Refine
Year of publication
Document Type
- Doctoral Thesis (15)
- Bachelor Thesis (12)
- Master's Thesis (9)
- diplomthesis (1)
Has Fulltext
- yes (37)
Is part of the Bibliography
- no (37)
Keywords
- ALICE (4)
- heavy-ion physics (2)
- ALICE upgrade (1)
- ALTRO (1)
- Dielectron (1)
- GEM (1)
- HLT (1)
- Hadronenjet (1)
- Heavy-Ion Collision (1)
- High-Level Trigger (1)
Institute
- Physik (37)
Im Rahmen dieser Arbeit wurden grundlegende Eigenschaften von GEM-Verstärkungsstrukturen untersucht. Dies waren der Einfluss des Alignmenteffektes auf die Reproduzierbarkeit von Messungen, die Elektronenextraktionseffizienz von GEMs im allgemeinen und die Auswirkungen von Druckschwankungen auf die Gasverstärkung. Weiterhin wurden verschiedene vierlagige GEM-Verstärkungssysteme mit einer MP-GEM an erster Stelle in Hinblick auf Ionenrückfluss und Energieauflösung untersucht.
Der Alignmenteffekt ist noch nicht vollkommen verstanden und verlangt weitere Untersuchungen. Was aber definitiv gesagt werden kann ist, dass das Drehen der GEMs um 90° die Reproduzierbarkeit der Messergebnisse sicherstellt.
Die unterschiedlichen Elektronenextraktionseffizienzen der verschiedenen GEM-Typen sind noch unverstanden. Auch wenn die grundsätzliche Zunahme der Extraktion mit zunehmenden Transferfeld verständlich ist, so bleibt vor allem das Verhalten einer LP-GEM in diesem Kontext bis jetzt unerklärlich.
Die Versuche mit einer MP-GEM an erster Stelle einer vierlagigen Verstärkungsstruktur haben sich als keine Verbesserung im Vergleich zu den S-Konfigurationen herausgestellt. Auch wenn manche gefundenen Einstellungen die Kriterien von einem IBF von weniger als 1 % und einem σ(55Fe) von weniger als 12 % gleichzeitig erfüllen, liegen diese Messpunkte so knapp an den definierten Grenzen, dass sie nicht für den Betrieb in der Spurendriftkammer von ALICE geeignet sind. Eine Erkenntnis, die trotzdem gewonnen werden konnte, ist, dass sich das Verhalten von verschiedenen Konfigurationen verstehen lässt. So ist die beste untersuchte Konfiguration die MP-LP-LP-S-Konfiguration gewesen, danach folgte die MP-S-LP-S und als schlechteste hat die MP-S-LP-SP-Konfiguration abgeschnitten. Dies ist genau die gleiche Reihenfolge, wie sie auch bei den S-Konfigurationen auftritt: S-LP-LP-S, dann S-S-LP-S und danach S-S-LP-SP. Ein wichtiger Schritt in einem guten Kompromiss zwischen Ionenrückfluss und σ(55Fe), scheinen zwei LP-GEMs an zweiter und dritter Stelle zu sein und weniger der Lochabstand der letzten GEM.
Die Druckabhängigkeit der Gasverstärkung hat einen großen Einfluss auf die Verstärkung und damit auf die Reproduzierbarkeit von Messungen. Bei einem Höhenunterschied von ca. 400 m ergibt sich eine Änderung der Verstärkung von ca. 35 %. Zusätzlich wird dieser Effekt von lokalen Wetterbedingungen überlagert. Der Einfluss des Luftdruckes kann jedoch mit dem Fit in Abbildung 43 berücksichtigt und damit herausgerechnet werden
The Time Projection Chamber (TPC), a large gaseous detector, is the main particle identification device of the ALICE experiment at the CERN LHC. The desired performance of the TPC defines the requirements for the gas mixture used in the detector. The active volume was filled with either Ne-CO2 (90-10) or Ne-CO2-N2 (90-10-5) during the first LHC running period. For LHC Run 2 the gas mixture is changed to Ar-CO2. Calculations of relevant gas properties are performed for Ar-based gas mixtures and compared to Ne-based gas mixtures to identify the most suitable Ar mixture. The drift velocity of ions in Ar is lower than in Ne. The closing time of the gating grid has to be adjusted accordingly to avoid drift field distortions due to back-drifting ions. The drift times of ions in the TPC readout chambers are calculated for the respective gas mixtures to determine the time to collect all ions from the amplification region. For LHC Run 3 the TPC readout chambers will be upgraded. The Multiwire Proportional Chambers (MWPCs) will be replaced by readout chambers based on Gas Electron Multipliers (GEMs) which are operated in continuous mode. As a consequence an ion backflow of the order of 1% causes significant space-charge distortions in the TPC drift volume. Similar distortions are expected in data taken specifically for the study of space-charge effects at the end of Run 1. The gating grid of the MWPCs is operated in the open state allowing the ions from the amplification region to enter the drift volume. The magnitude of the distortions in this data is measured and compared to the expectations for the TPC upgrade and results from current simulations.
Da in der Run 3 Periode des CERN LHC die Kollisionsrate auf 50 kHz erhöht werden soll, muss die ALICE TPC umgebaut werden. Die Vieldrahtproportionalkammern mit Sperrgitter sollen gegen eine GEM-basierte Auslese ausgetauscht werden, um eine kontinuierliche Auslese zu ermöglichen.
Es wurde eine GEM-Testkammer, die mit drei und vier GEM-Folien betrieben werden kann, entwickelt und gebaut. GEM-Folien wurden unter dem Mikroskop auf Fehler untersucht und auf ihre Spannungsfestigkeit hin getestet sowie gerahmt und in die Kammer eingesetzt. Mit der fertigen kleinen TPC mit GEM-basierter Auslese wurden IBF und Energieauflösung gemessen. Ziel der Messungen war es, einen möglichst geringen IBF von unter 1 % zu erhalten, um so wenig wie möglich Feldverzerrungen im Driftvolumen der TPC zu erhalten, bei gleichzeitig guter Energieauflösung von mindestens 12 %, um eine gute Teilchenidentifikation in der TPC sicherzustellen.
Da standard GEM-Konfigurationen mit nur drei GEM-Folien zwar eine gute Energieauflösung, jedoch zu viel IBF aufweisen, wurden die Messungen hauptsächlich mit vier GEM-Folien durchgeführt. Es wurden zwei verschiedene Arten von GEM-Folien verwendet, Standard (S) und Large-Pitch (LP) GEM-Folien, die bei einem Großteil der Messungen in der S-LP-LP-S-Konfiguration angeordnet waren.
Es wurde festgestellt, dass sich IBF und Energieauflösung gegenläufig verhalten, bei besser werdendem IBF also die Energieauflösung schlechter wird und umgekehrt.
Es wurden zwei verschiedene Gasmischungen, Ne-CO2-N2 (90-10-5) und Ar-CO2 (90-10), untersucht. Mit Neon wurde bei einem Gain von 2000 gemessen, mit Argon nur bei einem Gain von 1000, da bei Argon die Anzahl der produzierten Elektronen pro cm etwa doppelt so groß ist.
Der IBF war mit beiden Gasmischungen etwa gleich groß. Die Energieauflösung war mit Argon jedoch aufgrund des niedrigeren Gains erheblich schlechter. Mit Ne-CO2-N2 (90-10-5) gelang es, einen Arbeitspunkt mit einer Energieauflösung von etwa 12 % und einem IBF von unter 1 % zu finden, mit Ar-CO2 (90-10) war dies jedoch nicht der Fall.
Ein wesentliches Ziel der Physik mit schweren Ionen ist die Untersuchung der Zustände von Kernmaterie bei hohen Dichten bzw. Temperaturen. Solche Zustände lassen sich durch Kollisionen von hochenergetischen schweren Ionen in Teilchenbeschleunigern wie dem Super Proton Synchrotron SPS am Europäischen Kernforschungszentrum CERN in Genf erzeugen und untersuchen. Die vorliegende Arbeit beschäftigt sich mit der Analyse des Einflusses des in einer solchen Kollision erzeugten Mediums auf hochenergetische Teilchen, welche dieses Medium durchqueren. Hierzu werden Korrelationen zwischen Teilchen mit hohem Transversalimpuls pt als Funktion der Zentralität der Kollisionen und der Ladung der beteiligten Teilchen untersucht. Ziel ist es, hierdurch eine experimentelle Grundlage für die theoretische Beschreibung der Eigenschaften des Mediums in solchen Kollisionen bereitzustellen. ...
Nuclear matter, that takes the form of protons and neutrons under normal conditions, is subject to a phase transition at high temperatures and densities, liberating the quarks and gluons that are usually confined in nucleons and creating a medium of free partons: the Quark-Gluon-Plasma. It is generally believed that this state of matter can be created in relativistic collisions of heavy nuclei. The study of the medium created in these collisions is the subject of heavy-ion physics. One topic within this field are particles with high transverse momentum, that are created in initial hard collisions between partons of the incoming nuclei. The energetic partons lose energy due to interactions with the medium before they fragment into a jet of hadrons. Due to momentum conservation, these jets are usually created as back-to-back pairs, or less commonly as three-jet or photon-jet events, where a single jet is balanced by a hard photon. The energy loss can be measured using correlations between particles with high transverse momenta. A trigger particle is selected with very high transversemomentum and the distribution of the azimuthal angle of associated particles in the same event is studied, relative to the azimuth of the trigger particle.These azimuthal correlations show a peak for opening angles around 0 from particles selected from the same jet, and a second peak at opening angles around 180 degrees from back-to-back di-jets. Random combinations with the underlying event generate a flat background, extending over the full range of opening angles. The STAR experiment observed a modification of these correlations in central Au+Au collisions, where trigger particles with 4GeV < pT(trigger) < 6GeV and associated particles with 2GeV < pT(trigger) < 4GeV were selected. A strong suppression has been observed for away-side correlations in central Au+Au collisions, relative to p+p, d+Au and peripheral Au+Au data. This can be explained by assuming two partons going in opposite directions, where at least one has to travel a large distance through the medium, causing energy loss and effectively removing the event from the analysis. For near-side correlations, no significant modification has been observed, which can be explained by surface emission, assuming that the observed jets have travelled only a short distance in themedium, not leaving enough time for interactions with the medium. Both trigger- and associated particles in a correlation analysis with charged hadrons are subject to modifications due to the medium. This can be avoided by using photon-jet events instead of di-jets, because the photon does not interact with the medium and therefore provides the best available measure of the properties of the opposite jet in the presence of the underlying event. This thesis studies azimuthal correlations between regions of high energy deposition in the electro-magnetic calorimeter as trigger- and charged tracks as associated particles. The data sample had been enriched by online event selection, allowing for the selection of trigger particles with a transverse energy of more than 10GeV and associated particles with more than 2,3 or 4 GeV. The away-side yield per trigger particle is strongly suppressed like in correlations between charged particles. The near-side yield is also reduced by about a factor two, clearly different from charged correlations. The trigger particles are a mixture of photon pairs from the decays of neutral pions and single photons, mainly from photon-jet events, with small contributions from other hadron decays and fragmentation photons. Pythia simulations predict a ratio of neutral pions to prompt photons of 3.5:1 in p+p collisions with the same cuts as in the presented analysis. Single particle suppression further reduces this ratio in central Au_Au collisions, down to about 0.8:1, indicating that the majority of trigger particles in central Au+Au collisions are prompt photons. The increasing fraction of prompt photon triggers without an accompanying jet and therefore zero associated yield reduces the average yield per trigger particle. The magnitude of the observed effect agrees well with the expectation from Pythia simulations and the assumption of a single particle suppression by a factor 4-5. An analysis of away-side correlations is more difficult, because both photon-jet and di-jet events contribute. The aim is the separation of these two contributions. As a clear separation is not possible with the available dataset, a comparison with two different scenarios is given, where a surprisingly small suppression by only a factor of about 5 is favoured for both dijet- and photon-jet-correlations. A separate measurement of both contributions will be possible by a shower-shape analysis with the EM calorimeter or a comparison with charged correlations in the same kinematic region.
Im Laufe dieser Bachelor-Arbeit wurden verschiedene GEM-Anordnungen systematisch auf ihr IBF-Verhalten hin untersucht. Neben der Reproduktion zuvor durchgeführter Messungen wurden auch neue GEM-Kombinationen getestet. Insbesondere lag der Fokus darauf, eine Verbesserung des IBFs gegenüber des Baseline-Setups zu erzielen. Dabei kamen neben der bisher verwendeten S und LP Folien auch SP Folien zum Einsatz. Die Messungen brachten jedoch kein Ergebnis hervor, welches als Verbesserung gegenüber der Ausgangslage angesehen werden könnte. Da mit SP GEMs zuvor wenig gearbeitet wurde, war es unter anderem ein Ziel, zu untersuchen, wie sich die Verwendung dieser GEMs auf den IBF auswirkt. Insbesondere war die Frage zu klären, ob durch ihre Verwendung der IBF des Baseline-Setups
verbessert werden kann. Zum besseren Verständnis wurde ebenfalls eine Variante, S-S-LPS, untersucht. Für dieses Setup konnte durch die Verwendung einer SP Folie auf Position 4 eine Verbesserung des IBF bewirkt werden, für das Baseline-Setup jedoch nicht. Ein wesentliches Ergebnis dieser Bachelor-Arbeit war, dass das Alignment der GEMs, entgegen bisheriger Annahmen, eine große praktische Relevanz hat. Die relative Orientierung zweier aufeinander folgender GEMs gleichen Lochabstands zueinander hat einen großen Ein
uss auf die lokale Ionentransmission. Eine genauere Untersuchung hat ergeben, dass man dem entgegenwirken kann, indem man aufeinander folgende GEMs um 90° gedreht einbaut. Aufgrund der Geometrie der Folien verhindert man dadurch, dass sich die Löcher zweier Folien direkt ßber- bzw. untereinander anordnen. Ein solcher Aufbau konnte durch eine geringfügige Modifikation der Testkammer erreicht werden.
Mit diesem veränderten Aufbau wäre es nun das Ziel gewesen, alle bisherigen Messungen zu wiederholen und auf Reproduzierbarkeit hin zu überprüfen. Die Wiederholung einer Messreihe mit um 90° gedrehten GEMs hat im Rahmen der Fehlertoleranzen reproduzierbare
Ergebnisse geliefert. Aus zeitlichen Gründen war es jedoch im Rahmen dieserArbeit nicht möglich, eine vollständige Wiederholung aller Messungen durchzuführen. Dies wurde zu einem späteren Zeitpunkt von anderen Personen getan.
In dieser Arbeit wurden die ersten Schritte unternommen um Elektronen aus den Zerfällen schwerer Quarks zu messen. Im Folgenden wird zunächst ein Überblick zum physikalische Hintergrund gegeben und der elliptische Fluss als Sonde zur Untersuchung des QGP motiviert. Anschließend werden der LHC und ALICE näher beleuchtet und die einzelnen Detektorsysteme, die für diese Analyse wichtig sind, vorgestellt. Im weiteren wird eine Methode zur Identifizierung von Elektronen vorgestellt und die Kontamination des Elektronensignals durch Hadronen bestimmt. Abschließend wird der elliptische Fluss eines von Hadronen bereinigten Inklusiv-Elektronen Spektrums bestimmt und ein Ausblick auf weitere Analyseschritte gegeben.
Die Suche nach einem geeigneten Photosensor für das PANDA-Experiment wurde durch folgende Anforderungen eingegrenzt: • Tauglichkeit in einem starken Magnetfeld • Funktionsfähigkeit trotz niedriger Temperatur • geringe Bauhöhe • interne Verstärkungsstufe wegen der geringen Lichtausbeute von PbWO4 • stabiler Betrieb trotz hoher Strahlenbelastung Diese Punkte werden von Large Area Avalanche-Photodioden (LAAPDs) erfüllt. Da diese Si-Halbleiterdioden im laufenden Experiment einer hohen Strahlenbelastung ausgesetzt sein werden, ist es erforderlich, die Strahlenhärte im Vorfeld intensiv zu testen. Im Rahmen dieser Diplomarbeit wurden Strahlenhärtetests mit geladenen und neutralen Teilchen an (inter-)nationalen Instituten und der Universität Frankfurt durchgeführt, wobei das Hauptaugenmerk auf der Neutronenbestrahlung lag. Dazu wurde eine Messvorrichtung entwickelt und funktionstüchtig aufgebaut, mit der dann die Messungen an fünf verschiedenen Dioden mit einer Kapazität von 180 pF vorgenommen wurden. Während der Bestrahlung wurde der Dunkelstrom in Abhängigkeit von der Bestrahlungszeit bei konstanten Temperaturen gemessen. Vor und nach den Tests wurden die APD-Parameter charakterisert, um später durch den Vergleich der Daten Aussagen zur Strahlenhärte der Photodetektoren machen zu können. Die Ergebnisse und Vergleiche zeigen, dass die APDs nach der Bestrahlung mit Photonen weiterhin gut funktionieren. Die Quantenausbeute verändert sich nicht. Der durch Protonen- (Rate ≈ 1013 p/cm2 (90 MeV) und Neutronenbestrahlung (Rate ≈ 1010 n/cm2 (1 MeV) und 1014 n/cm2 (14 MeV)) erzeugte hohe Dunkelstrom der APDs ist aufgrund seiner Temperaturabhängigkeit und den Ausheilungseffekte reduzierbar. Es ist zu erwarten, dass die APDs im laufenden Experimentbetrieb trotz dieser Strahlung funktionsfähig bleiben werden. Sobald die mit Neutronen bestrahlten APDs abgeklungen sind, werden ihre Parameter zum Vorher-/Nachher-Vergleich vermessen. Dazu gehören der Dunkelstrom in Abhängigkeit von der Verstärkung, die Verstärkung in Abhängigkeit von der Spannung und Wellenlänge und die Quantenausbeute. Um die Ausheilung bestrahlter Photodioden in Abhängigkeit von der Temperatur genauer zu bestimmen, sollen sie (unter Vorspannung) in einem Ofen bei T = 80◦C ausgebacken werden, bis der Dunkelstrom sich wieder in einem Gleichgewicht befindet. Nach diesem Vorgang werden dann alle APD-Parameter noch einmal vermessen, um einen Vergleich mit den Werten vor der Bestrahlung zu ziehen. Neben diesen nachbereitenden Arbeiten wird an ersten rechteckigen APD-Prototypen, die sich in der Entwicklungsphasen befinden, geforscht. An diesen außergewöhnlich großen APDs müssen alle an den quadratischen Photodioden bereits durchgeführten und noch folgenden Tests ebenfalls vorgenommen werden.
The ALICE Time Projection Chamber (TPC) is the main tracking detector of ALICE which was designed to perform well at multiplicities of up to 20000 charged primary and secondary tracks emerging from Pb-Pb collisions. Successful operation of such a large and complex detector requires an elaborate calibration and commissioning. The main goal for the calibration procedures is to provide the information needed for the offline software for the reconstruction of the particle tracks with sufficient precision so that the design performance can be achieved. For a precise reconstruction of particle tracks in the TPC, the calibration of the drift velocity, which in conjunction with the drift time provides the z position of the traversing particles, is essential. In this thesis, an online method for the calibration of the drift velocity is presented. It uses the TPC Laser System which generates 336 straight tracks within the active volume of the TPC. A subset of these tracks, showing sufficiently small distortions, is used in the analysis. The resulting time dependent drift velocity correction parameters are entered into a database and provide start values for the offline reconstruction chain of ALICE. Even though no particle tracking information is used, the online drift velocity calibration is in agreement with the full offline calibration including tracking on the level of about 2 x 10 exp (-4). In chapter 2, a short overview of the ALICE detector, as well as the data taking model of the ALICE, is given. In chapter 3, the TPC detector is described in detail. Lastly in chapter 4, the online drift velocity calibration method is presented, together with a detailed description of the TPC laser system.