Refine
Year of publication
Document Type
- Doctoral Thesis (17)
- Bachelor Thesis (12)
- Master's Thesis (9)
- diplomthesis (1)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- ALICE (4)
- heavy-ion physics (2)
- ALICE upgrade (1)
- ALTRO (1)
- Dielectron (1)
- GEM (1)
- HLT (1)
- Hadronenjet (1)
- Heavy-Ion Collision (1)
- High-Level Trigger (1)
Institute
- Physik (39)
Im Rahmen dieser Arbeit wurden grundlegende Eigenschaften von GEM-Verstärkungsstrukturen untersucht. Dies waren der Einfluss des Alignmenteffektes auf die Reproduzierbarkeit von Messungen, die Elektronenextraktionseffizienz von GEMs im allgemeinen und die Auswirkungen von Druckschwankungen auf die Gasverstärkung. Weiterhin wurden verschiedene vierlagige GEM-Verstärkungssysteme mit einer MP-GEM an erster Stelle in Hinblick auf Ionenrückfluss und Energieauflösung untersucht.
Der Alignmenteffekt ist noch nicht vollkommen verstanden und verlangt weitere Untersuchungen. Was aber definitiv gesagt werden kann ist, dass das Drehen der GEMs um 90° die Reproduzierbarkeit der Messergebnisse sicherstellt.
Die unterschiedlichen Elektronenextraktionseffizienzen der verschiedenen GEM-Typen sind noch unverstanden. Auch wenn die grundsätzliche Zunahme der Extraktion mit zunehmenden Transferfeld verständlich ist, so bleibt vor allem das Verhalten einer LP-GEM in diesem Kontext bis jetzt unerklärlich.
Die Versuche mit einer MP-GEM an erster Stelle einer vierlagigen Verstärkungsstruktur haben sich als keine Verbesserung im Vergleich zu den S-Konfigurationen herausgestellt. Auch wenn manche gefundenen Einstellungen die Kriterien von einem IBF von weniger als 1 % und einem σ(55Fe) von weniger als 12 % gleichzeitig erfüllen, liegen diese Messpunkte so knapp an den definierten Grenzen, dass sie nicht für den Betrieb in der Spurendriftkammer von ALICE geeignet sind. Eine Erkenntnis, die trotzdem gewonnen werden konnte, ist, dass sich das Verhalten von verschiedenen Konfigurationen verstehen lässt. So ist die beste untersuchte Konfiguration die MP-LP-LP-S-Konfiguration gewesen, danach folgte die MP-S-LP-S und als schlechteste hat die MP-S-LP-SP-Konfiguration abgeschnitten. Dies ist genau die gleiche Reihenfolge, wie sie auch bei den S-Konfigurationen auftritt: S-LP-LP-S, dann S-S-LP-S und danach S-S-LP-SP. Ein wichtiger Schritt in einem guten Kompromiss zwischen Ionenrückfluss und σ(55Fe), scheinen zwei LP-GEMs an zweiter und dritter Stelle zu sein und weniger der Lochabstand der letzten GEM.
Die Druckabhängigkeit der Gasverstärkung hat einen großen Einfluss auf die Verstärkung und damit auf die Reproduzierbarkeit von Messungen. Bei einem Höhenunterschied von ca. 400 m ergibt sich eine Änderung der Verstärkung von ca. 35 %. Zusätzlich wird dieser Effekt von lokalen Wetterbedingungen überlagert. Der Einfluss des Luftdruckes kann jedoch mit dem Fit in Abbildung 43 berücksichtigt und damit herausgerechnet werden
The Time Projection Chamber (TPC), a large gaseous detector, is the main particle identification device of the ALICE experiment at the CERN LHC. The desired performance of the TPC defines the requirements for the gas mixture used in the detector. The active volume was filled with either Ne-CO2 (90-10) or Ne-CO2-N2 (90-10-5) during the first LHC running period. For LHC Run 2 the gas mixture is changed to Ar-CO2. Calculations of relevant gas properties are performed for Ar-based gas mixtures and compared to Ne-based gas mixtures to identify the most suitable Ar mixture. The drift velocity of ions in Ar is lower than in Ne. The closing time of the gating grid has to be adjusted accordingly to avoid drift field distortions due to back-drifting ions. The drift times of ions in the TPC readout chambers are calculated for the respective gas mixtures to determine the time to collect all ions from the amplification region. For LHC Run 3 the TPC readout chambers will be upgraded. The Multiwire Proportional Chambers (MWPCs) will be replaced by readout chambers based on Gas Electron Multipliers (GEMs) which are operated in continuous mode. As a consequence an ion backflow of the order of 1% causes significant space-charge distortions in the TPC drift volume. Similar distortions are expected in data taken specifically for the study of space-charge effects at the end of Run 1. The gating grid of the MWPCs is operated in the open state allowing the ions from the amplification region to enter the drift volume. The magnitude of the distortions in this data is measured and compared to the expectations for the TPC upgrade and results from current simulations.
Da in der Run 3 Periode des CERN LHC die Kollisionsrate auf 50 kHz erhöht werden soll, muss die ALICE TPC umgebaut werden. Die Vieldrahtproportionalkammern mit Sperrgitter sollen gegen eine GEM-basierte Auslese ausgetauscht werden, um eine kontinuierliche Auslese zu ermöglichen.
Es wurde eine GEM-Testkammer, die mit drei und vier GEM-Folien betrieben werden kann, entwickelt und gebaut. GEM-Folien wurden unter dem Mikroskop auf Fehler untersucht und auf ihre Spannungsfestigkeit hin getestet sowie gerahmt und in die Kammer eingesetzt. Mit der fertigen kleinen TPC mit GEM-basierter Auslese wurden IBF und Energieauflösung gemessen. Ziel der Messungen war es, einen möglichst geringen IBF von unter 1 % zu erhalten, um so wenig wie möglich Feldverzerrungen im Driftvolumen der TPC zu erhalten, bei gleichzeitig guter Energieauflösung von mindestens 12 %, um eine gute Teilchenidentifikation in der TPC sicherzustellen.
Da standard GEM-Konfigurationen mit nur drei GEM-Folien zwar eine gute Energieauflösung, jedoch zu viel IBF aufweisen, wurden die Messungen hauptsächlich mit vier GEM-Folien durchgeführt. Es wurden zwei verschiedene Arten von GEM-Folien verwendet, Standard (S) und Large-Pitch (LP) GEM-Folien, die bei einem Großteil der Messungen in der S-LP-LP-S-Konfiguration angeordnet waren.
Es wurde festgestellt, dass sich IBF und Energieauflösung gegenläufig verhalten, bei besser werdendem IBF also die Energieauflösung schlechter wird und umgekehrt.
Es wurden zwei verschiedene Gasmischungen, Ne-CO2-N2 (90-10-5) und Ar-CO2 (90-10), untersucht. Mit Neon wurde bei einem Gain von 2000 gemessen, mit Argon nur bei einem Gain von 1000, da bei Argon die Anzahl der produzierten Elektronen pro cm etwa doppelt so groß ist.
Der IBF war mit beiden Gasmischungen etwa gleich groß. Die Energieauflösung war mit Argon jedoch aufgrund des niedrigeren Gains erheblich schlechter. Mit Ne-CO2-N2 (90-10-5) gelang es, einen Arbeitspunkt mit einer Energieauflösung von etwa 12 % und einem IBF von unter 1 % zu finden, mit Ar-CO2 (90-10) war dies jedoch nicht der Fall.
Ein wesentliches Ziel der Physik mit schweren Ionen ist die Untersuchung der Zustände von Kernmaterie bei hohen Dichten bzw. Temperaturen. Solche Zustände lassen sich durch Kollisionen von hochenergetischen schweren Ionen in Teilchenbeschleunigern wie dem Super Proton Synchrotron SPS am Europäischen Kernforschungszentrum CERN in Genf erzeugen und untersuchen. Die vorliegende Arbeit beschäftigt sich mit der Analyse des Einflusses des in einer solchen Kollision erzeugten Mediums auf hochenergetische Teilchen, welche dieses Medium durchqueren. Hierzu werden Korrelationen zwischen Teilchen mit hohem Transversalimpuls pt als Funktion der Zentralität der Kollisionen und der Ladung der beteiligten Teilchen untersucht. Ziel ist es, hierdurch eine experimentelle Grundlage für die theoretische Beschreibung der Eigenschaften des Mediums in solchen Kollisionen bereitzustellen. ...
Die Suche nach einem geeigneten Photosensor für das PANDA-Experiment wurde durch folgende Anforderungen eingegrenzt: • Tauglichkeit in einem starken Magnetfeld • Funktionsfähigkeit trotz niedriger Temperatur • geringe Bauhöhe • interne Verstärkungsstufe wegen der geringen Lichtausbeute von PbWO4 • stabiler Betrieb trotz hoher Strahlenbelastung Diese Punkte werden von Large Area Avalanche-Photodioden (LAAPDs) erfüllt. Da diese Si-Halbleiterdioden im laufenden Experiment einer hohen Strahlenbelastung ausgesetzt sein werden, ist es erforderlich, die Strahlenhärte im Vorfeld intensiv zu testen. Im Rahmen dieser Diplomarbeit wurden Strahlenhärtetests mit geladenen und neutralen Teilchen an (inter-)nationalen Instituten und der Universität Frankfurt durchgeführt, wobei das Hauptaugenmerk auf der Neutronenbestrahlung lag. Dazu wurde eine Messvorrichtung entwickelt und funktionstüchtig aufgebaut, mit der dann die Messungen an fünf verschiedenen Dioden mit einer Kapazität von 180 pF vorgenommen wurden. Während der Bestrahlung wurde der Dunkelstrom in Abhängigkeit von der Bestrahlungszeit bei konstanten Temperaturen gemessen. Vor und nach den Tests wurden die APD-Parameter charakterisert, um später durch den Vergleich der Daten Aussagen zur Strahlenhärte der Photodetektoren machen zu können. Die Ergebnisse und Vergleiche zeigen, dass die APDs nach der Bestrahlung mit Photonen weiterhin gut funktionieren. Die Quantenausbeute verändert sich nicht. Der durch Protonen- (Rate ≈ 1013 p/cm2 (90 MeV) und Neutronenbestrahlung (Rate ≈ 1010 n/cm2 (1 MeV) und 1014 n/cm2 (14 MeV)) erzeugte hohe Dunkelstrom der APDs ist aufgrund seiner Temperaturabhängigkeit und den Ausheilungseffekte reduzierbar. Es ist zu erwarten, dass die APDs im laufenden Experimentbetrieb trotz dieser Strahlung funktionsfähig bleiben werden. Sobald die mit Neutronen bestrahlten APDs abgeklungen sind, werden ihre Parameter zum Vorher-/Nachher-Vergleich vermessen. Dazu gehören der Dunkelstrom in Abhängigkeit von der Verstärkung, die Verstärkung in Abhängigkeit von der Spannung und Wellenlänge und die Quantenausbeute. Um die Ausheilung bestrahlter Photodioden in Abhängigkeit von der Temperatur genauer zu bestimmen, sollen sie (unter Vorspannung) in einem Ofen bei T = 80◦C ausgebacken werden, bis der Dunkelstrom sich wieder in einem Gleichgewicht befindet. Nach diesem Vorgang werden dann alle APD-Parameter noch einmal vermessen, um einen Vergleich mit den Werten vor der Bestrahlung zu ziehen. Neben diesen nachbereitenden Arbeiten wird an ersten rechteckigen APD-Prototypen, die sich in der Entwicklungsphasen befinden, geforscht. An diesen außergewöhnlich großen APDs müssen alle an den quadratischen Photodioden bereits durchgeführten und noch folgenden Tests ebenfalls vorgenommen werden.
The ALICE Time Projection Chamber (TPC) is the main tracking detector of ALICE which was designed to perform well at multiplicities of up to 20000 charged primary and secondary tracks emerging from Pb-Pb collisions. Successful operation of such a large and complex detector requires an elaborate calibration and commissioning. The main goal for the calibration procedures is to provide the information needed for the offline software for the reconstruction of the particle tracks with sufficient precision so that the design performance can be achieved. For a precise reconstruction of particle tracks in the TPC, the calibration of the drift velocity, which in conjunction with the drift time provides the z position of the traversing particles, is essential. In this thesis, an online method for the calibration of the drift velocity is presented. It uses the TPC Laser System which generates 336 straight tracks within the active volume of the TPC. A subset of these tracks, showing sufficiently small distortions, is used in the analysis. The resulting time dependent drift velocity correction parameters are entered into a database and provide start values for the offline reconstruction chain of ALICE. Even though no particle tracking information is used, the online drift velocity calibration is in agreement with the full offline calibration including tracking on the level of about 2 x 10 exp (-4). In chapter 2, a short overview of the ALICE detector, as well as the data taking model of the ALICE, is given. In chapter 3, the TPC detector is described in detail. Lastly in chapter 4, the online drift velocity calibration method is presented, together with a detailed description of the TPC laser system.
Die vorliegende Arbeit beschäftigt sich mit der Charakterisierung des ALTRO Chips (ALICE TPC Readout), der ein integraler und wichtiger Bestandteil der Auslesekette des TPC (Time Projection Chamber) Detektors von ALICE (A Large Ion Collider Experiment) ist. ALICE ist ein Experiment am noch im Bau befindlichen LHC (Large Hadron Collider) am CERN mit der zentralen Ausrichtung, Schwerionenkollisionen zu untersuchen. Diese sind von besonderem Interesse, da durch sie ein experimenteller Zugriff zu dem QGP (Quark Gluon Plasma) existiert, dem einzigen vom Standardmodell vorhergesagten Phasenübergang, der unter Laborbedingungen erreichbar ist. Im Jahr 2004 wurden Messungen an einem Teststrahl am CERN PS (Proton Synchrotron) durchgeführt. Der Prototyp wurde voll mit FECs bestückt, was 5400 Kanälen entspricht und einer anderen Gasmixtur (Ne/N2/CO2 90%/5%/5%) befüllt. Für das optimale Leistungsverhalten der ALICE TPC muß der Digitalprozessor im ALTRO, bestehend aus vier Berechnungseinheiten, mit den passenden Werten konfiguriert werden. Der Datenfluss beginnt mit dem BCS1 (Baseline Correction and Subtraction 1) Modul, das systematische Störungen und die Grundlinie entfernt. Da der ALTRO kontinuierlich das anliegende Signal abtastet, entfernt es automatisch langsame Grundlinienveränderungen, die Beispielsweise durch Temperaturänderungen auftreten können. Gefolgt von dem TCF (Tail Cancellation Filter), der den Schweif des langsam fallenden, vom PASA generierten Signals entfernt. Um die nichtsystematischen Störungen der Grundlinie zu entfernen, folgt die BCS2 (Baseline Correction and Subtraction 2), die auf einer gleitenden Mittelwertsberechnung mit Ausschluß von Detektorsignalen über einen doppelten Schwellenwert basiert. Die finale Einheit für die Signalverarbeitung ist die ZSU (Zero Suppression Unit), die Meßpunkte unterhalb eines definierten Schwellwertes entfernt. Hier wird der weg beschrieben die TCF und BCS1 Parameter aus vorhandenen Detektordaten zu extrahieren. Während der Analyse der Daten von kosmischen Teilchen fiel bei Signalen mit hoher Amplitude (>700 ADC) eine zusätzliche Struktur in dem Schweif auf. Der Monitor wurde deswegen mit einem gleitenden Mittelwertfilter erweitert, worauf sich diese Struktur auch in kleineren Signalen (> 200 ADC) zeigte. Dieses Signal wird von Ionen erzeugt, die zur Kathode oder zu den Pads driften, bisher ist jedoch weder die Streuung der Elektronenlawine an der Anode, noch die Variationsbreite in den erzeugten Elektronlawinen verstanden oder gemessen worden. Eine erfolgreiche Messung, sowie Charakterisierung wird in dieser Arbeit beschrieben. Im Jahr 2005 im Sommer beginnt der Einbau der Gaskammern der TPC in ALICE, die Elektronik folgt am Ende dieses Jahres. Parallel hierzu wurde der Prototyp der TPC wieder in Betrieb genommen und im Frühling wird ein kompletter Sektor mit der Detektorelektronik ausgestattet. An diesen zwei Aufbauten wird die ALTRO Charakterisierung fortgeführt, verfeinert und komplettiert.
Optimierung der Rekonstruktionsparameter zur Messung von Quarkonia im zentralen ALICE Detektor
(2011)
Seit den ersten Kollisionen im November 2009 läuft der LHC am CERN und dringt in noch nie dagewesene Energiebereiche vor. Die Schwerionenkollisionen innerhalb des ALICE Detektors sollen Aufschluss über die stark wechselwirkende Materie und ihre verschiedenen Phasen geben. Dem liegt die Untersuchung des Quark-Gluon-Plasmas zugrunde. Eine Signatur des Quark-Gluon-Plasmas ist die Rate von produzierten Quarkonia. Diese zerfallen in Leptonenpaare und sind damit zu identifizieren.
In der vorliegenden Arbeit wird diese Rate zur Messung von Quarkonia aufgegriffen und untersucht. Bei der Untersuchung der Simulation durch die Selektion der e++e--Paare, die ausschließlich aus einem J/y stammen, lässt sich ein Massenspektrum produzieren, das im Rahmen dieser Arbeit genauer betrachtet wurde. Durch die genaue Untersuchung der Bremsstrahlung und deren Lokalisierung lässt sich zeigen, dass besonders der ITS ein hohes Maß an Bremsstrahlungsprozessen mit sich bringt, was auf die große Materialanhäufung zurückzuführen ist. Um dies näher zu untersuchen, wurde das Augenmerk auf den ITS gelegt. Eines der wichtigsten Merkmale, die den Bremsstrahlungsprozess beschreiben, ist der Energieverlust. Durch die Bethe-Heitler-Funktion lässt sich der gesamte Detektor nur bedingt beschreiben. Erst die Betrachtung, die sich mit einer Einschränkung auf den ITS und den Azimutwinkel beschäftigt, zeigt eine genaue Beschreibung durch die Parameter der Funktion.
Nach der genauen Beschreibung der Bremsstrahlung wurden verschiedene Methoden entwickelt, in denen die Bremsstrahlungsprozesse innerhalb des invarianten Massenspektums der e++e--Paare ausgeschnitten werden können. Die Methoden der Selektion durch die Anzahl der Spurpunkte sowie die Selektion durch die Position der Spurpunkte zeigen, dass bereits minimale Selektionen ein sehr gutes Signal ergeben. Durch den Vergleich mit den herkömmlichen Selektionen SPDany und SPDfirst, zeigt sich, dass hierbei viel Signal verloren geht und diese Methode für bestimmte Analysen optimiert werden kann.
Durch die Anwendung auf die Datensätze, die während einer Strahlzeit im Jahr 2010 genommen wurden, bestätigte sich die Vermutung. Durch die Selektion von SPDany wird das Signal reduziert. Vergleicht man die Anzahl der Einträge im Signalbereich durch die Reduktion der Teilchen ohne Spurpunkte im ITS (NITSpunkten>0) zu der Anzahl der Einträge durch SPDany, ergibt dies eine Verminderung von bis zu 40%. Die Ursache für den großen Verlust innerhalb des Signalbereichs wird zusätzlich verstärkt, indem der SPD durch Kühlungsprobleme ausgeschaltet ist.
Eine weitere Methode, die untersucht wurde, war die Reduktion der Auswirkungen von Bremsstrahlung mit Hilfe der Kinkanalyse. Diese Methode ließ keine qualitativen Rückschlüsse auf die Analyse der Bremsstrahlung zu.
Dennoch zeigt das Ergebnis, dass das Signal von J/y’s in Proton-Proton Kollisionen um mehr als 40% mehr Einträge verbessert werden kann und sich dieses Prinzip nicht nur theoretisch in den simulierten Daten niederschlägt sondern auch in den untersuchten Datensätzen. Nun gilt es, diese Methode auch in anderen Studien einzubauen, um so eine alltagstaugliche Überprüfung der Erkenntnisse zu gewährleisten.
Das Compressed Baryonic Matter Experiment (CBM) wird im Rahmen der Facility for Antiproton and Ion Research (FAIR) entwickelt, um das Phasendiagramm stark wechselwirkender Materie vorwiegend im Bereich hoher Dichte ausgiebig zu studieren. Dazu sollen Kollisionen schwerer Ionen durchgeführt werden und die Reaktionsprodukte mit hoher Präzision in Teilchendetektoren gemessen und identfiziert werden. Eine wichtige Aufgabe besteht in der Unterscheidung von Elektronen und Pionen, zu der ein Übergangsstrahlungszähler (Transition Radiation Detector) beiträgt. Übergangsstrahlung wird im relevanten Impulsbereich dieser Teilchen nur von Elektronen emittiert und soll im Detektor registriert werden.
In der vorliegenden Arbeit wird die Entwicklung dieses Detektors auf Basis von Vieldrahtproportionalkammern (Multiwire Proportional Chamber ) hauptsächlich anhand von Simulationen diskutiert, aber auch erste Testmessungen eines Prototypen vorgestellt. Der Schwerpunkt der Simulationen eines einzelnen Detektors liegt in der Untersuchung der Effiienz in Abhängigkeit seiner Dicke.
Der Übergangsstrahlungszähler für CBM wird aus mehreren Detektorlagen bestehen. Daher wird außerdem die Effizienz des Gesamtsystems analysiert, indem verschiedene Methoden zur Kombination der einzelnen Signale angewendet werden. Darüber hinaus wird die Effizienz des verfolgten Detektorkonzepts in Abhängigkeit des Radiators, der Anzahl der Detektorlagen, sowie des Teilchenimpulses präsentiert.