Refine
Year of publication
Document Type
- Doctoral Thesis (69)
Has Fulltext
- yes (69)
Is part of the Bibliography
- no (69)
Keywords
- NMR-Spektroskopie (7)
- RNA (6)
- NMR (4)
- NMR spectroscopy (4)
- Proteinfaltung (3)
- Amyloid (2)
- DNA (2)
- Dynamik (2)
- G-Quadruplex (2)
- Kinetik (2)
Institute
- Biochemie und Chemie (36)
- Biochemie, Chemie und Pharmazie (28)
- Biowissenschaften (2)
- Extern (1)
- Georg-Speyer-Haus (1)
- Pharmazie (1)
- Physik (1)
Cells perform a wide range of functions such as signalling, transportation, immunoprotection and metabolism. Unravelling the molecular mechanism behind those processes will provide a platform for more targeted and rational drug design. This is achieved by discerning the structural and functional aspects of the biological macromolecules involved. This thesis discusses about the biophysical characterization of protein structures and the biological importance of protein dynamics. Membrane receptors and enzymes which are ubiquitously present in our biological systems and regulate wide variety of functions are excellent choice for such study. From a pharmaceutical point of view, receptor and enzymes are exceptionally important drug targets as they represent the major share (receptor, 30% and enzymes, 47%) of all marketed drugs. Therefore, apart from biological insights, the detailed study of receptors and enzymes will provide the basis for new pharmaceutical applications. Most information about receptor activation and enzyme activity come from the structural and functional analysis of target members of the above mentioned systems.
In “Chapter 1 – General Introduction” the readers are introduced to the world of proteins with special focus on G-protein coupled receptors (GPCRs) and methyltransferases. The first part of this chapter discusses about GPCRs with emphasis on their classification, structural features and functions. GPCRs are the most abundant membrane receptors present in mammalian cells, accounting for almost 15% of all membrane proteins. The GPCR superfamily consists of ~800 members and can be subdivided into six classes (A-F). Class A containing rhodopsin, peptide hormones, olfactory GPCRs, is the most abundant with a large share of 85% of GPCR protein family. GPCRs share a common architecture of 7 transmembrane a-helices, with different ligand binding sites. Although a variety of ligands ranging from subatomic particles (a photon) to large proteins can activate a GPCR, their mechanism of signal transduction is almost similar. There are two major signal transduction pathways identified for GPCRs: the cAMP pathway and the phosphatidylinositol pathway. The therapeutic relevance of GPCRs has also been pointed out here since a large share (30%) of modern marketed drugs target GPCRs.
In the second part of this chapter, the structural and functional characterizations of methyltransferases (MTs) are discussed in detail. Several important biological processes in cells e.g. drug metabolism, gene transcription, epigenetic regulations are modulated by methylation of targets ranging from small biomolecules to large proteins. MTs are the proteins which catalyze this methylation reaction and transfer the methyl group to an acceptor molecule through SN2 like nucleophilic substitution reaction. The MTs can be classified on the basis of the substrate atoms they methylate: O (54% of all MTs), N (23%), C (18%), S (3%) and other acceptors (such as halides; 2%). They can also be categorized into five different classes (Class I-V) depending upon distinctive structural features facilitating substrate binding or catalytic activity. Rossmann fold and SET (acronym acquired from the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins) domain are the two characteristic structural motifs commonly found in MTs. Similar to GPCRs, MTs dysfunction has been shown to be involved in various diseases including neuropsychiatric diseases and cancer. Therefore they are also interesting targets for drug development. The final part of this chapter discusses the importance of structural biology in gathering information related to structure and conformational dynamics of proteins. The two prominent biophysical techniques used in structural biology, X-ray crystallography and NMR, are discussed with focus on their advantages and limitation. The importance of NMR spectroscopic techniques to investigate different dynamic processes of protein at atomic resolution under physiological conditions is also discussed. Real time NMR spectroscopy required for the analysis of slow protein dynamic processes (protein folding, enzyme catalysis, domain rearrangement) has been explained in detail.
The second part of the thesis (Chapters 3-4), which is the cumulative part, comprises the original publications grouped into 2 chapters according to their topic:
• NMR-spectroscopic characterization of the transiently populated photointermediates of bovine rhodopsin and it’s interaction with arrestin (Chapter 3)
• Structural and biophysical characterization of PaMTH1, a putative SAM dependent O-methyltransferase from filamentous fungi Podospora anserina (Chapter 4)
Each chapter is initiated by a detailed introduction to the topic, providing the framework for the following papers. The personal contribution of this thesis’ author to each publication is stated in the introduction to the respective article.
Azopeptide: Peptide mit eingebauten lichtgesteuerten Schaltern sind interessante Systeme, um konformationelle Dynamik in Peptiden zu untersuchen. In dieser Arbeit ist es gelungen einen solchen Schalter herzustellen und in ein von Robertson et al. entworfenes Modellsystem als Teil des Peptidrückgrats einzuführen. Es wurde somit die Synthese von Peptiden mit eingebauten lichtgesteuerten Schaltern fortgeführt und auf ein größeres System übertragen. Die zu erwartenden Probleme bei der Synthese eines Systems dieser Größe (30 Aminosäuren + Schalter) konnten durch Modifizierung der Standardsynthese für Peptide (Fmoc-Strategie) an der Festphase erreicht werden. Es war daher möglich, ausreichende Mengen des Peptids herzustellen sowie die freie SH-Gruppe des Peptids mit einer Schutzgruppe zu versehen, was dem Molekül zu weiterer Stabilität verhalf. Das Azopeptid wurde mit UV/vis- und Ultrakurzzeit-Spektroskopie, und besonders im Vergleich mit dem Schalter AMPB alleine, charakterisiert. Hierbei wurden folgende Erkenntnisse offen gelegt: - Das Azopeptid in Wasser verhält sich bei Belichtung (367 nm) sehr ähnlich dem AMPB (7) in DMSO (isosbestischer Punkt bei 288 nm) - Die thermische Rückreaktion lässt sich bei 330 nm biexponentiell fitten, bei 260 nm nicht, was Rückschlüsse auf mangelnde Stabilität des Azopeptids nach Belichtung zulässt (freie SH-Gruppe). - Der Abfall des angeregten Zustandes des Azopeptids folgt multiexponentiellen Kinetiken auf Zeitskalen zwischen einigen hundert fs bis zu wenigen ps. - Der Schalter AMPB (7) in DMSO verhält sich bei Belichtung (367 nm) sehr ähnlich dem beidseitig entschütztem Schalter (8) in Wasser. - Es sehr ähnliche Kinetiken für AMPB (7) in DMSO und das Azopeptid in Wasser über den gesamten spektralen Bereich werden gefunden; Absorptionsaufbau erfolgt innerhalb der Zeitauflösung des Experiments, Unterschied um einen Faktor 2 in der Zerfallsdynamik, die für das Azopeptid langsamer ist. Parvulustat: Parvulustat ist wie Tendamistat ein alpha-Amylase-Inhibitor; die Struktur von Tendamistat ist bereits sehr gut sowohl durch NMR als auch durch Röntgenkristallographie untersucht ist. Mit Parvulustat teilt Tendamistat nur 29,6 % Sequenzidentität bei ähnlicher Länge und gleicher Funktion der beiden Proteine. Es war daher von großem Interesse, die Struktur von Parvulustat aufzuklären um Ähnlichkeiten und Unterschiede der beiden Proteine diskutieren zu können. In dieser Arbeit ist es gelungen mit Hilfe der hochauflösenden, heteronuklearen 3D NMR-Spektroskopie in Lösung und iterativen Rechungsmethoden die Struktur des Proteins Parvulustat, anhand von 15N- und 13C,15N-markierten Proben, in sehr guter Qualität aufzuklären. Weiterhin ist es gelungen, dynamische Eigenschaften des Proteins durch Relaxationsdaten darzustellen. Basierend auf diesen Daten war es möglich die beiden Proteine Parvulustat und Tendamistat umfassend miteinander zu vergleichen und Schlüsse bezüglich ihres Bindungsmechanismus zu ziehen. Insgesamt ist zwischen beiden Proteinen eine große Ähnlichkeit zu verzeichnen, aber es wurden auch einige Unterschiede festgestellt: beide Proteine besitzen zwar die gleiche beta-Faltblatt-Struktur, jedoch sind bei Parvulustat die einzelnen Stränge etwas kürzer ausgebildet. Weiterhin hat in Parvulustat ein Strang eine andere Krümmung, weil ein Prolin anstelle eines Leucins in Tendamistat sitzt und durch seine einzigartige Form die Struktur in dieser Region ändert. Bezug nehmend auf die Ladungsverteilung beider Proteine ist festzustellen, dass beide durch ein hydrophobes Herzstück stabilisiert werden und sich insgesamt sehr ähnlich sind, bis auf die Position R44 in Parvulustat bzw. Y46 in Tendamistat, was in Parvulustat eine positive Ladung an der Oberfläche generiert. Generell ist noch zu sagen, dass man beim Interpretieren der Daten in Bezug auf Tendamistat vorsichtig sein muss, da es durchaus Unterschiede in der Datenakquise gibt: im Gegensatz zu Tendamistat dessen Struktur anhand von homonuklearen 2D NMR-Techniken aufgeklärt wurde, waren für Parvulustat bereits 3D Pulssequenzen verfügbar, NMR-Spektrometer mit höheren Feldern, weiterentwickelte Rechenprogramme, so dass u. a. auch die Relaxationsdaten einflussnehmend in die Strukturrechnung mit eingebaut werden konnten.
Despite the well-known importance of ribonucleic acids (RNA) in cell biology, it is astounding to realize the pace at which new fundamental functions of RNAs have been discovered. One of the fundamental reasons for the multitude of functions of RNA is the property of RNA to adopt different conformations or folds. The primary sequence of RNA, a linear polymer built from four different repetition units, can fold into alternate secondary structure motifs which in turn form alternate long-range interactions in complex tertiary structures. Ligands such as metal ions or small molecular weight metabolites and also proteins or peptides can bind to RNA and induce the changes in tertiary conformation. For example, in the cell, RNA participates in gene regulation in the form of riboswitches. Riboswitches are found in untranslated regions of messenger RNA (mRNA) and adopt alternate conformations depending on the presence or absence of specific metabolites. If a metabolite is present above a specific concentration, it induces a conformational change in the respective riboswitch by binding and thereby alters gene expression. Another example is the RNA thermometer which participates in the cell translational mechanism by a similar strategy. Translation initiation requires the binding of RNA thermometers to the ribosome. The ribosome binding region is located in the 5’ untranslated region of mRNA. At low temperatures this region is prevented from binding to the ribosome by forming basepairs. At higher temperatures, these basepairs dissociate allowing ribosome binding and subsequent translation. Therefore, the characterization and delineation of the kinetics and pathway of RNA folding is important to understand the function of RNA and is an important contribution to fundamentally understand RNA’s role in the cell. RNA conformational transitions occur over a wide range of timescales. Depending on the timescale, various biophysical techniques are used to study RNA conformational transitions. In these biophysical studies, achieving good structural and temporal resolution constitute frequently encountered challenges or limitations. For example, single molecule FRET spectroscopy provides high temporal resolution in the milliseconds at high sensitivity but lacks atomic resolution. Recent advances in the field of Nuclear Magnetic Resonance (NMR) spectroscopy have enabled the elucidation of tertiary folding events to be characterized with atomic resolution. This thesis involves the use of NMR spectroscopy to characterize the folding of RNA molecules. Kinetics experiments require rapid initiation of the kinetics followed by monitoring of the reaction. In this thesis, two different folding initiation techniques have been applied and coupled to the subsequent detection of RNA folding using NMR spectroscopy, namely, photocaging and rapid mixing. The method of photocaging is well established (Kuhn and Schwalbe, 2000) and builds on the following principle: A photolabile moiety is attached to a molecule that prevents a specific interaction. Upon irradiation of the molecule with the photolabile group using laser light at a specific wave length, at which the molecule of interest is not absorbing, the protecting group is released. In our group, together with the group of S. Pitsch, ETH Lausanne, we could "cage" RNA at its equilibrium state by a photolabile molecule (similar work has been carried out in the group of A. Heckel). Rapid and traceless release of the photolabile precursor compound by a laser pulse releases the RNA to fold into its native state; the build-up of the native state of the RNA is monitored by NMR signals that are uniquely characteristic for the native state of the RNA. By optically coupling a laser source to an NMR magnet, the above procedure can take place in situ and the kinetics recorded by NMR. Several different molecules can be caged: The photocage can be attached to RNA. Then, a modified photolabile nucleotide can be placed at strategic positions of a target RNA whose folding properties is to be studied. The photocage can also be attached to a ligand: if folding is dependent on ligand binding then the ligand can be modified to carry a photosensitive unit whose degradation allows binding to RNA. In this thesis, an alternative method for photocaging is introduced. Here, metal ions essential for folding of the RNA are photocaged using the photolabile chelating agent Dimethyl-nitrophen (DMN). Photolysis of DMNr releases the metal ion, thereby RNA folding is initiated. In the rapid-mixing technique, one of (several) components required for proper folding of the RNA is rapidly injected into an NMR sample in situ by the use of a pneumatic injection device. ...
The focus of this thesis has been to further advance and develop existing NMR techniques for the study of protein folding. In order to do so, experimental as well as theoretical approaches have been pursued. From the theoretical side, a successful attempt to the development of a general theory for the treatment of residual dipolar couplings in the case of unfolded proteins has been undertaken. Information contained in residual dipolar couplings is especially valuable due to its long-range nature. The dynamic character of unfolded states of proteins, which may be composed of distinct subsets of conformations, renders reliable interpretation of data a non-trivial task. Statistical-coil-based approaches have been shown to be powerful in data interpretation. A consistent theory based on fundamental polymer physics, however, had not been presented so far. The herein presented model addresses this problem building on the original work by Annila and co-workers. In this work, several shortcomings have been identified. These shortcomings have been corrected here leading to a general approach for the treatment of residual dipolar couplings of unfolded proteins. More specifically, it is shown that, in the case of fully unfolded proteins aligned by a steric mechanism, basic dependencies of dipolar couplings such as on chain length and location with in the chain can be analysed in simple analytical terms. The main predictions of the model are compared to experimental data showing reasonable agreement. The presented mathematical framework is principally suited for various improvements which could include the treatment of long-range interactions and of the actual geometry of the given aligment medium. From the experimental side, bovine alpha-lactalbumin has been chosen as a model system for the development of improved time-resolved 1D NMR methods aiming at the observation of conformational transitions by kinetic means. The presented results show that high-quality data can now be obtained at protein concentrations as low as 100uM. Rate constants characterising distinct conformational transitions of up to 8/s have been measured. These are the fastest rate constants which have been reported so far for protein folding events. The NMR data supplemented by complementary biophysical data furthermore demonstrate that the folding of bovine alpha-lactalbumin is more complex than has been anticipated. All data are consistent with a triangular folding mechanism involving parallel pathways of folding for formation of the native state of the protein. Interestingly, such a folding mechanism has also been found for the highly structurally homologous protein lysoyzme from hen egg white. Evidence is presented that the guiding role of long-range interactions in the unfolded state of lysoyzme for mediating intersubdomain interactions during folding is replaced in the case of bovine alpha-lactalbumin by the Ca2+ binding site.
Die genetische Information innerhalb einer Zelle kodiert nicht nur die spezifische Struktur und Funktion von Proteinen, sondern auch die Entstehung dieser Struktur durch den Prozess der Proteinfaltung. Aus zahlreichen experimentellen und theoretischen Studien wurde offensichtlich, dass Faltung und Entfaltung von Proteinen in vielen zellulären Prozessen eine entscheidende Rolle spielt. Diese Beobachtungen führten zu der zwangsläufigen Erkenntnis, dass das Unvermögen von Proteinen sich korrekt zu falten oder korrekt gefaltet zu bleiben der Auslöser für viele verschiedene Arten biologischen Fehlverhaltens ist und infolgedessen unterschiedliche Krankheitsformen mit sich bringt. Die strukturelle und dynamische Charakterisierung von nicht-nativen Proteinzuständen ist daher eine wichtige Grundlage einerseits zur Erforschung der krankheitsauslösenden Prozesse, andererseits aber auch zum generellen Verständnis der Proteinfaltung an sich. Allein hochauflösende NMR-Experimente können detaillierte Informationen über Struktur und Dynamiken solcher Zustände auf atomarer Ebene liefern. In der vorliegenden Arbeit wurde die C-terminale Domäne des humanen Prionenproteins [hPrP(121-230)] unter Bedingungen untersucht, bei denen dieses Protein permanent in einem nicht-nativen Zustand vorliegt. Dies wurde durch die Verwendung einer hochmolaren Harnstofflösung (8 M, pH 2,0) erreicht. Zur Untersuchung dieses nicht-nativen Zustands mittels NMR wurde das PrP(121-230) in E.coli-Zellen isotopenmarkiert exprimiert und in Mengen von einigen Milligramm aufgereinigt. Nach der sequentiellen Zuordnung der 13Ca-, 13Cb-, 13CO-, 1Ha- und 1HN-Resonanzen konnte aus den sekundären chemischen Verschiebungen auf Regionen innerhalb der Polypeptidkette geschlossen werden, die erhöhte b-faltblattartige Konformationsanteile enthalten. Heteronukleare Relaxa-tionsraten wurden zur Untersuchung der konformationellen Dynamik herangezogen. Auch hier konnten Regionen verminderter Mobilität (hydrophobe Cluster) nachgewiesen werden, die mit den zuvor entdeckten Bereichen aus der Analyse der chemischen Verschiebungen übereinstimmten. Die Messung von R1r-Relaxationsraten erbrachte zudem keine Hinweise auf konformationellen Austausch auf der μs-ms-Zeitskala. Weiterhin wurde der Einfluss der Disulfidbrücke auf Konformation und Dynamik des hPrP(121-230) untersucht. Dies wurde durch die Reduktion der Disulfidbrücke und die anschließende Methylierung der beiden Cysteine erreicht. Im Gegensatz zu der Analyse der chemischen Verschiebungen zeigte die Auswertung der konformationellen Dynamiken dramatische Unterschiede zwischen den oxidierten und reduzierten Zuständen des hPrP(121-230). Insbesondere im Bereich um die beiden Cysteine konnten große Unterschiede festgestellt werden; im reduzierten Zustand führte die zusätzliche Bewegungsfreiheit zu erhöhten Dynamiken und gab den Blick auf zusätzliche hydrophobe Bereiche frei, die im oxidierten Zustand durch hohe Relaxationsraten verdeckt geblieben waren. Ein weiterer wesentlicher Unterschied zwischen dem oxidierten und dem reduzierten Zustand des hPrP(121-230), der mit Hilfe des Fluoreszenzfarbstoffes Thioflavin T beschrieben werden konnte, bestand in der Fähigkeit Fibrillen auszubilden; während das oxidierte hPrP diese Eigenschaft besaß, führte der Verlust der intakten Disulfidbrücke zu einer Proteinkonformation, die nicht mehr zur Bildung von fibrillären Strukturen im Stande war. Im weiteren Verlauf der Arbeit wurden die strukturellen, dynamischen und kinetischen Charakteristika des hPrP(121-230) mit denen des murinen Prionenproteins mPrP(121-232) sowohl im oxidierten als auch im reduzierten Zustand verglichen. Auf der Basis der chemischen Verschiebungen und der heteronuklearen Relaxationsdaten konnte gezeigt werden, dass beide Proteine in den jeweiligen komplementären Zuständen (oxidiert bzw. reduziert) sehr ähnliche strukturelle und dynamische Eigenschaften besitzen. Aufgrund einiger Aminosäureaustausche in den beiden Proteinsequenzen kommt es jedoch zu kleineren Unterschieden, die jedoch nur in lokalen Bereichen der Polypeptidkette zum Tragen kommen. Somit konnte gezeigt werden, dass das mPrP(121-232) als ein geeignetes Modellsystem für das humane Prionenprotein dienen kann. Abschließend wurde der Einfluss von insgesamt zwölf verschiedenen Punktmutationen, die beim Menschen mit Prionenerkrankungen assoziiert sind, auf das Aggregationsverhalten des mPrP(121-232) untersucht. Dabei fiel zum einen auf, dass die Aggregation mit zunehmender Proteinkonzentration schneller verlief, zum anderen aber auch, dass es insbesondere bei geringen Proteinkonzentrationen zu signifikanten Unterschieden in der Aggregationsgeschwindigkeit der verschiedenen mutierten Proteinkonstrukte kommt. Zusammenfassend ist festzustellen, dass in dieser Arbeit strukturelle und dynamische Eigenschaften der nicht-nativen Zustände von hPrP(121-230) und mPrP(121-232) sowohl im oxidierten als auch im reduzierten Zustand durch die Verwendung von NMRspektroskopischen Experimenten charakterisiert werden konnten. Zudem konnte mit Hilfe von Fluoreszenzspektroskopie das Aggregationsverhalten der einzelnen Proteinzustände beschrieben und in einem ersten Schritt der Einfluss von verschiedenen Punktmutationen auf die Aggregationsgeschwindigkeit ermittelt werden.
Obwohl zahlreiche zelluläre Funktionen von RNAs in direktem Zusammenhang mit Proteinen stehen, wurde auch eine Vielzahl von, unter anderem regulatorischen, RNA-Motiven identifiziert, die ihre Funktion ohne eine initiale Beteiligung von Proteinen ausüben. Das detaillierte Verständnis der zu Grunde liegenden Regulationsmechanismen beinhaltet die Charakterisierung von beteiligten RNA-Architekturen und deren funktionaler Stabilitäten, von dynamischen Aspekten der RNA-Faltungsprozesse sowie die Korrelation dieser Charakteristika mit zellulären Funktionen. Im Rahmen dieser Arbeit wurden strukturelle, thermodynamische und kinetische Aspekte der Ligand-bindenden Guanin Riboswitch-RNA Aptamerdomäne des xpt-pbuX Operons aus B. subtilis und eines Cofaktor-abhängigen katalytischen RNA-Motivs, des 'Adenin-abhängigen Hairpin Ribozyms', untersucht. ...
Transmissible spongiform encephalopathies (TSEs) are rare but fatal neurodegenerative diseases affecting human and animals. The prion protein which is the causative agent, according to “protein-only” hypothesis misfold in to rogue amyloid conformer. Despite several years of studies, the atomic structural details of the rogue conformers have not been clearly understood. This study focused on developing an in-vitro conversion method, which allows us to monitor the transition from unfolded state of prion protein to fibril state. In order to reach maximal unfolded state, we have used 8 M urea as chemical denaturant, pH 2 and prion fragment 90-230 as the model. It has been demonstrated earlier that acidic pH and mild denaturant induce the fibril formation. The mechanism underlying the structural transition from monomeric state to polymeric form is largely unknown. We have confirmed by EM and AFM that fibrils are formed in our conditions, which resemble to naturally occurring fibrils in morphologies observed. The agitation accelerates the rate of fibril formation and, which allow us to do time-resolved NMR on these preparations. The conformational flexibility is inherent to amyloid fibrils and has been observed in our preparations. We aimed to map the important segment of prion protein, which forms the rigid core in its fibrillar structured form. Our time-resolved NMR studies allowed us to monitor the changes happening from unfolded state to fibrillar state. Analysis of data identified the segment between residues 145 to 223 forming the rigid core in these fibrils, which correspond to β strand 2, helix 2 and major part of helix 3 of native prion monomeric structure. Most of the point mutations which are associated with hereditary prion disease are part of rigid core, which undergo a refolding on fibril formation. The C-terminal residues from 224 to 230 displayed peak shifting and therefore, indicate the adaptation to a fibril specific conformation. The major part of N-terminal 90-144 segment, remains dynamic, which can be understood by their accessibility to amyloid specific antibodies. This provides novel structural insight to the amyloid formation from unfolded state of prion protein fragment 90-230, which represents the proteinase-K resistant part naturally occurring prions. Earlier studies have established the core to 160-220 where hydrogen-deuterium exchange mass spectrometry or site-directed spin labeling EPR spectroscopy was used for analysis. Those studies have been initiated from either native-like or partially unfolded state of recombinant prion protein, and therefore, it is quite striking to find out that fibrils initiated from unfolded monomeric state share the same “amyloid core”. This structural insight has important implications for understanding the molecular basis of prion propagation.
NMR-spektroskopische Untersuchungen zur Bindung kleiner Moleküle an das Zellzyklusprotein CDC25A
(2010)
Viele verschiedene Funktionen der Zelle werden durch posttranslationale Modifikationen von Proteinen reguliert. Die reversible Phosphorylierung der OH-Gruppen der Aminosäuren Serin, Threonin und Tyrosin ist eine der Möglichkeiten die Aktivität von Proteinen an- und abzuschalten und Interaktion mit Bindungspartnern zu ermöglichen oder zu verhindern. Die Phosphatase CDC25A übernimmt eine zentrale Rolle in der Steuerung des Zellzyklus, unterliegt selbst wiederum einer differenzierten Kontrolle durch Änderung des Expressionslevel, Phosphorylierung und Lokalisation innerhalb der Zelle. Da eine Überfunktion von CDC25A mit einer Vielzahl von verschiedenen Krebserkrankungen assoziiert ist, wird die Entwicklung starker und selektiver Inhibitoren, die auch in vivo wirksam sind, vorangetrieben. Die strukturellen Grundlagen selektiver Inhibition sind allerdings noch unzureichend erforscht. Im ersten Teil dieser Arbeit wurden die Grundlagen für eine erfolgreiche Durchführung von NMR-Experimenten gelegt, für die Proteinproben mit hoher Konzentration und Langzeitstabilität benötigt werden. CDC25A kann nicht in der vollen Länge exprimiert werden und wäre als Vollkonstrukt auch zu groß, um effektiv per NMR untersuchbar zu sein. Durch Erzeugung diverser Konstrukte der katalytischen Domäne von CDC25A konnte ein Expressionslevel erreicht werden, der die Erzeugung ausreichender Mengen an Protein praktikabel macht. Neben des oftmals geringen Expressionslevels ist ein weiteres Problem bei NMR-spektroskopischen Untersuchungen vieler Phosphatasen deren geringe Stabilität während der Aufreinigung und in der endgültigen Probe. Durch Optimierung der Pufferbedingungen für den Zellaufschluss in Bezug auf pH-Wert, Salzkonzentration und Art des Kations per „Incomplete Factorial Design“ konnte die Ausbeute an löslichem Protein erheblich gesteigert werden. Die Verwendung dieser Pufferbedingungen während der ersten Aufreinigungsschritte verminderte auch die Tendenz des Proteins während der Chromatografie auszufallen. Die Zusammensetzung des Puffers für die endgültige NMR-Probe wurde schließlich durch das aus der Kristallografie entlehnte Verfahren der Dampfdiffusion ebenso in Hinblick auf pH-Wert, Salzkonzentration und Art des Anions optimiert. Unter diesen optimierten Pufferbedingungen wurde die katalytische Aktivität des Proteinkonstrukts anhand der Hydrolyse von para-Nitrophenylphosphat nachgewiesen. Acht Substanzen wurden auf Inhibition dieser katalytischen Aktivität getestet. Das natürliche Substrat Phosphotyrosin zeigte eine kompetitive Hemmung, zwei starke und ein schwacher Inhibitor zeigten entsprechend verminderte Reaktionsraten. Von den restlichen 4 Substanzen (Inhibitoren anderer Protein-Tyrosin-Phosphatasen und strukturelle Verwandte) zeigten 3 weitere eine starke Wirkung. Diese hohe Promiskuität gegenüber Inhibitoren stellt ein großes Problem für die strukturgetriebene Wirkstoffentwicklung bei CDC25A und generell aller Phosphatasen dar. Nach Erhalt der fertigen Proben zeigten erste 2D-NMR-Spektren eine geringer als zu erwartende Zahl von Signalen und starke Überlappungen der sichtbaren Signale. Um auszuschließen, das Dimerisierung oder unspezifische Aggregation hierfür verantwortlich sind, wurden DOSY-Spektren gemessen. Aus der Eigendiffusionsrate ergibt sich ein hydrodynamischer Radius, der mit durch HYDROPRO simulierten Werten übereinstimmt und sich deutlich von dem des putativen Dimers absetzt. Daher wird davon ausgegangen, dass die Signalverluste im NMR nicht durch Dimerisierung oder Aggregation ausgelöst werden. Um die Bindung von Inhibitoren auch durch NMR-Spektroskopie nachzuweisen, wurden Saturation-Transfer-Difference-Experimente (STD) durchgeführt. In diesen war aber sowohl für das natürliche Substrat Phosphotyrosin als auch für alle im Enzymtest aktiven Inhibitoren kein Effekt nachweisbar. Dies weist auf eine sehr hohe koff-Rate der Bindung an das Protein hin oder auf eine irreversible chemische Modifikation des aktiven Zentrums, die bis zum Zeitpunkt der Messung bereits abgeschlossen war. Für die strukturbasierte Wirkstoffentwicklung werden spezifische Interaktionspunkte auf der Proteinoberfläche gesucht. Hierfür wurden 15N-HSQC-Spektren mit und ohne Bindungspartner gemessen und die Veränderungen der chemischen Verschiebung bestimmt („chemical shift perturbation“). Es konnten für Phosphotyrosin und die beiden starken Inhibitoren BN82002 und NSC663284 signifikante Veränderungen nachgewiesen werden. Für alle drei Moleküle gab es sowohl komplett einzigartige Veränderungen als auch paarweise übereinstimmende als auch ein Signal das für alle 3 übereinstimmt. Neben den Inhibitoren wurden drei Peptide auf spezifische Interaktion getestet. Das erste entspricht der Zielsequenz des natürlichen Substrats CDK, die anderen beiden sind Teile der Sequenz von CDK an einer nachgewiesenen als auch einer putativen sekundären Interaktionsfläche der beiden Proteine. Auch für die drei Peptide konnten wie für die Inhibitoren individuelle als auch übereinstimmende Signalveränderungen nachgewiesen werden. Als Voraussetzung für die Bestimmung der Oberflächenkontakte, die für die spezifische Bindung von Substrat, Inhibitoren und Interaktionspeptiden nötig sind, wird eine Zuordnung der Signale des 15N-HSQC-Spektrums zu den Aminosäureresten des Proteins benötigt. Hierzu wurden 3D-Tripelresonanz-NMR-Experimente an 15N, 13C-markierten Proben (zusätzlich auch noch 2H-markierte Proben zur Unterdrückung von Relaxationseffekten) durchgeführt. Um die Zuordnung zu unterstützen wurden außerdem Proben mit individuell 15N-markierten Aminosäuren hergestellt, um einem Signal im HSQC zumindest den Typ der Aminosäure zuordnen zu können. Aufgrund der trotz Pufferoptimierung, Deuterierung des Proteins und verringerter Signalüberlagerung in den Spektren der individuell markierten Proben zu geringen Anzahl an Signalen konnten nur kurze Bereiche der Aminosäuresequenz zugeordnet werden. Aufgrund dieser Basis konnte kein aussagekräftiges Mapping erzielt werden.
Lichtsensitive Proteine bzw. Photorezeptoren eignen sich hervorragend für das Studium des Zusammenhangs von Proteinstruktur und –funktion. Lichtrezeptorproteine werden leicht durch Licht angeregt, wodurch eine gute Zeitauflösung für deren Untersuchung erreicht werden kann. Weiterhin sind sie als Signalproteine während der Etablierung des aktiven Zustandes und dessen Zerfalls großen konformationellen und strukturellen Änderungen unterworfen. Ausgehend von diesen Eigenschaften wurde bereits eine große Zahl von Lichtrezeptorproteinen genauer untersucht. Diese vorliegende Arbeit beschäftigt sich mit lichtinduzierten konformationellen Änderungen in Membranproteinen. Dafür wurden drei verschiedene Systeme herangezogen: das kleine α-helikale Peptid Gramicidin A, der G-Protein gekoppelte Rezeptor Rhodopsin and die BLUF (blue light using FAD) Domäne des hypthetischen Membranproteins Blrp (blue-light regulated phosphodiesterase) aus E. coli. Gramicidin A (gA) ist ein aus dem Bodenbakterium B. brevis isoliertes Antibiotikum, das Transportkanäle für einwertige Kationen wie Lithium, Natrium und Kalium ausbildet. Gelöst in Detergenzmizellen, wurde für gA unerwartet eine Wechselwirkung mit Blaulicht fest gestellt (Abbildung 1). Diese Beobachtung wurde mit statischen und zeitaufgelösten NMRspektroskopischen Methoden genauer untersucht und ist in Kapitel 2 näher beschrieben. Basierend auf den gewonnenen Erkenntnissen wird postuliert, dass einer der Tryptophanreste (Trp9) eine lichtinduzierte konformationelle Änderung erfährt. Ausgehend von der Konformation in Lösung befindet sich die Seitenkette von Trp9 in einem Gleichgewicht (70:30) mit einer zweiten Konformation. Bei der zweiten Konformation handelt es sich möglicherweise um die Orientierung, die der Tryptophanrest unter Festkörper-NMR Bedingungen einnimmt. Die Lebensdauer der neuen Konformation beträgt in etwa eine Sekunde. Der G-Protein gekoppelte Rezeptor Rhodopsin ist verantwortlich für die Verarbeitung von Lichtsignalen in den Stäbchenzellen der Retina. Die Absorption eines einzelnen Photons führt zur Isomerisierung des kovalent gebundenen Chromophors 11-cis-Retinal, wodurch konformationelle Änderungen im Protein veranlasst werden. Der aktivierte Metarhodopsin II (MetaII) Zustand induziert eine Enzymkaskade und schließlich einen Nervenimpuls, das Säugern das Kontrastsehen ermöglicht. Eine große Bandbreite an hochauflösenden NMRspektroskopischen Methoden, (einschließlich zeitaufgelöster und Festkörper-NMR Methoden) wurde im Laufe dieser Arbeit angewandt, um Konformation und Dynamik von bovinem Rhodopsin näher zu untersuchen. In Kapitel 3.1 sind zu Beginn mehrere Optimierungsschritte im Hinblick auf ein kostengünstiges, isotopenmarkiertes Säugerzellenmedium beschrieben. In diesem Zusammenhang wurden mehrere Rhodopsin NMR-Proben hergestellt, wobei der Gehalt an isotopenmarkierten Aminosäuren ca. 50% betrug. Anhand dieser Proben konnte bewiesen werden dass sich mit Lösungs-NMR-Spektroskopie auch sehr große, in Detergenzmizellen stabilisierte Membranproteine (~150 kD Gesamtmasse) detailliert studieren lassen. Die Untersuchungen konzentrierten sich auf den C-Terminus, für den nach sequentieller Zuordnung (Abbildung 2a) und heteronuklearern Relaxationsmessungen ein Mobilitätsverhalten bestimmt wurde, das dem mittelgroßer Proteine ähnelt. Des Weiteren konnten keinerlei definierte Strukturelemente innerhalb des C-Terminus identifiziert werden, u.a. durch einen Vergleich mit eines 19mer Peptids, dessen Primärsequenz des Rhodopsin C-Terminus entspricht (Abbildung 2a und 2b). In Kapitel 3.2 wird die nichtinvasive Zuordnung der Rückgratresonanzen aller fünf Trytophane mit Hilfe einer Kombination aus Lösungs- und Festkörper-NMR beschrieben. Dazu wurden verschiedene Rhodopsinproben hergestellt, die alle möglichen 13C’i-1-Carbonyl/15Ni-Tryptophan isotopenmarkierten Amidpaare enthielten. Eine Teilzuordnung der Tryptophanindolsignale konnte in Lösung durch Protonen-/Deuteriumaustausch und heteronukleare Relaxationsmessungen erreicht werden. Die Ergebnisse legen nahe, dass die Kombination aus Lösungs- und Festkörper-NMR-Spektroskopie sehr gut geeignet ist um komplementäre Informationen zu strukturellen und dynamischen Eigenschaften von Rhodopsin zu liefern. Fehlende Zuordnungen in den Lösungspektren konnten durch den Verglich mit Festkörperspektren ergänzt werden und umgekehrt (Abbildung 3). In Kapitel 3.3 ist die erfolgreiche Adaption der zeitaufgelösten NMR-Spektroskopie für die Untersuchung des Rhodopsin MetaII Zerfalls in vitro beschrieben. Die zeitaufgelösten protonendetektieren NMR-Experimente wurden mit unmarkiertem, in Detergenzmizellen stabilisiertem Protein bei verschiedenen Temperaturen aufgenommen, wobei sich die anschließende Auswertung auf die stark tieffeldverschobene Indolregion konzentrierte (Abbildung 4). Für die berücksichtigten Signale traten nach Induktion des aktivierten Zustandes deutliche chemische Verschiebungsänderungen auf, außerdem zeigten sie unterschiedlich schnellen MetaII Zerfall. Zusätzlich zu der erwarteten Zeitkonstante des MetaII Zerfalls (~6 min bei 298 K) konnte erstmalig eine zweite, ca. zehnmal langsamere Zeitkonstante bestimmt werden. Diese zweite Zeitkonstante ist möglicherweise ein Ausdruck für die langsame Entfaltung von Sekundärstrukturelementen nach dem Zerfall des Proteins in Opsin und Retinal. Die BLUF-Domänen verwenden Flavinadeninnukleotid (FAD) als Chromophor und gehören zu der Familie der Blaulichtrezeptoren. In Kapitel 4 wird die Untersuchung des lichtadaptierten Zustandes der E. coli BLUF Domäne auf Protein- und Ligandenebene mit zeitaufgelösten proton- und phosphordetektierten NMR-Experimenten beschrieben. In Abbildung 5 sind die statischen Licht- und Dunkelspektren (jeweils licht- und dunkeladaptiert) dargestellt. Im Folgenden konnte durch Beobachtung der Dunkeladaption bei verschiedenen Temperaturen die Aktivierungsenergie des Lichtzustandes bestimmt werden. Des Weiteren wurden zum ersten Mal phosphordetektierte NMR-Experimente erfolgreich angewandt, um einen biologisch relevanten Vorgang zeitabhängig näher zu bestimmen.
Seit einigen Jahrzehnten ist Lysozym eines der am meisten erforschten Proteine in der Literatur und wird hauptsächlich als Modell Protein zur Aufklärung der Faltungs- und Entfaltungsprozesse genutzt. Da die Frage nach Fehlfaltung und deren Verknüpfung mit neurodegenerativen Krankheiten bis zum heutigen Tag nicht vollständig geklärt ist, besteht hier ein großer Spielraum für weitere Forschungsansätze. In der vorliegenden Arbeit wurden daher zwei Modellsysteme verwendet, Hühereiweiß-Lysozym und menschliches Lysozym, jeweils in ihrem nicht-nativen ungefalteten Zustand. Diese ungefalteten Ensembles wurden mit Hilfe NMR spektroskopischer Methoden untersucht und ergaben sehr detaillierte, zum Teil auch überraschende neue Einblicke in Struktur und Dynamik der beiden Proteine und liefern somit wichtige Erkenntnisse zu Faltungs- und Aggregationsprozessen. ...