### Refine

#### Document Type

- Doctoral Thesis (5)

#### Language

- English (5)

#### Has Fulltext

- yes (5)

#### Is part of the Bibliography

- no (5)

#### Institute

- Physik (5)

The main subject of this thesis is the study of hadron and photon production in relativistic heavy-ion collisions by means of hydrodynamics+transport approaches. Two different kinds of such hybrid approaches are employed in this work, the SMASH-vHLLE-hybrid and a MUSIC+SMASH hybrid. While the former is capable of simulating heavy-ion collisions covering a wide range of collision energies down to √s = 4.3 GeV, reproducing the correct baryon stopping powers, the latter provides a framework to consistently model photon production in the hadronic stage of high-energy heavy-ion collisions.
The SMASH-vHLLE-hybrid is a novel state-of-the-art hybrid approach whose development constitutes a major contribution to this thesis. It couples the hadronic transport SMASH to the 3+1D viscous hydrodynamics approach vHLLE. Therein, SMASH is employed to provide the fluctuating 3D initial conditions and to model the late hadronic rescattering stage, and vHLLE for the fluid dynamical evolution of the hot and dense fireball. The initial conditions are provided on a hypersurface of constant proper time, and the macroscopic evolution of the fireball is carried out down to an energy density of ecrit = 0.5 GeV/fm3, where particlization occurs. Consistency at the interfaces is verified in view of global, on-average quantum number conservation and the SMASH-vHLLE-hybrid is validated by comparison to SMASH+CLVisc as well as UrQMD+vHLLE hybrid approaches. The establishment of the SMASH-vHLLE-hybrid to theoretically describe heavy-ion collisions at intermediate and high collision energies forms a basis for a range of extensions and future research projects. It is further made available to the heavy-ion community by virtue of being published on Github.
The SMASH-vHLLE-hybrid is applied to simulate Au+Au/Pb+Pb collisions between √s = 4.3 GeV and √s = 200.0 GeV. A good agreement with the experimentally measured rapidity and transverse mass spectra is obtained. In particular the baryon stopping dynamics are well reproduced at low, intermediate, and high collision energies. Excitation functions for the mid-rapidity yield and mean transverse momentum of pions, protons and kaons are demonstrated to agree well with their experimentally measured counterpart. These results further validate the approach and provide a solid baseline for potential future studies. The importance of annihilations and regenerations of protons and anti-protons is additionally investigated in Au+Au/Pb+Pb collisions between √s = 17.3 GeV and √s = 5.02 TeV with the SMASH-vHLLE-hybrid. It is found that, regarding the p + p ̄ ↔ 5 π reaction, 20-50% (depending on the rapidity range) of the (anti-)proton yield lost to annihila- tions in the hadronic rescattering stage is restored owing to the back reaction. The back reaction thus constitutes a non-negligible contribution to the final (anti-)proton yield and should not be neglected when modelling the late rescattering stage of heavy-ion collisions.
The MUSIC+SMASH hybrid is a hybrid approach ideally suited to model the production of photons in relativistic heavy-ion collisions. Therein, the macroscopic production of photons in the hadronic stage in MUSIC relies on the identical effective field theories as the photon cross sections implemented in SMASH for the microscopic production. The MUSIC+SMASH hybrid thus provides the first consistent framework to the end of hadronic photon production. It accounts for 2 → 2 scattering processes of the kind π + ρ → π + γ and pion bremsstrahlung processes π + π → π + π + γ. The MUSIC+SMASH hybrid is employed in an ideal 2D setup to systematically assess the importance of non-equliibrium dynamics in the hadronic rescattering stage on mid-rapidity transverse momentum spectra and elliptic flow of photons at RHIC/LHC energies. This is achieved by comparing the outcome of the MUSIC+SMASH hybrid, involving an out-of-equilibrium late rescattering stage, to macroscopically approximating late stage photon production by means of MUSIC, employed down to temperatures well below the switching temperature. It is found that non-equilibrium dynamics have only minor implications for photon transverse momentum spectra, but significantly enhance the photon elliptic flow. At RHIC energies, an enhancement of up to 70%, and at LHC of up to 65% is observed in the non-equilibrium afterburner as compared to its hydrodynamical counterpart. In combination with the large amount of photons produced above the particlization temperature, these differences are modest regarding the transverse momentum spectra, but a significant enhancement of the elliptic flow is observed at low transverse momenta. Below pT ≈ 1.4 GeV, the combined v2 is enhanced by up to 30% at RHIC, and up to 20% at the LHC within the non-equilibrium setup as compared to its approximation via hydrodynamics. Non-equilibrium dynamics in the hadronic rescattering stage are hence important, especially in view of momentum anisotropies at low transverse momenta. These findings thus contribute to the understanding of low-pT photons produced in heavy-ion collisions at RHIC/LHC energies and the MUSIC+SMASH hybrid employed for this study provides a baseline for additional studies regarding photon production in the future.
To summarize, the approaches and frameworks presented in this thesis provide a good baseline for further extensions and studies in order to improve the understanding of hadron and photon production in relativistic heavy-ion collisions across a wide range of collision energies. More broadly, such future studies of hadrons and photons may contribute to enhance the understandig of the properties of the fundamental building blocks of matter, of which everything that surrounds us is made of.

In this thesis different descriptions for the non-Abelian Landau-Pomeranchuk-Migdal (LPM) effect are studied within the partonic transport approach BAMPS (Boltzmann Approach to Multi-Parton Scatterings), which numerically solves the 3+1-dimensional Boltzmann equation for massless partons based on elastic and radiative interactions calculated in perturbative quantum chromodynamics.
The LPM effect is a coherence effect originating from the finite formation time of gluon emissions leading to characteristic dependencies of the radiative energy loss of energetic partonic projectiles, as e.g. jets in ultra-relativistic heavy-ion collisions.
Due to this non-locality of interactions, such coherence effects are difficult to describe rigorously in transport theory.
Therefore we compare in this work three different implementations for the LPM effect: i) a parametric LPM suppression based on a theta function in the radiative matrix elements, ii) a stochastic LPM approach, which explicitly simulates the elastic interactions of gluons during their formation time, and iii) the thermal gluon emission rate from the AMY formalism, which is a hard-thermal-loop calculation exactly considering the non-Abelian LPM effect by resumming ladder diagrams in the large medium limit.
After discussing the numerical implementation of the three approaches, we investigate their consequences in different jet-energy loss scenarios: first the academic scenarios of eikonal and non-eikonal jets flying through a static brick of thermal quark-gluon plasma and then jets traversing the expanding medium of ultra-relativistic heavy-ion collisions at LHC energies.
We can demonstrate that although the different LPM approaches show similarities in the radiative energy loss there are differences in the underlying gluon emission spectra, which originate from the specific treatment of divergences in the matrix elements within BAMPS.
Furthermore, based on the different LPM approaches we present simulation results for recent jet quenching observables from the LHC experiments and discuss properties of the underlying heavy-ion medium.

In this work we provided additional insights into our understanding of bulk QCD matter through the study of the transport coeffcients which govern the non-equilibrium microscopical processes of statistical ensembles. Specically, we focused on the low energy regime corresponding to the hadron gas, as the properties of this region of the phase diagram are still relatively unknown, and existing calculations for the transport coeffcients are either scarce, contradictory, or somewhat limited in scope; this thesis' main goal was thus to shed some light on this by providing new independent calculations of these quantities.
We subsequently presented two formalisms which can be used to calculate transport coeffcients. The first one (which also was the main tool we used in the following chapters to produce our results) relies on the development of so-called Green-Kubo formulas, which relate non-equilibrium dissipative fluctuations with transport coeffcients; notably, the off-diagonal components of the energy-momentum tensor are shown to be related to the shear viscosity, its diagonal components to the bulk viscosity and fluctuations in the electric current can be related to the electric conductivity. We additionally introduced two new conductivities, namely the baryon-electric and strange electric conductivities, which we dubbed, together with the already known electric one, the "cross-conductivity", which encodes information about how electric fluctuations are correlated to changes in electric, baryonic or strange currents, or vice-versa. The second way of calculating transport coeffcient which we discussed consists in linearizing the collision term of the Boltzmann equation through the Chapman-Enskog formalism. While in principle providing direct semi-analytical results for the transport coeffcients, this approach is complicated to implement when more than a few species are considered, and as such was then mostly used as a tool to calibrate our Green-Kubo calculations.
The hadron gas model that we used for all calculations, namely the transport approach SMASH, was then presented. The main features of the model were explained, such as the collision criterion, the considered degrees of freedom and the specific way in which they microscopically interact with each other. It was verified that SMASH does reproduce analytical results of the Boltzmann equation in an expanding universe scenario, thus showing the equivalence of this transport approach and the associated kinetic theory results. A special care was taken to detail the ways in which a state of thermal and chemical equilibrium (which is necessary for Green-Kubo relations to be valid) can be reached and described using SMASH.
...

In this thesis we work on the theoretical description of relativistic heavy-ion collisions, focussing on electromagnetic probes. We present mainly four topics: electric conductivity and diffusion properties of the hot plasma and hadronic matter, response of the quark-gluon plasma to external magnetic fields, direct photon production in the quark-gluon plasma and a study about initial and final state effects in small systems. The latter topic aims, i.a., at a better understanding of the initial state, which is crucial for electromagnetic probes. In all research areas we make use of the Boltzmann transport equation, whereby the presented methods provide analytical and numerical solutions. We pay particular attention to the construction of complete leading order photon production processes in numerical transport simulations of the quark-gluon plasma.
To begin with, our findings are the complete conserved charge diffusion matrix and electric conductivity. Those properties are important ingredients, e.g., for future simulations of baryon rich collisions. Next, we find that the influence of external magnetic fields to the QGP dynamics is not quantifiable in observables.
We present results for a variety of direct photon observables and we can partly explain experimental data. We emphasize the importance of the chemical composition and non-equilibrium nature of the medium to the direct photon puzzle. Lastly, we observe the interesting dynamic behavior of azimuthal correlations in small systems and identify signatures of the initial state in final observables. This will also be of interest for more precise simulations of electromagnetic probes and allows for various future studies.

The topic of this thesis is the theoretical description of the hadron gas stages in heavy-ion collisions. The overall addressed question hereby is: How does the hadronic medium evolve i.e. what are the relevant microscopic reaction mechanisms and the properties of the involved degrees of freedom? The main goal is to address this question specifically for hadronic multi-particle interactions. For this goal, the hadronic transport approach SMASH is extended with stochastic rates, which allow to include detailed balance fulfilling multi-particle reactions in the approach. Three types of reactions are newly-accounted for: 3-to-1, 3-to-2 and 5-to-2 reactions. After extensive verifications of the stochastic rates approach, they are used to study the effect of multi-particle interactions, particularly in afterburner calculations.
These studies follow complementary results for the dilepton and strangeness production with only binary reactions, which show that hadronic transport approaches are capable of describing observables when employed for the entire evolution of low-energy heavy-ion collisions. This is illustrated by the agreement of dilepton and strangeness production for smaller systems with SMASH calculations. It is, in particular, possible to match the measured strangeness production of phi and Xi hadrons via additional heavy nucleon resonance decay channels. For larger systems or higher energies, hadronic transport cascade calculations with vacuum resonance properties can point to medium effects. This is demonstrated extensively for the dilepton emission in comparisons to the full set of HADES dielectron data. The dilepton invariant mass spectra are sensitive to a medium modification of the vector meson spectral function for large collision systems already at low beam energies. The sensitivity to medium modifications is mapped out in detail by comparisons to a coarse-graining approach, which employs medium-modified spectral functions and is based on the same evolution.
The theoretical foundation of stochastic rates are collision probabilities derived from the Boltzmann equation's collision term with the assumption of a constant matrix element. This derivation is presented in a comprehensive and pedagogical fashion. The derived collision probabilities are employed for a stochastic collision criterion and various detailed-balance fulfilling multi-particle reactions: the mesonic Dalitz decay back-reaction (3-to-1), the deuteron catalysis (3-to-2) and the proton-antiproton annihilation back-reaction (5-to-2). The introduced stochastic rates approach is extensively verified by studies of the numerical stability and comparisons to previous results and analytic expectations. The stochastic rates results agree perfectly with the respective analytic results.
Physically, multi-particle reactions are demonstrated to be significant for different observables, most notably the yield of the partaking particles, even in the late dilute stage of heavy-ion reactions. They lead to a faster equilibration of the system than equivalent binary multi-step treatments. The difference in equilibration consequently influences the yield in afterburner calculations. Interestingly, the interpretation of results is not dependent on employing multi-particle or multi-step treatments, which a posteriori validates the latter.
As the first test case of multi-particle reactions in heavy-ion reactions, the mesonic 3-to-1 Dalitz decay is found to be dominated by the omega Dalitz decay back-reaction. While the effect on the medium is found to be negligible overall, the regeneration is found to be sizable: up to a quarter of Dalitz decays are regenerated.
Non-equilibrium rescattering effects are shown to be relevant for late collision stages for two particle species: deuteron and protons. In both cases, the relevant rescatterings involve multiple particles.
The deuteron pion and nucleon catalysis reactions equilibrate quickly in the afterburner stage at intermediate energies. The constant formation and destruction keeps the yield constant and microscopically explains the "snowballs in hell"-paradox. The yield is also generated with no d present at early times, which explains why coalescence models can also match the multiplicity.
New is the study of the 5-body back-reaction of proton-antiproton annihilations. This work marks the first realization of microscopic 5-body reactions in a transport approach to fulfill detailed balance for such reactions. A sizable regeneration due to the back-reaction of up to half of the proton-antiproton pairs lost due to annihilations is found. Consequently, both annihilation and regeneration in the late non-equilibrium stage are shown to have a significant effect on the p yield.