carotinoidbiosynthese der Fucoxanthingehalt erhöht und andererseits die Produktion von Astaxanthin in P. tricornutum erreicht werden. Bisher fehlen experimentelle Nachweise über die Funktion, Regulation und die limitierenden Eigenschaften daran beteiligter Gene und deren Enzyme. Um dem Ziel der Arbeit näher zu kommen, wurden zuerst potentiell an der Regulation der Carotinoidbiosynthese beteiligte Gene ausgewählt und deren Enzyme funktionell charakterisiert. Eines dieser Enzyme ist das Eingangsenzym der Carotinoidbiosynthese, die Phytoen-Synthase. Die entsprechend annotierte putative Sequenz (psy #Pt56881) wurde zur Analyse herangezogen. Nachdem im Rahmen dieser Arbeit über die Komplementation in einem dafür ausgerichteten E. coli Stamm der funktionelle Nachweis der Phytoen-Synthase erbracht werden konnte, wurde untersucht, ob die Phytoen-Synthase einer lichtabhängigen Expression unterliegt und somit die Carotinoidsynthese im WT von P. tricornutum limitiert. Durch die Inhibierung der Phytoen-Desaturase mittels Norflurazon konnte die verstärkte Akkumulation des Produktes der Phytoen-Synthase, Phytoen, bei einem Transfer der P. tricornutum-Kulturen von Schwach- in Starklicht gezeigt werden. Die Expression der Phytoen-Synthase von P. tricornutum wird demnach durch die Lichtbedingungen reguliert und limitiert auch die Carotinoidsynthese. Ein weiteres an der Carotinoidsynthese beteiligtes Enzym ist die Zeaxanthin-Epoxidase. Sie bietet zugleich eine Möglichkeit, an dieser Stelle die Carotinoidsynthese in Richtung Astaxanthinproduktion umzulenken. Für P. tricornutum sind drei potentielle Genkandidaten (zep1: #Pt45845; zep2: #Pt56488; zep3: #Pt56792) annotiert, welche ebenfalls im Rahmen dieser Arbeit funktionell charakterisiert wurden. Der funktionelle Nachweis erfolgte dabei ebenfalls mittels eines Komplementationsansatzes in einem damit neu etablierten Expressionssystem mit npq2-Mutanten aus der Modellpflanze A. thaliana. Die Analyse der Transformanden zeigte eine Epoxidase-Aktivität des Produktes aus zep2 und zep3. Das Enzym Zeaxanthin-Epoxidase 2 weist dabei eine andere Spezifität auf als die Zeaxanthin-Epoxidase 3, welche funktionell betrachtet der Zeaxanthin-Epoxidase aus A. thaliana am nächsten kommt. Die Zeaxanthin-Epoxidase 2 akzeptiert im Unterschied zu Zeaxanthin-Epoxidase 3 neben Zeaxanthin auch andere Substrate wie Lutein mit nur einem 3 Hydroxy-β-Iononring und stellt damit einen validen Kandidaten für die Umwandlung von Diatoxanthin in Diadinoxanthin in P. tricornutum dar. Obwohl die Transkriptanalysen ausreichende Mengen an RNA von zep1 in A. thaliana zeigen und anhand eines zusätzlichen mit der Sequenz für GFP markierten zep1-Konstruktes in WT-Protoplasten von A. thaliana der Import in den Chloroplasten und die Expression nachgewiesen werden konnte, weist die Zeaxanthin-Epoxidase 1 zumindest in den A. thaliana-Transformanden keine Epoxidase-Aktivität auf. Des Weiteren zeigt die diurnale Expression in P. tricornutum, dass die Regulation der Zeaxanthin-Epoxidasen an den Bedarf photoprotektiver Pigmente angepasst wird. Während die Regulation des Transkript-Levels von zep2 und zep3 nahezu parallel laufen und ein gemeinsames Maximum aufweisen, zeigt das Transkript-Level von zep1 ein anderes Maximum.
Die gewonnenen Erkenntnisse wurden dann zur Steigerung der Synthesekapazität mittels genetischer Modifikation des Carotinoidsyntheseweges in P. tricornutum angewendet. Durch das Einbringen zusätzlicher Genkopien der Phytoen-Synthase in P. tricornutum konnte dabei eine deutliche Steigerung des Fucoxanthingehalts unter Schwachlichtbedingungen erreicht werden. Gleichzeitig konnte durch weitere inhibitorische Versuche mittels Norflurazon beim Transfer von Schwach- zu Starklicht demonstriert werden, dass die Carotinoidsynthese durch die Kombination der genetischen Modifikation mit der Phytoen-Synthase und Starklicht per se weiterhin gesteigert werden kann. Zusammen mit den Transkriptanalysen zeigen die Pigmentanalysen, dass es einen nicht-linearen Zusammenhang zwischen RNA-Menge und gebildeter Phytoenmenge gibt, welcher durch eine zusätzliche Substratlimitierung der Phytoen-Synthase erklärt werden kann.
Bevor das Herunterregulieren der Zeaxanthin-Epoxidasen in P. tricornutum durchgeführt und damit ein verstärkter Fluss zur Astaxanthinbildung erreicht werden sollte, wurde das Potential von P. tricornutum zur Astaxanthinproduktion überprüft. Hierfür wurde die β-Carotin-Ketolase (bkt #CrAEA35045.1) aus C. reinhardtii einmal ohne und zusätzlich mit verschiedenen Präsequenzen fusioniert separat in P. tricornutum eingebracht. Astaxanthin konnte trotz Nutzung funktionell bestätigter Präsequenzen aus der Literatur nicht nachgewiesen werden. Die Versuche zeigen damit, dass hier noch weitere Untersuchungen nötig sind, um mittels eines geeigneten Transportsystems Fremd-Proteine in den Chloroplasten von P. tricornutum einzubringen. Das Ausbleiben der Astaxanthinproduktion konnte an dieser Stelle nicht hinreichend geklärt werden.
Insgesamt schaffen die Ergebnisse dieser Arbeit eine weitere Grundlage, um die Carotinoidbiosynthese in P. tricornutum besser zu verstehen und diese mittels genetischer Modifikationen biotechnologisch nutzbar zu machen.
Protein translocation across the chloroplast membrane is mediated by molecular machinery composed of protein complexes termed the TOC/TIC (the outer/inner envelope chloroplasts translocases). This translocation process is regulated by metabolic energy in form of GTP and ATP and is influenced by the lipid composition of the membrane. The ability to study the function of a single complex “TOC” in vitro using purified protein or purified chloroplast outer envelope vesicles has been instrumental for our understanding of the mechanism underlying this process.
Indeed, the TOC complex has been purified by previously established procedures. However its functional and structural analyses are impaired by the limited yield of purified protein. Therefore, protocols for native TOC complex purification are described here. The complex isolation is achieved by direct biochemical treatment of biological membrane hosting this complex or by tandem affinity purification of modified protein complex components from generated transgenic plants.
Furthermore, in this thesis, radioactive based in vitro import assays are described, namely those that allow monitoring translocation activity across the outer envelope of chloroplast. Based on the analysis of knock-out plants and isolated complexes it was previously suggested that lipid dependence of protein translocation might exist. Thus, the question was raised whether the lipid composition of the membrane has a direct influence on the behavior and functionality of the TOC translocon, or whether additional components of the chloroplast membrane account for the observed effect in vivo. To answer this question, a technique for vesicle fusion was developed. The principal aim was to explore the effect of an exchange of the lipid environment surrounding the complex translocon. This method helped to demonstrate that the SQDG and PI act stimulatory on the translocation across the outer envelope of chloroplast, whereas DGDG exhibits an inhibitory effect on TOC complex functionality.
In dieser Arbeit wurde der Hefepilz Xanthophyllomyces dendrorhous als vielseitige biotechnologische Plattform für die Produktion von Carotinoiden verwendet. Durch genetische Modifikationen der Carotinoidbiosynthese wurde ein Astaxanthin-Hochproduzent zur Akkumulation des farblosen Phytoens, das die menschliche Haut vor der schädlichen Wirkung der UV-Strahlung schützt und des gelben Zeaxanthins, das zur Förderung und Erhalt der Sehfähigkeit beiträgt, befähigt. Zur Generierung eines Phytoen-Hochproduzenten wurde das Gen crtI (Phytoen-Desaturase) inaktiviert und der Phytoengehalt durch Überexpression der Gene HMGR, crtE und crtYB gesteigert. Die Generierung eines Zeaxanthin-Hochproduzenten beinhaltete die Inaktivierung des Gens asy (Astaxanthin-Synthase) und die heterologe Expression einer bakteriellen ß-Carotin-Hydroxylase CrtZoXd.
Die Inaktivierung der Gene erfolgte mit spezifischen Knock-Out-Konstrukten, die mittels homologer Rekombination in crtI oder asy integrierten. Nachdem die Transgene auf Vektoren mit verschiedenen Antibiotikaresistenzen kloniert wurden, wurde die Überexpression durch genomische Integration in die ribosomale DNA erreicht. Anschließend wurde die Carotinoidzusammensetzung der Zellextrakte durch Hochleistungsflüssigkeitschromatographie an einer C18-Trennsäule oder durch Dünnschichtchromatographie bestimmt. Der Knock-Out-Nachweis erfolgte mittels Polymerase-Kettenreaktion und Amplifikation der Genloci, während die Anzahl integrierter Carotinoidgene durch quantitative Real-Time-PCR bestimmt wurde. Die Kultivierungen von X. dendrorhous wurden sowohl in Schikanekolben als auch in einem 2L-Bioreaktor durchgeführt.
Im Zuge der genetischen Modifikationen konnte der Ploidiegrad des Wildtyps bestimmt werden, der bis dahin unbekannt war. Durch das Auftreten von instabilen heterozygoten Stämmen und deren Überführung zu stabilen Homozygoten wurde die Existenz eines diploiden Genoms nachgewiesen. Um die für die biotechnologische Anwendung notwendige Stabilität der Carotinoidbiosyntheseleistung zu erreichen, wurden zwei Strategien entwickelt. Hierbei erfolgte die Stabilisierung der Stämme als Folge mitotischer Rekombination nach Subkultivierung und anschließender Farbselektion oder durch Induktion des sexuellen Zyklus und Sporulation.
Der crtI-Knock-Out führte zur Akkumulation von 3,6 mg/g dw Phytoen. Anschließend wurde die Limitierung der Phytoensynthese durch crtYB-Überexpression aufgehoben und die Versorgung der Carotinoidbiosynthese mit Vorläufermolekülen durch HMGR- und crtE-Überexpression erhöht. Im Bioreaktor wurde durch die Anwendung eines dreistufigen Fed-Batch-Prozesses, der eine effiziente Glucoseverwertung sicherstellte, mit 10,4 mg/g dw die höchste bis dato publizierte zelluläre Phytoenkonzentration im stabilisierten Hochproduzenten erreicht.
Der asy-Knock-Out führte zur Akkumulation von 4,5 mg/g dw ß-Carotin, das anschließend durch heterologe Expression der codon-optimierten ß-3,3-ß-Hydroxylase crtZoXd im Hochproduzenten zu 3,5 mg/g dw Zeaxanthin umgesetzt wurde. Zur Optimierung des Vorgehens wurden Knock-In-Konstrukte entwickelt, mit denen beide Schritte (Knock-Out und Integration von Carotinoidgenen) in nur einem molekular-biologischen Schritt durchgeführt und 94 % des in einem Wildtypstamm vorhanden ß-Carotins zu Zeaxanthin umgesetzt wurden. Die Optimierung der Wachstumsbedingungen bei der Bioreaktor-Kultivierung des stabilisierten Zeaxanthinproduzenten führte mit 10,8 mg/L zu einem 5-fach höheren Zeaxanthingehalt im Vergleich zur Schikane-Kultivierung.
Durch den Einsatz der Pentosen Arabinose und Xylose als alternative Kohlenstoffquellen wurde der Carotinoidgehalt der Phytoen- und Zeaxanthin-Hochproduzenten um 70 bzw. 92 % im Vergleich zur Glucose-Kultivierung gesteigert, wobei die Gründe für diesen Effekt in einer stärkeren Kohlenstoffverwertung und der Hemmwirkung von Glucose vermutet wurden. Aus verschiedenen pflanzlichen Abfallstoffen kann Xylose durch Hydrolyse freigesetzt werden, deren Nutzung zum Aufbau einer nachhaltigen und kostengünstigen biotechnologischen Carotinoidproduktion beitragen kann.
Darüber hinaus wurden multioxigenierte Zeaxanthinderivate, von denen eine positive Wirkung auf die menschliche Gesundheit vermutet wird, durch kombinatorische Biosynthese erhalten. Durch die schrittweise Integration der Gene crtZoXd, crtG (ß-2,2-Hydroxylase) und bkt (ß-4,4-Ketolase) in eine ß-Carotinmutante wurde die Biosynthese von Zeaxanthin, Nostoxanthin und schließlich von 4-Keto-Nostoxanthin und 4,4-Diketo-Nostoxanthin erreicht. Anschließend erfolgte die chemische Reduktion zu den neuartigen Carotinoiden 4-Hydroxy-Nostoxanthin und 4,4-Dihydroxy-Nostoxanthin und der zweifelsfreie Nachweis aller vier Carotinoide anhand der mittels Massenspektrometrie bestimmten Molekülmassen und Fragmentierungsmuster.
Erstmals konnte eine zCarotinDesaturase einer höheren Pflanze nach heterologer Expression in E. coli in nativer Form gereinigt und enzymatisch charakterisiert werden. Dazu wurde die cDNA der CapsicumZDS in einen Expressionsvektor kloniert, der die ZDS als rekombinantes Polypeptid mit 6 Nterminalen Histidinen exprimierte. Dadurch konnte das Enzym in nur zwei Schritten über eine Kombination von Ammoniumsulfatfällung und MetallionenAffinitätschromatographie selektiv aus E. coli separiert werden. Die ZDS wurde ohne eine mutmaßliche Transitsequenz als ein Polypeptid von 59 kDa exprimiert. Das pH Optimum der ZDSAktivtität liegt bei 7,2 in der Nähe der rechnerisch ermittelten pIWertes von 7,4. Die ZDS führt zwei Desaturierungsschritte ausgehend von zCarotin zu Lycopin als ein monomeres Protein durch. Unter Verwendung des TwoHybridSystems, einer Gelelektrophorese unter nativen Bedingungen und einer Gelfiltration der nativen ZDS, konnte gezeigt werden, daß die ZDS als Monomer und als Dimer vorliegen kann. Die Dimerisierung der ZDS ist jedoch für deren enzymatischer Aktivität und für die Durchführung beider Desaturierungsschritte nicht notwendig. Für die Substratcarotinoide zCarotin und Neurosporin, wurden die Km Werte von 8,4 µM und 9,0 µM bestimmt. Die CapsicumZDS zeigt von ihrer Aminosäuresequenz her eine große Ähnlichkeit zu den cyanobakteriellen zCarotinDesaturasen und eine geringere Ähnlichkeit zu den pflanzlichen Phytoendesaturasen. Eine diskutierte phylogenetische Verwandtschaft der zCarotin und Phytoendesaturase aus höheren Pflanzen und Cyanobakterien wird durch die Verwendung des gleichen Kofaktors Plastochinon und durch die gemeinsame Hemmbarkeit mit den zCarotinDesaturaseHemmstoffen J852 und LS80707 unterstützt. Eine Kofaktoruntersuchung ergab, daß Plastochinon sowohl der Kofaktor der ZDS aus Capsicum, als auch der Phytoendesaturasen aus Gentiana lutea (gelber Entian), aus dem Cyanobakterium Synechococcus sp. PCC 7942, sowie der z CarotinDesaturase aus Synechocystis sp. PCC 6803 ist. Der Km Wert von Decyl Plastochinon wurde für die CapsicumZDS zu 0,4 µM bestimmt. Der Kofaktor der z CarotinDesaturase Plastochinon, sowie die Entdeckung einer plastidären terminalen Oxidase (Carol et al., 1999) ermöglicht die Entwicklung eines Modells der Übertragung der bei der Desaturierung von zCarotin gewonnenen Elektronen über Plastochinon auf Sauerstoff, wie es bereits für die pflanzliche Phytoendesaturase postuliert wurde (Carol
Durch Integration beziehungsweise Deletion einzelner oder mehrerer Gene der Carotinoidbiosynthese wurden Cyanobakterien-Transformanten mit einem vom Wildtyp abweichenden Carotinoidgehalt oder einer veränderten Carotinoidzusammensetzung hergestellt. Anhand dieser Transformanten wurden die Auswirkungen der geänderten Carotinoidkomposition auf die Photosyntheseleistung und besonders auf den Schutz der Photosynthese vor Schädigungen durch Starklicht untersucht. Die Integration des Zeaxanthin Epoxidase-Gens aus Gentiana lutea in das Genom von Synechococcus PCC 7942 PIM8 führte zu einer Transformante Synechococcus PCC 7942 PIM8 pFP1ZE in der erstmalig die am Xanthophyllzyklus der höheren Pflanzen beteiligten Carotinoidepoxide Violaxanthin und Antheraxanthin gebildet wurden. Diese beiden zusätzlich gebildeten Carotinoidepoxide hatten keine Auswirkungen auf die Photosyntheseleistung und die Quantenausbeute von Synechococcus PCC 7942 PIM8 pFPlZE unter Schwachlichtbedingungen. Allerdings ging in dieser Transformante die maximale Photosyntheseleistung nach Inkubation im Starklicht deutlich stärker zurück als in der Kontroll-Transformante. Diese erhöhte Sensitivität gegenüber Starklicht korreliert mit dem signifikant niedrigeren Zeaxanthingehalt dieser Transformante. Die wichtige Schutzfunktion von Zeaxanthin vor Starklichtschädigungen des Photosyntheseapparates wurde durch Experimente mit Synechocystis PCC 6803 bestätigt. Es wurden durch Inaktivierung des Ketolase-Gens, des b-Carotin Hydroxylase-Gens bzw. beider Gene zusammen, Mutanten hergestellt. die entweder kein Echinenon, kein Zeaxanthin oder keines der beiden Carotinoide synthetisieren konnten. Darüber hinaus wurde in den b-Carotin Hydroxylase-defizienten Mutanten ein nicht hydroxyliertes Myxoxanthophyllderivat anstelle von Myxoxanthophyll gebildet. In den Zeaxanthin defizienten Synechocystis Mutanten ist die Photosynthese nach Inkubation in Starklicht deutlich stärker inhibiert als im Wildtyp und der Mutante ohne Echinenon. Besonders empfindlich gegenüber Starklicht erwiesen sich die Kulturen ohne Zeaxanthin und Myxoxanthophyll, wenn in Gegenwart von Methylenblau oder Methylviologen verstärkt 1O2 bzw. O2.-, H2O2 und OH. generiert wurden, In diesen Mutanten war ein drastisch erhöhter Chlorophyll- und Carotinoidabbau messbar. Um den verstärkten Abbau an Carotinoiden unter Starklichtbedingungen zu kompensieren, muss die Carotinoidbiosynthese unter diesen Bedingungen erhöht werden. In Hemmstoffversuchen konnte nachgewiesen werden, dass die Bildung von Phytoen, dem ersten Carotinoid im Syntheseweg, unter Starklichtbedingungen erhöht ist. Messungen der Transkriptmenge aller Carotinoidgene aus Synechococcus zeigten, dass die Gene der Phytoen Synthase (crtB), der Phytoen Desaturase (crtP), z-Carotin Desaturase (crtQb) sowie der b-Carotin Hydroxylase (crtR) im Starklicht hochreguliert werden. Die Gene der Lycopin lsomerase (crtH) und der Lycopin Zyklase (crtL) werden nicht auf Ebene der Transkription reguliert. Während die Erhöhung der Transkriptmenge von crtR bereits nach 15 min erfolgt und somit bereits nach 60 min eine deutlich gesteigerte Umwandlung von b-Carotin in das antioxidativ wirksamere Zeaxanthin nachgewiesen wurde, erfolgt ein Anstieg der Transkriptmenge der Gene crtB, crtP und crtQb erst nach ca. 60 min und führt damit erst wesentlich später zu einer generellen Steigerung der Carotinoidbiosynthese, um den verstärkten Carotinoidabbau im Starklicht zu kompensieren. lnkubationen von Synechococcus in Gegenwart von Substanzen, die den Redoxzustand der photosynthetischen Elektronentransportkette oder des Thioredoxinsystems modulieren, zeigten, dass nicht Licht direkt der auslösende Reiz für die Hochregulation der Carotinoidsynthese im Starklicht ist. Ein funktionierender photosynthetischer Elektronentransport ist für eine Hochregulation der Carotinoidbiosynthese erforderlich. Weder die Reduktion des Plastochinonpools noch die der zellulären Thioldisulfid-Gruppen erwiesen sich als Signal, dass in Synechococcus PCC 7942 zur Hochregulation der Carotinoidbiosynthese im Starklicht führt. Möglicherweise ist der Redoxzustand des Cytochromb6/f-Komplexes oder eine der unter Starklichtbedingungen verstärkt gebildeten ROS, wie z. B. O2- oder OH, der Reiz, der eine Steigerung der Carotinoidbiosynthese auslöst.