Refine
Document Type
- Doctoral Thesis (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Bungarus (1)
- Bungarus niger (1)
- Bungarus walli (1)
- Daboia russelii (1)
- Naja (1)
- Russell´s Viper (1)
- cobra (1)
- elapid snake (1)
- envenoming (1)
- krait (1)
Institute
Panama is a megadiverse country that together with Costa Rica constitutes Lower Central America (LCA). Western Panama's Cordillera Central accounts for the eastern part of the LCA highlands shared between these countries. The aim of the present study is to compile the most complete and updated picture possible of the taxonomy, diversity, and distribution of reptiles that occur from 500 m asl upwards along the Talamanca and Tabasará ranges. These two continuous mountain ridges account for the western two-thirds of the Cordillera Central between the Costa Rican border and 81°W Including specimens collected four own research travels, I morphologically examined more than 1800 specimens, analyzed 16S and/or COI barcodes of 300 specimens, and performed a thorough search in literature and databases to obtain locality records for specimens and species occurrences. My complete occurrence dataset comprises 14620 georeferenced occurrence records in three quality categories. Conceivable occurrences of species not yet documented from a given area are evaluated on the basis of existing data either as "plausible" or "possible". I provide all datasets which I generated for this study in Appendices. The previously published descriptions of Dactyloa ginaelisae Lotzkat, Hertz, Bienentreu & Köhler 2013, Norops benedikti (Lotzkat, Bienentreu, Hertz & Köhler 2011), Sibon perissostichon Köhler, Lotzkat & Hertz 2010, and Sibon noalamina Lotzkat, Hertz & Köhler 2012 are included in the present work. In the course of integrative taxonomic analyses, I classify 15 genealogical lineages revealed by DNA barcoding within 7 anole species as Deep Conspecific Lineages (DCLs) because they lack consistent morphological differences to their nominal conspecifics. I provisionally classify 18 mitochondrial lineages found within six other anole species as Unconfirmed Genealogical Lineages (UGLs) pending adequate analyses of their morphological variation. I regard the two additional UGLs Celestus sp. and Geophis sp. and the two Confirmed Genealogical Lineages (CGLs) Lepidoblepharis sp. 1 and 2 to represent undescribed species. My taxonomic analyses yield the hitherto most comprehensive survey of the variability exhibited by dozens of reptile species in western Panama. The 16S and/or COI barcodes I provide represent 65 species recognized herein and constitute the first DNA barcode reference library for LCA reptiles. The reptile fauna of Panama comprises 265 species, including the four UGLs and CGLs mentioned above and characterized for the first time in this study, as well as Dendrophidion crybelum Cadle 2012 whose presence in the country I consider plausible. My occurrence dataset reveals that 160 of these species have been documented to occur in my study area. Adding the 20 species whose occurrence therein I consider plausible, I report the total species richness of the Talamanca and Tabasará ranges as comprising 180 species representing 81 genera in 25 families. With 178.8 species per 10 000 km2, the relative species richness of the area is extremely high even in a tropical context. In view of their overall documented distribution, I regard the presence of 27 additional species in my study area as possible. For the 180 species occurring in my study area I provide standardized species accounts that, together with the taxonomic results, for the first time permit the doubtless identification of all 180 species, and illustrate 168 of these with color photographs. Concerning biogeography, my georeferenced dataset yields noteworthy distribution extensions for many species. Moreover, I present the hitherto most comprehensive, detailed, and reproducible assessments of the distribution patterns, historical origins, and conservation as well as of the occurrence among physiographic regions, climatic and altitudinal belts, political subdivisions, and protected areas, for my study area's reptile fauna. With 65 species, more than a third of the fauna is endemic to LCA. Among these, 42 Talamancan highland endemics are restricted to the LCA highlands, in the case of 16 small-scale highland endemics with documented ranges spanning less than 100 km. I assess many of these endemics as endangered. The fact that several of these species do not occur in any protected area renders the establishment of additional conservation areas necessary, especially in the central Serranía de Tabasará. Distributional range boundaries shared among different clades of highland anoles indicate physiographic and climatic barriers that may have effected in situ speciation within these lineages. As the largest study on Panamanian reptile diversity assembled to date, the present dissertation considerably increases our knowledge on the reptiles along the Cordillera Central and beyond, and thus constitutes a solid basis for future studies.
Amphibians have existed on the planet for over 300 million years and are today one of the most diverse vertebrate classes in the world with over 7000 known species and still many more to be discovered. However, several studies assume that approximately one third of the world´s known living amphibians are directly threatened with extinction, making it the most endangered vertebrate class. In relation to the relatively small land mass that is occupied by the state of Panama, it supports one of the most diverse amphibian faunas. However, in many cases the ecological role of single species in a wider context and their habitat preferences are still poorly understood and subject to ongoing research. Modern taxonomic approaches in other tropical regions have shown that former assumptions of amphibian diversity were distinct underestimations of the actual species diversity; a situation that is probably also true for Panama. Concurrently, the collection of amphibian diversity data and the description of new species is a race against time. The amphibian fauna of the world and that of Panama in particular, has suffered from an unprecedented loss of diversity over the last 30 years. The reasons are manifold and include destruction, alteration, and fragmentation of their natural habitats as the main causes, but also the deadly amphibian disease chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). In Panama and Costa Rica, this Emerging Infectious Disease (EID) spread in a wave-like manner from west to east causing mass die-offs and reduced amphibian diversity even in well-preserved habitats. The disease has primarily affected stream-associated highland species. The last large-scale evaluation of the conservation status of Panama´s amphibians through the IUCN Red List of Threatened Species in 2004 concluded that approximately 30% of the known species are acutely threatened with extinction. Furthermore, around 17% of the amphibian species that have been known back then lacked adequate data to be assessed. In view of Panama´s already overwhelming amphibian diversity, as well as the variety of habitats and the large number of sites that have not been examined with regard to amphibians before, I started this study with the conviction that the inventory of Panama´s amphibian diversity is far from being completed. Furthermore, when I started this study, it was uncertain if there would be any surviving amphibian species in areas where chytridiomycosis had emerged. The loss of whole amphibian communities in upland western Panama following Bd arrival led to a shift of amphibian research to lowland sites in central and eastern Panama aiming primarily on pathogen arrival and the documentation of epizootic outbreak and subsequent population decline. The situation of amphibian communities in areas post-decline was therefore largely unknown. Accordingly, the main goals of my study were to add to the taxonomic inventory of amphibians in Panama and to assess the situation of amphibian populations in habitats where chytrid-driven declines have been observed. To address these tasks I conducted fieldwork in western Panama with a focus on mountainous elevations between 1000 and 3475 m asl. Additionally, I visited different lowland sites between sea level and 1000 m asl to collect comparative material. In the period between 2008 and 2013, I conducted five collection trips to Panama that add up to a total of approximately 13 months in the field. I have sampled nine regions in western Panama and collected 767 specimens together with student collaborators, 531 of which were collected under my personal field number. Additional data obtained from those specimens include 68 male anuran call recordings, 102 standardized color descriptions of specimens in life, and 259 tissue samples that to date yielded 185 16S mtDNA sequences. This comprises the most comprehensive data set for amphibians of Panama and the first large-scale DNA barcoding approach for western Panama to date. After a preliminary DNA barcoding and subsequent comparative examination of morphological und bioacoustic data of all specimens collected, the number of taxonomic problems that needed to be addressed was higher than I previously anticipated. For most genetic lineages deeper taxonomic analyses were required to reach conclusive results. A selection had to be made with which lineages to proceed in the analyses, in view of the substantial financial and time expenditure that would be needed for a complete taxonomic revision. Therefore, I chose to run deeper analyses on one genus from each of the three amphibian orders in Panama. The genera selection depended largely on the availability of sufficient material and the scientific relevance of the respective genus.
I selected the genus Diasporus from the order Anura. These small frogs are omnipresent in many habitats and thus relatively easy to find. In addition, the genus is underrepresented in taxonomic studies. This is the first taxonomic study on the genus Diasporus to include a molecular phylogeny and the first comparison of advertisement calls between several populations from western Panama. In total, I collected 67 Diasporus specimens throughout western Panama and compared them morphologically with 49 additional specimens from Central America in collections, including the primary types of D. diasporus and D. hylaeformis. Additional comparative data were taken from literature. The DNA barcoding analysis of a fragment of the 16S rRNA gene included 43 own sequences that were complemented with 15 relevant GenBank sequences. In addition, I compared the advertisement calls of 26 male individuals among each other and with call descriptions from the literature. The DNA barcoding approach revealed several unnamed genetic lineages, but in some cases also resulted in the lumping of morphologically and bioacoustically distinct specimens. Generally, the morphological examination of the collected material revealed almost no specific characters that could be used to distinguish between genetic lineages. However, it was possible to identify species using a combination of several morphological characteristics. Which ones are relevant in the individual case depends on the respective species. My extensive collection of call recordings made it possible to test for the first time the intraspecific call variation of D. hylaeformis in dependency of various parameters. This analysis showed that the dominant frequency depends significantly on the body size of the calling male; the smaller the calling male, the higher the frequency of the call. A similar relationship was observed between the call rate and temperature: the lower the temperature during calling, the lower the call rate. I suppose that these general patterns, which have already been observed in other anuran genera, are also true in other Diasporus species that could not be tested in this study. Taking into account the intraspecific variation of Diasporus advertisement calls, I consider comparative call analyses to be the best way to distinguish between species. This is especially true in syntopic species. Integration of the three lines of evidence (i.e., morphology, DNA barcoding, and bioacoustics) led to the identification of four new species, two of which (i.e., D. citrinobapheus and D. igneus) colleagues and I have already formally described.
I conducted an integrative taxonomic analysis of the western Panamanian representatives of the genus Bolitoglossa from the order Caudata, the larger of the two Panamanian salamander genera. Bolitoglossa is very species-rich with a centre of diversification in the high mountains of Costa Rica and western Panama. I collected 53 Bolitoglossa specimens and compared them to twelve specimens in collection, including the holotype and one paratype of B. gomezi. The dataset was complemented with information from the literature. Among the sampled specimens were two species considered to be endangered that have not been collected or observed for several decades; B. magnifica has not been seen for 34 years and B. anthracina has not been seen for 22 years. Further, I collected salamanders at several new locations. To date, my 16S mtDNA barcoding analysis represents the densest taxon sampling for Panamanian Bolitoglossa composed of 21 own sequences that were combined in the final alignment with 47 GenBank sequences. Even though the molecular phylogeny is based only on a single marker, the received trees largely coincide with previous studies and the nodes received high statistical support. In these trees, I retrieve all previously defined subgenera and species groups. On the basis of this molecular phylogeny, I placed B. anthracina, here sequenced for the first time, in the B. subpalmata species group. Due to the fact that B. anthracina is a large and dark colored species it had previously been placed by implication in the B. schizodactyla species group along with other large black salamanders of the B. nigrescens species complex. Moreover, I found deep divergent genetic lineages among geographically separated populations of B. minutula. However, until now there were no additional morphological characteristics detectable to distinguish between these lineages. Additionally, my colleagues and I described a new deep divergent lineage in the B. robinsoni species group as B. jugivagans, a species new to science. In contrast, I found only minor genetic differences between specimens of B. sombra and B. nigrescens. After combining morphometric data and tooth counts from literature of both species with additional data from specimens of B. sombra that I collected near the type locality, the distinguishing features blurred. In particular, including much larger specimens of B. sombra, not yet known at the time of its description, showed that the tooth count difference is dependent on the size and age of the specimen examined. Larger specimens have more maxillary and vomerine teeth. Based on this evidence I regard B. sombra as a junior synonym of B. nigrescens. Further, I revised the Panamanian distribution of the two relatively common lowland salamanders, B. colonnea and B. lignicolor. Besides filling the gaps in the fragmentary known distributions of these species, I assessed the molecular and morphological variation of both species among populations in Panama. While there was little variation in B. lignicolor, I found divergent genetic lineages among geographically distinct populations of B. colonnea that require further taxonomic examination.
Caecilians (order Gymnophiona) are among the least investigated terrestrial vertebrates. After I received a first specimen of the predominantly South American genus Oscaecilia (family Caeciliidae) in western Panama, I started to work more extensively on the taxonomy of Caeciliidae in Central America. The specimens from western Panama were not readily assignable to a single described species, but shared characters with O. elongata and O. osae. While O. osae was only known from the holotype, the type material of O. elongata was destroyed during World War II. On the basis of the original description, the unique feature in O. elongata within Oscaecilia is the absence of subdermal scales in the posterior part of the body. In a referred specimen of O. elongata mentioned in the original description from eastern Panama, this characteristic cannot be examined as it consists of head and neck only. Therefore, I used non-destructive high-resolution, synchrotron-based X-ray micro CT imaging (HRμCT) to examine cranial characters in the specimens in question and took normal radiographs to count vertebrae and to make subdermal scales visible. I found that the fragmented specimen from eastern Panama likely belongs to the well-sampled species O. ochrocephala and has not much in common with O. osae or the specimens from western Panama. Contrarily, O. osae and the specimens from western Panama share many morphological characters, but also show some differences. Genetic barcoding revealed that both species are close relatives, but the genetic distance could not be finally resolved, because 16S sequences obtained from blood samples of living O. osae were of poor quality. Thus, I compare the Oscaecilia from western Panama to O. osae in this study, but postpone a taxonomic decision until further material becomes available. Further, I designate O. elongata a nomen dubium, because the type material is lost, the type locality is not defined in more detail than “Panama”, and the original description does not allow for a definite assignment. Since previous molecular studies only considered O. ochrocephala, the monophyly of Oscaecilia was never tested before. So far, the genus Oscaecilia is based largely on a single cranial character, the eyes covered with bone. Here, I combined two 16S mtDNA sequences of O. osae from Costa Rica and two sequences from O. sp. from western Panama with two sequences of O. ochrocephala and ten sequences of four species of the genus Caecilia, the sister genus of Oscaecilia. The resulted phylogeny contains two well-supported clades, one clade containing two species of Caecilia, one from Panama and one from western Ecuador and all species of Oscaecilia tested. The other clade consists of two species of Caecilia from the Amazon basin. I therefore assume that the split in both clades is due to the rise of the Andes, what led to today’s cis-trans-Andean distribution of the two clades. For now, to restore monophyly, I suggest to place Oscaecilia within the synonymy of Caecilia until more taxa have been tested. When assessing the conservation status of the amphibian species in mountainous western Panama, I first compiled a list of known species that I potentially could have found during my fieldwork. Using the IUCN categories, I analyzed how many of the endangered species I actually found and how these are distributed over families and species groups. Surprisingly, my rediscoveries of lost species were not equally distributed among the four families that comprise most endangered amphibian species (i.e., Bufonidae, Craugastoridae, Hylidae, and Plethodontidae). While I discovered ten of eleven endangered hylids and six of nine endangered plethodontids, I found only one of four endangered bufonids and none of the nine endangered craugastorids. I assume that the secretive living plethodontids, for which no Bd related declines have been documented, were just overlooked in the past decades. In contrast, I propose that hylids, in which Bd related population decline is well documented, developed distinct evolutionary solutions permitting coexistence with the pathogen. The situation is obviously different in bufonids and craugastorids, where I found no signs of population recoveries at present. So far, the only surviving populations of species from these families exist in climatic or physiographic niches that have probably shielded them from Bd. My data confirm the current view that the risk for naïve amphibian populations to decline during Bd epizootics is predicted by ecological traits (e.g., aquatic index, vertical distribution) and not dependent on taxonomic affiliation. However, I propose that only certain amphibian families (e.g., hylids and centrolenids) have the ability to acquire immunity solutions to coexist with the pathogen during enzootic stages. This is a very new perspective on the worst infectious disease in amphibians worldwide, allowing for new research approaches to understand the host-pathogen dynamics. Moreover, I examined where the share of surviving endangered amphibian species is particularly high in mountainous western Panama. As was to be expected, most of the endangered species are found within the boundaries of protected areas. One exception is the unprotected Cerro Colorado region in the Comarca Ngöbe-Buglé that provides habitat for a wide variety of endangered and undiscovered amphibian species. Nonetheless, planned open pit mining would destroy the forests in a large part of the area. This demonstrates once again that human activities are the biggest threat to amphibians in Panama and elsewhere.
Lizards of Paraguay: an integrative approach to solve taxonomic problems in central South America
(2018)
Paraguay is located in the center of South America with drier and warmer climatic conditions in the western part of the country, and more temperate and humid in the eastern region. Biogeographically, Paraguay is a key spot in South America, where several ecoregions converge. In my study, I sampled most of the ecoregions of Paraguay. The main objective of my work is to solve taxonomic problems, identified through genetic barcoding analyses, in the central region of South America. To achieve this objective, I used selected taxa of the Paraguayan Squamata as models taking into consideration the crucial geographic position of the country, plus the scarce available genetic data of Paraguayan reptiles.
The collecting activities were performed in the framework of a barcoding inventory project of the Paraguayan herpetofauna and carried out mostly in rural areas searching for animals in different types of habitats using active search as the sampling technique.
For genetics, the extraction of DNA was performed with DNeasy® Blood & Tissue Kit of Qiagen® for sets of few samples, and the fiber glass plate protocol for sets of 96 samples. I assessed the quality of sequences after amplification in agarose gel electrophoresis. The first marker sequenced was 16S mtDNA, used for barcoding analysis. A DNA barcode is a genetic identifier for a species. Once a taxonomic problem was detected, I generate more gene sequences to target the issue.
All the analyses to test phylogenetic hypotheses (based on single genes or concatenated datasets) were performed under Maximum Likelihood and Bayesian approaches. To root the phylogenetic trees, I chose the available taxon (or taxa) most closely related to the respective studied group as outgroups. For the general tree of Paraguayan Squamata, based on barcodes of 16S, I chose Sphenodon punctatus.
I generated a total of 142 sequences of 64 species of Squamata from Paraguay (Appendix I). The final alignment of 615 bp comprised 249 samples. The best substitution model for the Barcoding dataset based on the gene 16S was GTR+G, according to the BIC.
To complement molecular evidence generated with the ML grouping of 16S barcodes, I took a morphological approach based on voucher specimens collected during fieldwork (usually the same specimens that I used for genetic analysis), supplemented by the revision of museum collections.
Summarizing my results, samples of Colobosaura exhibit large genetic distances, and accordingly I revalidated Colobosaura kraepelini (Appendix II). Tropidurus of the spinulosus group show two clades and among them there is little genetic and morphological variation, I synonymized T. tarara and T. teyumirim with T. lagunablanca, and T. guarani with T. spinulosus (Appendix III). I detected the presence of candidate species of Homonota, and I restricted the name H. horrida for Argentina, and described two new species of Homonota (Appendices IV and V), and a new species of Phyllopezus also in the Family Phyllodactylidae (Appendix VI).
In this work I present the most comprehensive analysis of genetic samples of Squamata from Paraguay. The results obtained here will be useful to help to clarify further taxonomic issues regarding the squamate fauna from the central region of South America. Moreover, the data generated for this study will have a positive impact in a larger geographic context, beyond Paraguayan borders.
Regarding the conservation of the Paraguayan reptiles, and considering the taxonomic changes accomplished here, it is important to note that many species lack legal protection. In Paraguay, the major problem for conservation is habitat loss due to extensive crop farming. Thus, currently, the protected areas are the best strategy for conservation of biodiversity in the country. However, many such areas face legal problems (e.g., lack of official measurements, management plans, forest guards, infrastructure, etc.) so that the maintenance of their biodiversity over time is not guaranteed.
In conclusion, in this study I present contributions on the taxonomy of mostly lizards from Paraguay. Due to lack of samples, I was not able to deal with a deep taxonomic revision of the country's snakes. Based on my results, I can argue that analyses of Xenodontini and Pseudoboini are currently a pressing research issue. This barcoding project may continue since some colleagues in Paraguay are interested in collaboration. Given that the sequenced specimens are yet a small portion of the actual diversity of Paraguay, it will be of utmost importance to continue and expand these studies that will further improve our taxonomic knowledge. Furthermore, it is desirable to have Paraguayan scientists not only involved, but to see them taking the lead of high quality taxonomic research.
Snake bite envenoming often results in disability or death of breadwinners of poor families in the rural tropics and the subtropics of Nepal. Identification of the medically relevant snake species, circumstances of venomous snake bites, prehospital care of their bites and human responses to snakes and snake bite is, therefore, crucial to enable victims or first aider to select the appropriate first aid measures, physicians to anticipate complications and to use appropriate treatment protocols as well as the local community to implement prevention strategies. Inadequate educational gaps exist in Nepal and hinder identification of snakes involved in bites. To fill this gap, I aim to provide an evidence-based list of medically relevant snake species. Snake specimens brought by patients bitten or their attendants from the tropical and subtropical regions in southeastern, southcentral, and southwestern Nepal to snake bite treatment centres over a period from 2010 through 2014, were taxonomically identified and medical records of envenoming were evaluated.
In Nepal, the epidemiology of snake bite is poorly known. Here I describe the ecological circumstances of proven krait (Bungarus spp.) and Russell´s Viper (Daboia russelii) bites to elucidate and examine, whether environmental circumstances or human behaviour contributed to envenoming. In a cross-sectional study, data about prehospital care, environmental circumstances of 46 krait and 10 Russell´s Viper bites were evaluated. Patients were interviewed using structured interview forms. Snake bite prone communities were surveyed to test people´s knowledge on snakes and their attitude towards venomous snakes in general.
Of 349 snakes involved in bites, 199 (57%) specimens were found to be medically relevant venomous snakes that included 11 species belonging to six genera and two families. Among them, Naja naja (n = 76, 22%), Bungarus caeruleus (n = 65, 19%) and Trimeresusurs albolabris (n = 10, 3%) were the most widely distributed snakes. Daboia russelii (n = 10, 3%) was found to be restricted to the southwestern part of Nepal. For B. walli, a previously poorly known species, 13 voucher specimens represent the first country records of this species as well as the first documented cases of involvement in snake bite envenoming by this species in Nepal.
Numerous snake bites (33%) occurred at night, during the rainy season, and are mainly due to Bungarus species, particularly B. caeruleus. Bites of cobras and Russell’s Vipers are a risk at daytime. Evaluation of data regarding the place where the bite happened, indicates that the snake bite risks appear to be as high in residential areas, in and around houses, as in rural areas. In cases of kraits (n = 46), 61% of the bites occurred while the victim was sleeping indoors, those of Russell´s Vipers mainly during agricultural activities in the fields. Analysis of socio-demographic data revealed that both krait and viper bites predominantly affected farmers or their family members. However, snake bites involved also people of higher socio-economic status, which suggests that it is not a health problem of poor people only living in the rural areas of Nepal.
A small number of snake bite victims (n = 7) sought help from traditional healers, but most patients went to hospitals for medical treatment using motorbikes (65%) or were transferred by ambulance cars (22%). As a first aid measure, most patients (78%) had used a tourniquet, which is of doubtful value and has often severe sequelae, instead of applying the WHO recommended pressure immobilisation bandage or local compression pad. The overall case fatality rate was calculated to be 10%, but up to 17% in cases of Bungarus spp. bites.
Rural community people were found to be extremely afraid of snakes, a major reason for indiscriminate killing of even harmless snakes, e.g., Lycodon aulicus, which were wrongly considered to be venomous. This is mainly due to the poor knowledge on snakes in general and on their role in providing ecological services, which may eventually lead to a decline in snake populations and even the extinction of rare species.
The results of the present study strongly emphasize that snake bite is an important public health issue in Nepal. There is an urgent need to improve the knowledge of people on snakes and to try changing their attitudes towards these reptiles, in addition to documenting the biodiversity and distribution of medically relevant snakes, the epidemiology and circumstances of their bites. Avoiding high-risk behaviour (e.g., killing of snakes), using screened doors and windows are some of the suggested measures preventing snake bite. Early and accurate identification of the snakes involved should help physicians to apply timely treatment, eventually referring the patient to the appropriate hospital. This also has important implications in developing public health and conservation strategies, to the benefit of the people of Nepal.
Panama, a small country between the major continents of North and South America, is one of the lesser studied regions in Central America, but is recognized for its mega-biodiversity. This is particularly true for Eastern Panama, which I am considering as the easternmost portion of the country, covering the area from the Chepo, which is also the beginning of the San Blas mountain range, towards east, up to the Darien Mountain range on the border with its neighboring country Colombia. In the lowland region I visited two physiographic areas: the Isthmian-Atlantic Moist Forests (IAMF) and the Chocó-Darién Moist Forests (CDMF). In the IAMF I worked at the localities of Río Mono, Wacuco, La Moneda, Arretí, Metetí, Filo del Tallo, and Laguna de Matusagaratí. In the CDMF I visited the localities of Cruce de Mono, Cana, Garachiné, Sambú, and Pavarandó. And I have worked in the highlands of Darién (DM), Majé (MM), Jingurudó-Sapo (JSM), Pirre (PM) and San Blas (SSM) in the highlands.
Before my research, 138 reptile and 104 amphibian species had been reported for EP. From 2008 to 2013, I collected specimens to evaluate the diversity of amphibians and reptiles for this region. I applied an integrative approach to evaluate the taxonomy, diversity, biogeography, and conservation of the herpetofauna of EP. I included analyses of morphometrics, molecular genetics (e.g. barcoding), biogeography, bioacoustics (in anurans), hemipenial morphology (in squamates), and ecology. This is the first regional evaluation of the biodiversity in EP applying integrative taxonomy. Aside from morphological and bioacoustic data, my work is based on the barcoding of 608 specimens, from which I obtained 16S mtDNA for 486 specimens and COI mtDNA for 455. In total I have got sequences for 69.2 %of the amphibian and 48.6 % of the reptile species present in EP. For the morphological analyses, I compared 1597 specimens, including my samples complemented by specimens obtained from various museums. The bioacoustic data were obtained from the analysis of 1504 calls of 27 species of frogs. Based on specimens collected in EP and according to external morphology, I could identify 65 species of amphibians and 72 reptiles, but after applying an integrative approach these numbers increased to 79 amphibians and 88 reptiles described species within my collected specimens. Additionally, I uncovered 33 taxonomic units that could not be assigned to any described species until now, 22 of them represent confirmed candidate species (CCS), and 11 were classified as Unconfirmed candidate species (UCS). Thus, increasing the known species of amphibian by 19.4 % and of reptiles by 4.8 %. Currently, there are 145 reptiles and 129 amphibians known to occur in EP. Based on my results, I have initiated several projects to solve taxonomic uncertanties, including the species of the genera Bolitoglossa, Diasporus, Dactyloa, Ecnomiohyla, Lepidoblepharis, and the taxonomic status of the species Pristimantis caryophyllaceus and Norops tropidogaster.
Out of the 22 CCS I found, I described nine species new to science with type locality in EP, six amphibians and four reptiles. Among these is a new species of Bolitoglossa described from Cerro Chucantí, Cordillera de Majé, Provincia de Darién, Panama. Additionally, I include comments on the other species of congeneric salamanders known to occur in the region. Among the tink frogs, only Diasporus quidditus was known to occur in EP. During my field work I collected six additional species of this genus, four of which are new to science, plus two species new for this region.
I also described one new species of Dactyloa (giant anole lizards) related to the former D. chocorum. I synonymized D. chocorum with D. purpurescens, and included information about the other species of the group from EP. The new species of Dactyloa resembles D. ibanezi, D. limon, and D. purpurescens in external morphology but differs from these species in dewlap coloration, dorsal color pattern, morphometrics, and scalation. I discovered one species of the genus Ecnomiohyla, which exhibits significant genetic distances (16S mtDNA gene) and morphological differences to all known Ecnomiohyla species. Along with the description of the new Ecnomiohyla species, I provide detailed comparisons of morphological and molecular characters of almost all members of the genus in Lower Central America, as well as an identification key for the entire genus. Two new species of the genus Lepidoblepharis from EP were described. In the corresponding work, I include an analysis of Lepidoblepharis spp. in the region, including phylogeography and taxonomy. One of the new species, Lepidoblepharis emberawoundule, can be differentiated from most species in the genus by its small size and its low number of lamellae under the fourth toe and finger. The other species described from EP, Lepidoblepharis rufigularis, can be differentiated from all species in the genus by its small size and the reddish throat in males.