Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- CERN PSB (1)
- Injektionssystem (1)
- Speicherring (1)
- Strahltransport (1)
- Toroidales Magnetfeld (1)
- accelerator physics (1)
- beam dynamics (1)
- brightness (1)
- closed orbit feedback system (1)
- half-integer resonance (1)
This thesis discusses important questions of the beam dynamics in the proton-lead operation in the Large Hadron Collider (LHC) at CERN in Geneva. In two time blocks of several weeks in the years 2013 and 2016, proton-lead collisions have so far been successfully generated in the LHC and used by the experiments at the LHC. One reason for doubts regarding the successful operation in proton-lead configuration was the fact that the beams have to be accelerated with different revolution frequencies. There is long-range repulsion between the beams, since both beams share the beam chamber around the interaction points. Because of the different revolution frequencies, the positions of the interaction between the beams shift each revolution. This can lead to resonant excitation and to an increase in the transverse beam emittance, as was observed in the Relativistic Heavy-Ion Collider (RHIC). In this thesis, simulations for the LHC, RHIC and the High-Luminosity Large Hadron Collider (HL-LHC) are performed with a new model. The results for RHIC show relative growth rates of the emittances of the gold beam in gold-deuteron operation in RHIC from 0.1 %/s to 1.5 %/s. Growth rates of this magnitude were observed experimentally in RHIC. Simulations for the LHC show no significant increase of the emittance of the lead beam for different intensities of the counter-rotating beam. The simulation results confirm the measured stability of the beams in the LHC and the issue of strongly increasing emittances in RHIC is reproduced. Also, no significant increase of the emittance is predicted for the Future Circular Collider (FCC) and the HL-LHC.
Using a frequency-map analysis, this work verifies whether the interaction of the lead beam with the much smaller proton beam in the proton-lead operation of the LHC leads to diffusion within the lead beam. Experiences at HERA at DESY in Hamburg and at SppS at CERN have shown that the lifetime of the larger beam can rapidly decrease under certain circumstances. The results of the simulation show no chaotic dynamics near the beam centre of the lead beam. This result is supported by experimental observation.
A program code has been developed which calculates the beam evolution in the LHC by means of coupled differential equations. This study shows that the growth rates of the lead beam due to intra-beam scattering is overestimated and that particle bunches of the lead beam lose more intensity than assumed in the model. The analysis also shows that bunches colliding in a detector suffer additional losses that increase with decreasing crossing angle at the interaction point.
In this work, 2016 data from beam-loss monitors in combination with the luminosity and the loss rate of the beam intensity are used to determine the cross section of proton-lead collisions at the center-of-mass energy of 8.16 TeV. Beam-loss monitors that mainly detect beam losses that are not caused by the collision process itself are used to determine the total cross section via regression. An analysis of the data recorded in 2016 at the center-of-mass energy of 8.16 TeV resulted in a total cross section of σ=(2.32±0.01(stat.)±0.20(sys.)) b. This corresponds approximately to a hadronic cross section of σ(had)=(2.24±0.01(stat.)±0.21(sys.)) b. This value deviates only by 5.7 % from the theoretical value σ(had)=(2.12±0.01) b.
The simulation code for determining the beam evolution is also used to estimate the integrated luminosity of a future one-month run with proton-lead collisions. The result of the study shows that in the future the luminosity in the ATLAS and CMS experiments will increase from 15/nb per day in 2016 to 30/nb per day, which is a significant increase in terms of the performance. This operation, however, requires the use of the TCL collimators to protect the dispersion suppressors at ATLAS and CMS from collision fragments.
This work also gives an outlook on the expected luminosity production in proton-nucleus operation using ion species lighter than lead ions. For example, a change from proton-lead to proton-argon collisions would increase the integrated luminosity from monthly 0.8/nb to 9.4/nb in ATLAS and CMS. This is an increase of one order of magnitude and approximately a doubling of the integrated nucleon-nucleon luminosity. There may be a test operation with proton-oxygen collisions in 2023, which will last only a few days and will be operated with a low luminosity. The LHCf experiment (LHCb experiment) would achieve the desired integrated luminosity of 1.5/nb (2/nb) within 70h (35h) beam time.
Im Rahmen des FAIR Projektes wurde ein neuartiger Prototyp eines nicht strahlzerstörenden Bunch Struktur Monitors (BSM) am GSI UNILAC entwickelt. Ziel ist es, ein zuverlässiges Diagnosegerät zu entwickeln, welches die longitudinale Struktur der Ionenbunche innerhalb des LINACs untersuchen kann. Notwendig ist hierbei eine effektive Zeitauflösung deutlich unter 100 ps, bei möglichst wenigen Makropuls Mittelungen. Nach der erfolgreichen Inbetriebnahme soll der BSM Prototyp dazu dienen, die Umsetzbarkeit eines weiteren nichtinvasiven Geräts für den geplanten Proton-LINAC bei FAIR mit einer notwendigen Zeitauflösung von 10 ps zu beurteilen.
Die numerische Simulation von Materialien, welche dem Hochstrom-Ionenstrahl ausgesetzt sind, zeigten einen sehr hohen thermischen Stress. Daher wurde der Ansatz eines nicht strahlzerstörenden Diagnosegerätes verfolgt. Das Design beruht auf der Erzeugung von Sekundärelektronen durch Strahl-Restgas Kollisionen im Strahlrohr. Durch das Anlegen eines homogenen Hochspannungspotentials von bis zu -31 kV, wird ein Elektronenstrahl erzeugt, welcher die zeitliche Struktur des Ionenbunches trägt. Die zeitliche Information des Elektronenstrahles wird beim Durchfliegen eines HF-Ablenkers, welcher resonant an die 36 MHz des Beschleunigers gekoppelt ist, in eine räumliche Intensitätsverteilung umgewandelt. Anschließend wird die Elektronenverteilung auf einem bildgebenden MCP-Phosphor-Detektor durch eine CCD-Kamera detektiert und in die Bunch Struktur überführt.
Intensive Untersuchungen der BSM Eigenschaften ergaben eine höchste Auflösung von 37 ±6.3 ps bei gleichzeitig akzeptabler Intensität auf dem MCP-Detektor. Unter anderem wurden auch stabile Einzelschussmessungen durchgeführt, welche für die Profilmessung nur einen einzelnen Makropuls benötigten, statt über typischerweise 8-32 Pulse zu mitteln.
Durch die systematische Manipulation der Bunchlänge durch einen Rebuncher sind nicht gaußförmige Profile von 280 ps bis 650 ps detektiert worden, welche als Studie für eine Emittanzbestimmung genutzt worden sind. In Abhängigkeit des Analyseverfahrens sind Werte von εGauss = 1.42 ±0.14 keV/u ns bis εSD = 3.03 ±0.33 keV/u ns für die Emittanz bestimmt worden.
Des Weiteren ist ein Finite-Elemente Modell erstellt worden, um die Zeitstruktur der Sekundärelektronen innerhalb des elektronenoptischen Systems zu bestimmen. Für das Setup mit der höchsten Auflösung von 37 ps ergab sich eine zusätzliche Zeitverbreiterung von 5.6 ps, welche nur geringfügig die experimentell bestimmte Auflösung verschlechtert.
Der nicht strahlzerstörende BSM liefert eine ausreichend hohe zeitliche Auflösung für detailreiche Untersuchung der longitudinalen Bunchstruktur, ohne negative Einflüsse auf den Ionenstrahl auszuüben. Fortgeschrittene Messungen, wie longitudinale Emittanzbestimmung und Makropulsanalysen, sind möglich und werden dazu beitragen, die LINAC Strukturen besser zu verstehen und weiter zu optimieren.
Obwohl bei der Umsetzung des Arbeitsprinzips für den geplanten Proton-LINAC die veränderten Strahlparameter berücksichtigt werden müssen, zeigen die Ergebnisse, wie die Zeitstrukturuntersuchung und die erreichte Phasenauflösung von 0.5° bei 36 MHz, dass zeitliche Auflösungen bei Aufrechterhaltung der Phasenauflösung von bis zu 10 ps für einen neuen BSM Prototypen möglich sind.
The realization of a fast and robust closed orbit feedback (COFB) system for the on-ramp orbit correction at SIS18 synchrotron of FAIR project is reported in this thesis. SIS18 has some peculiar behaviors including on-ramp optics variation, very short lengths of the ramps (200 ms to 1 s) and a cycle-to-cycle variation of beam parameters. The realized fast COFB system being robust against above mentioned features of SIS18 is a first of its kind and the course to its realization led to some novel contributions in the field of closed orbit correction. A new method relying on the discrete Fourier transform (DFT)-based decomposition of the orbit response matrix (ORM) has been introduced, exploiting the symmetry in the arrangement of beam position monitors (BPMs) and the corrector magnets in the synchrotrons. A nearest-circulant approximation has also been introduced for synchrotrons having slight deviation from the symmetry, making the method applicable to a vast majority of synchrotrons. Moreover, the performance and the stability analysis of COFB systems in the presence of ORM mismatch between the synchrotron and the feedback controller is presented. The COFB systems are divided into slow and fast regimes and a new stability criterion consistent with measurements, is introduced. The practicality of the criterion is verified experimentally at COSY Jülich and is used for the analysis of various sources of ORM mismatch at SIS18. The commissioning of the SIS18 COFB system is also reported in detail which relies on Libera Hadron as the main hardware resource for the controller implementation. The on-ramp orbit correction is demonstrated for the horizontal plane of SIS18, for the disturbance rejection up to 600 Hz.
Die vorliegende Dissertation befasst sich mit der Entwicklung und Erforschung eines konzeptionell neuartigen Injektionssystems zum Transport von Ionenstrahlen in toroidale Magnetfeldstrukturen. Die Forschungsarbeit ist dabei Teil des Figure-8 Speicherringprojekts (F8SR) des IAP, bei welchem es um die Erforschung der Physik und die Entwicklung eines niederenergetischen, supraleitenden, magnetostatischen Figure-8 Hochstromspeicherrings geht. Dieser neuartige Speicherring ermöglicht aufgrund des Einsatzes von fokussierenden solenoidalen und toroidalen Magnetfeldern das Speichern von Strahlströmen von bis zu einigen Ampere. Diese Arbeit baut auf früheren Forschungsarbeiten zu diesem Themenfeld auf, in welchen die Grundlagen und Ausgangsparameter für die experimentelle Untersuchung der Injektion gelegt und mit dem Aufbau des Injektionsexperiments begonnen wurde.
In dieser Dissertation wird den Fragen nachgegangen, ob ein magnetisches Konzept des Injektionssystems mittels eines „Scaled-Down“-Experiments experimentell umsetzbar ist und ob mit diesem die Injektion von Ionenstrahlen in toroidale Magnetfeldstrukturen realisiert werden kann. Ziel ist es dabei, ein Injektionssystem aufzubauen, durch welches sowohl ein seitlich injizierter Injektionsstrahl, welcher den in den Speicherring zu injizierenden Strahl darstellt, als auch ein gleichzeitig durch die toroidalen Magnetfelder driftender Ringstrahl, welcher den im Speicherring zirkulierenden Strahl darstellt, ohne Verluste transportiert werden können. Das Injektionssystem besteht dabei aus drei normalleitenden Magneten, wobei es sich um zwei baugleiche 30 Grad Toroide sowie einen Solenoid handelt. Die Toroide bilden den Transportkanal für den Ringstrahl, während der Injektionssolenoid senkrecht zwischen den beiden Toroiden endet und den Injektionskanal für den Injektionsstrahl darstellt.
Zunächst wurde das Injektionssystem mittels Strahltransportsimulationen untersucht und aufbauend auf den Ergebnissen die benötigen Vakuumkomponenten sowie der Injektionsmagnet ausgelegt, entwickelt und umgesetzt. Anschließend wurde mit dem fertigstellten Injektionsexperiment der Transport von zwei Ionenstrahlen durch das Injektionssystem experimentell erforscht. Dabei wurden die Strahlpfade mit einem in Entwicklung befindlichen Kameradetektorsystem aus verschiedenen Perspektiven aufgenommen und das Strahlverhalten in Abhängigkeit von unterschiedlichen Parametern phänomenologisch analysiert und diskutiert, mit den Ergebnissen der Simulationen verglichen sowie theoretisch bzgl. der RxB Drift und eines Gedankenmodells eingeordnet. Die technische Umsetzung, Inbetriebnahme und Durchführung verschiedener Vorabexperimente bzgl. weiterer Komponenten des Injektionsexperiments (bspw. Ionenquellen und Filterkanäle) ist ebenfalls Bestandteil dieser Arbeit.
Bei den experimentellen Untersuchungen mit Wasserstoff- und Heliumionenstrahlen konnte beobachtet werden, wie der Injektionsstrahl in den zweiten Toroid driftet und somit erfolgreich injiziert wird. Des Weiteren wurde eine Heliummessung durchgeführt, bei der sowohl der Injektionsstrahl als auch der Ringstrahl erfolgreich durch das Injektionssystem transportiert werden konnten. Auch die Auswirkungen des Injektionsmagneten auf den Ringstrahl konnten experimentell untersucht werden. Die verschiedenen Messungen wurden mittels des Gedankenmodells diskutiert und mit den Ergebnissen der Simulationen sowie untereinander verglichen.
Das abschließende Ergebnis dieser Arbeit ist, dass durch den Einsatz von solenoidalen und toroidalen Magnetfeldern der Injektionsstrahl vom Injektionsmagneten in den zweiten Toroid transportiert und dieser somit in die gekoppelte magnetische Konfiguration der Toroide eingelenkt werden kann. Der gleichzeitige verlustfreie Transport eines Ringstahls durch das Injektionssystem konnte dabei ebenfalls realisiert werden. Des Weiteren stimmen die Ergebnisse der Simulationen und Experimente sowie die theoretischen Überlegungen überein.
Das neuartige Injektionskonzept, welches als Schlüsselkomponente für die Umsetzung des Figure-8 Hochstromspeicherrings benötigt wird, wurde somit mittels Theorie, Simulation und Experiment überprüft und die Funktionalität bestätigt.
Zukünftige Forschungsfragen für welche der Figure-8 Hochstromspeicherring verwendet werden könnte, bspw. aus den Bereichen der experimentellen Astrophysik oder Fusionsforschung, wurden abschließend diskutiert.
Precise tune determination and split beam emittance reconstruction at the CERN PS synchrotron
(2023)
In accelerator physics, the need to improve the performance and better control the operating point of an accelerator has become, year after year, an increasingly important need in order to achieve higher energies and brightness, as well as point-like particle beams. If this involves increasingly advanced technological developments (in terms, for example, of materials for more intense superconducting magnets), it can not take place in the absence of targeted studies of linear and non-linear beam dynamics. In the context of this Ph.D. thesis in physics, linear and non-linear dynamics of charged particles in circular accelerators is the topic that will be discussed and treated in detail. In particular, the presentation and discussion of the results will be divided in two main topics: the need to know the physical properties of a proton beam; and the development of innovative methods to determine and study the accelerator’s working point. With regard to the first topic, an innovative procedure will be presented to determine the transverse size of the PS beam in the beam extraction phase. Among the different ways the extraction occurs at the PS, the analysed one is based on the transverse splitting of the beam by means of non-linear fields. Thus, the knowledge of the transverse beam size is not trivial since resonant linear and non-linear beam structures (namely, core and islands) arise and, for each of them, the beam size has to be quantified. This parameter is crucial for two main reasons: the accelerator that will receive the beam exiting the upstream accelerator may have restrictions (physical or magnetic) that involve a partial or total loss of the incoming beam; and any experiments located downstream of the considered accelerator may need a beam with a transversal size as constant as possible; consequently, its monitoring and control are essential. The second topic concerns the accurate determination of the working point of an accelerator, defined as the number of transverse oscillations the particle beam travels per unit of accelerator circumference, both horizontally and vertically. This quantity is called horizontal and vertical tune, respectively. Their knowledge is also crucial to understand whether the beam will be stable or unstable. In fact, not all tune values are acceptable, as there are particular values that bring the beam into resonance. In this configuration, the amplitude of the transverse oscillations of the particles increases in an uncontrolled manner and leads to the loss of all or part of the beam. Note that, in particular operating conditions, the resonant conditions are sought and desired to model, in a suitable way, the transversal shape of the beam, such as the above mentioned PS extraction scheme. It is even clearer how much the determination of the machine working point is essential to determine the operating conditions of an accelerator. In this context, several methods (also taken from the field of applied mathematics) to calculate the tune will be demonstrated and tested numerically on different types of synthetic signals. At the end of this description, the use of experimental data will allow to obtain the benchmark of a new method for the direct calculation of some characteristic quantities of non-linear beam dynamics (namely, the amplitude detuning, i.e. the variation of tune as a function of intensity of the perturbation provided to the beam.
In the framework of the LHC Injectors Upgrade Project (LIU), the CERN Proton Synchrotron Booster (PSB) went through major upgrades resulting in new effects to study, challenges to overcome and new parameter regimes to explore. To assess the achievable beam brightness limit of the machine, a series of experimental and computational studies in the transverse planes were performed. In particular, the new injection scheme induces optics perturbations that are strongly enhanced near the half-integer resonance. In this thesis, methods for dynamically measuring and correcting these perturbations and their impact on the beam performance will be presented. Additionally, the quality of the transverse beam distributions and strategies for improvement will be addressed. Finally, the space charge effects when dynamically crossing the half-integer resonance will be characterized. The results of these studies and their broader significance beyond the PSB will be discussed.
Im Rahmen dieser Arbeit wurde ein verbessertes Buncher-System für Hochfrequenzbeschleuniger mit niedrigem und mittlerem Ionenstrom entwickelt. Die entwickelte Methodik hat ermöglicht, ein effektives, vereinfachtes Buncher-System für die Injektion in HF-Beschleuniger wie RFQs, Zyklotrons, DTLs usw. zu entwerfen, welches kleine Ausgangsemittanzen und beträchtliche Strahltransmissionen erzielt. Um einen mono-energetischen und kontinuierlichen Strahl aus einer Ionenquelle für den Einschuss in eine Hochfrequenz-Beschleunigerstruktur anzupassen, wird eine Energiemodulation benötigt, die im weiteren Verlauf (Driftstrecke) zur Längsfokussierung des Strahls führt. Durch eine Sägezahnwellenform wird die ideale Energiemodulation aufgrund der linearen Abhängigkeit zwischen der Energie der Teilchen und ihren relativen Phasen erreicht. Dies ist jedoch technologisch nicht möglich, da Teilchenbeschleuniger Spannungsniveaus im Bereich kV bis 100 kV benötigen. Dagegen ist für eine solche Zielsetzung eine räumliche Trennung der sinusförmigen Anregung mit der Grundfrequenz und höheren Harmonischen möglich.
Daher wurde in dieser Arbeit ein verbesserter harmonischer Buncher, der sogenannte „Double Drift Harmonic Buncher - DDHB“ entwickelt, welcher zahlreiche Vorteile hat. Eine geringe longitudinale Emittanz sowie finanzielle Aspekte sprechen für diesen Lösungsansatz. Die Hauptelemente eines DDHB Systems sind zwei Kavitäten, die durch eine Driftlänge L1 getrennt sind, wobei der erste Resonator mit der Grundfrequenz bei -90° synchroner Phase und angelegter Spannung V1 und der zweite Resonator bei der zweiten harmonischen Frequenz mit +90 synchroner Phase und angelegter Spannung V2 betrieben werden. Schließlich ist eine zweite Drift L2 am Ende des Arrays für eine longitudinale Strahlfokussierung am Hauptbeschleunigereingang erforderlich. Somit erfüllt ein solcher Aufbau das angestrebte Ziel einer hohen Einfangseffizienz und einer kleinen longitudinalen Emittanz durch Anpassen der vier Designparameter V1, L1, V2 und L2.
Das Verständnis der Fokussierung, ausgehend von einem Gleichstromstrahl, einschließlich der Raumladungskräfte, ist einer der wesentlichen Bestandteile der Strahlphysik. Viele kommerzielle Codes bieten Simulationsmöglichkeiten in diesem Anwendungsbereich. Ihre Ansätze bleiben jedoch dem Anwender meist verborgen, oder es fehlen wichtige Details zur genauen Abbildung des vorliegenden Konzepts. Daher bestand eine Hauptaufgabe dieser Arbeit darin, einen speziellen Multi-Particle-Tracking-Beam-Dynamics-Code (BCDC) zu entwickeln, bei dem der Raumladungseffekt während des Bunch-Vorgangs, ausgehend von einem DC-Strahl berechnet wird. Der BCDC - Code enthält elementare Routinen wie Drift und Beschleunigungsspalt oder magnetische Linse für die transversale Strahlfokussierung und Raumladungsberechnungen unter Berücksichtigung der Auswirkungen der nächsten Nachbar-Bunche (NNB). Der Raumladungsalgorithmus in BCDC basiert auf einer direkten Coulomb- Gitter-Gitter-Wechselwirkung und Berechnungen des elektrischen Feldes durch Lokalisierung der Ladungsdichte auf einem kartesischen Gitter. Um Genauigkeit zu erreichen, werden die Feldberechnungen in Längsrichtung symmetrisch um das zentrale Bucket (βλ-Größe) erweitert, so dass das Simulationsfeld dreimal so groß ist. Die zentrale Teilchenverteilung wird dann nach jedem Schritt in die benachbarten Buckets kopiert. Anschließend werden die resultierenden Felder im Hauptgitterfeld neu berechnet, indem die elektrischen Felder im Hauptgitterfeld mit denen aus den benachbarten Regionen überlagert werden. Ohne diese Methode würde z. B. ein kontinuierlicher Strahl, welcher jedoch in der Simulation nur innerhalb einer Zelle der Länge βλ definiert ist, zu einer resultierenden Raumladungsfeldkomponente Ez an beiden Rändern der Zelle führen. Ein solches unphysikalisches Ergebnis konnte durch die Anwendung der NNB-Technik bereits weitgehend eliminiert werden. Zusätzlich zum NNB-Feature verfügt das BCDC über eine weitere Besonderheit nämlich die sogenannte Raumladungskompensation (SCC). Aufgrund der Ionisierung des Restgases kommt es entlang des Niederenergiestrahltransports zu einer teilweisen Raumladungskompensation, und zwar am und hinter dem Bunchersystem mit unterschiedlichen Prozentsätzen. Eines der Hauptziele des DDHB-Konzepts besteht darin, es für Hochstromstrahlanwendungen zu entwickeln. Dabei ermöglicht die teilweise Raumladungskompensation, dass das Design in der Praxis höhere Stromniveaus erreicht. Dadurch ist das BCDC-Programm ein leistungsstarkes Werkzeug für Simulationen in künftigen, stromstarken Projekten. Proof-of-Principle-Designs wurden in dieser Arbeit entwickelt.