Refine
Year of publication
Document Type
- Doctoral Thesis (60)
Has Fulltext
- yes (60)
Is part of the Bibliography
- no (60)
Keywords
- NMR-Spektroskopie (7)
- RNA (6)
- NMR (4)
- NMR spectroscopy (3)
- Proteinfaltung (3)
- Amyloid (2)
- DNA (2)
- Dynamik (2)
- G-Quadruplex (2)
- Kinetik (2)
Institute
- Biochemie und Chemie (36)
- Biochemie, Chemie und Pharmazie (19)
- Biowissenschaften (2)
- Extern (1)
- Georg-Speyer-Haus (1)
- Pharmazie (1)
- Physik (1)
Cells perform a wide range of functions such as signalling, transportation, immunoprotection and metabolism. Unravelling the molecular mechanism behind those processes will provide a platform for more targeted and rational drug design. This is achieved by discerning the structural and functional aspects of the biological macromolecules involved. This thesis discusses about the biophysical characterization of protein structures and the biological importance of protein dynamics. Membrane receptors and enzymes which are ubiquitously present in our biological systems and regulate wide variety of functions are excellent choice for such study. From a pharmaceutical point of view, receptor and enzymes are exceptionally important drug targets as they represent the major share (receptor, 30% and enzymes, 47%) of all marketed drugs. Therefore, apart from biological insights, the detailed study of receptors and enzymes will provide the basis for new pharmaceutical applications. Most information about receptor activation and enzyme activity come from the structural and functional analysis of target members of the above mentioned systems.
In “Chapter 1 – General Introduction” the readers are introduced to the world of proteins with special focus on G-protein coupled receptors (GPCRs) and methyltransferases. The first part of this chapter discusses about GPCRs with emphasis on their classification, structural features and functions. GPCRs are the most abundant membrane receptors present in mammalian cells, accounting for almost 15% of all membrane proteins. The GPCR superfamily consists of ~800 members and can be subdivided into six classes (A-F). Class A containing rhodopsin, peptide hormones, olfactory GPCRs, is the most abundant with a large share of 85% of GPCR protein family. GPCRs share a common architecture of 7 transmembrane a-helices, with different ligand binding sites. Although a variety of ligands ranging from subatomic particles (a photon) to large proteins can activate a GPCR, their mechanism of signal transduction is almost similar. There are two major signal transduction pathways identified for GPCRs: the cAMP pathway and the phosphatidylinositol pathway. The therapeutic relevance of GPCRs has also been pointed out here since a large share (30%) of modern marketed drugs target GPCRs.
In the second part of this chapter, the structural and functional characterizations of methyltransferases (MTs) are discussed in detail. Several important biological processes in cells e.g. drug metabolism, gene transcription, epigenetic regulations are modulated by methylation of targets ranging from small biomolecules to large proteins. MTs are the proteins which catalyze this methylation reaction and transfer the methyl group to an acceptor molecule through SN2 like nucleophilic substitution reaction. The MTs can be classified on the basis of the substrate atoms they methylate: O (54% of all MTs), N (23%), C (18%), S (3%) and other acceptors (such as halides; 2%). They can also be categorized into five different classes (Class I-V) depending upon distinctive structural features facilitating substrate binding or catalytic activity. Rossmann fold and SET (acronym acquired from the Drosophila Su(var)3-9 and 'Enhancer of zeste' proteins) domain are the two characteristic structural motifs commonly found in MTs. Similar to GPCRs, MTs dysfunction has been shown to be involved in various diseases including neuropsychiatric diseases and cancer. Therefore they are also interesting targets for drug development. The final part of this chapter discusses the importance of structural biology in gathering information related to structure and conformational dynamics of proteins. The two prominent biophysical techniques used in structural biology, X-ray crystallography and NMR, are discussed with focus on their advantages and limitation. The importance of NMR spectroscopic techniques to investigate different dynamic processes of protein at atomic resolution under physiological conditions is also discussed. Real time NMR spectroscopy required for the analysis of slow protein dynamic processes (protein folding, enzyme catalysis, domain rearrangement) has been explained in detail.
The second part of the thesis (Chapters 3-4), which is the cumulative part, comprises the original publications grouped into 2 chapters according to their topic:
• NMR-spectroscopic characterization of the transiently populated photointermediates of bovine rhodopsin and it’s interaction with arrestin (Chapter 3)
• Structural and biophysical characterization of PaMTH1, a putative SAM dependent O-methyltransferase from filamentous fungi Podospora anserina (Chapter 4)
Each chapter is initiated by a detailed introduction to the topic, providing the framework for the following papers. The personal contribution of this thesis’ author to each publication is stated in the introduction to the respective article.
Bis zur Entfaltung der Wirkung eines Pharmakons laufen zahlreiche komplexe Vorgänge ab, die sich in drei wesentliche Phasen unterteilen lassen. Die pharmazeutische Phase umfasst mit der Applikation und dem Zerfall der Arzneiform sowie dem Auflösen des Wirkstoffes Vorgänge, die im wesentlichen von den galenischen Eigenschaften des Arzneistoffes abhängen. In der pharmakokinetischen Phase erfolgt mit der Resorption die Aufnahme des Wirkstoffes in den Organismus, dem sich die Verteilung in die unterschiedlichen Gewebe über die Blutbahn anschließt. Durch verschiedene Eliminationsprozesse wird der Wirkstoff zuletzt wieder aus dem Körper ausgeschieden. Mit dem Erreichen des Wirkortes beginnt die pharmakodynamische Phase, in der die pharmakologischen Effekte des Arzneistoffes zur erwünschten klinischen Wirkung führen. Der Nachweis des Pharmakons am Wirkort in klinisch-relevanten Konzentrationen ermöglicht somit Rückschlüsse auf die Wirksamkeit des Arzneistoffes, aber unter bestimmten Voraussetzungen auch auf dessen Wirkmechanismus. Während mittlerweile ein Großteil neuer Arzneistoffe mit Hilfe unterschiedlicher Mechanismen durch exaktes Drug Targeting an den Wirkort gesteuert werden, weisen andere Substanzen teilweise ungewollt eine gewebespezifische, dirigierende Komponente auf, die neben der eigentlichen Hauptwirkung weitere unterstützende oder auch unerwünschte Effekte auslösen. Von besonderem Interesse ist diese Gewebespezifität für pflanzliche Arzneistoffe, deren Wirkkomponenten bislang noch nicht eindeutig bestimmt werden konnten. Gemeinsam mit anderen pharmakologischen Befunden kann der analytische Nachweis eines wirksamkeitsmitbestimmenden Inhaltsstoffes am Wirkort in ausreichenden Konzentrationen ein weiterer deutlicher Hinweis auf dessen Wirkbeteiligung sein. Besonders vor dem Hintergrund einer rationalen, evidenz-basierten Pharmakotherapie, deren Anforderungen die pflanzlichen Arzneien mittlerweile ebenso wie die synthetischen Wirkstoffe erfüllen müssen, ist die Erforschung sowohl des Wirkprinzips als auch der Pharmakokinetik des Wirkstoffes von besonderer Bedeutung. Obwohl Johanniskrautextrakte bereits seit dem 17. Jahrhundert gegen die Melancholie und somit als Antidepressivum eingesetzt wurden, sind sowohl der exakte Pathomechanismus der Depression als auch die Wirkkomponente und der Wirkmechanismus der Extrakte aus Hyperici herba noch immer Gegenstand umfassender Forschung. Vor allem wegen der geringen Nebenwirkungsrate sind Johanniskrautpräparate gegenüber synthetischen Antidepressiva eine bevorzugte Alternative für die Therapie leichter bis mittelschwerer Depressionen. Ähnlich den Effekten der synthetischen Antidepressiva sind Johanniskrautextrakte in der Lage, durch eine Wiederaufnahmehemmung der Neurotransmitter Noradrenalin, Serotonin, Dopamin, sowie GABA und L-Glutamat deren Konzentration im synaptischen Spalt zu erhöhen, was zu einer nachfolgenden adaptiven Veränderung der jeweiligen Rezeptoren führt. In mehreren Studien konnten diese Effekte vornehmlich den Phloroglucinolderivaten Hyperforin und Adhyperforin zugeordnet werden. Unterstützt wurden diese in vitro und in vivo Befunde durch die Ergebnisse einer Vielzahl verhaltenspharmakologischer Untersuchungen, die einen deutlichen Zusammenhang zwischen der Wirksamkeit in antidepressiven Modellen und dem Gehalt an Hyperforin in den Extrakten ergeben haben. Zahlreiche klinische Studien belegen darüber hinaus die Wirksamkeit und Verträglichkeit von Johanniskrautextrakten. ...
The formation and maintenance of a defined three-dimensional structure is a prerequisite for most proteins in order to fulfill their function in the native context. However, there are proteins, which are intrinsically unstructured and thus natively unfolded. In addition, the misfolding and aggregation of many proteins can lead to severe diseases. The investigation of non-native states of proteins significantly contributes to the understanding of protein folding and misfolding. Nuclear magnetic resonance (NMR) spectroscopy is the only known technique that can provide information on structure and dynamics of non-native states of proteins at atomic resolution. Unfolded and non-native states of proteins have to be treated as ensembles of rapidly interconverting conformers and their observed properties are ensemble and time averaged. In this thesis, hen egg white lysozyme (HEWL) and mutants thereof have been investigated by NMR spectroscopy. The reduction of its four disulfide bridges and the successive methylation of the cysteine residues renders HEWL permanently non-native (‘HEWL-SMe’). Alternatively, the exchange of the eight cysteines for alanines results in very similar states (‘all-Ala-HEWL’). Under these conditions, HEWL-SMe and all-Ala-HEWL do not resemble random coil conformations, but exhibit residual secondary and tertiary structure. The presence of hydrophobic clusters and long-range interactions around the proteins six tryptophan residues and the modulation of these properties by single-point mutants has been observed. For the NMR spectroscopic investigation, HEWL has been isotopically labelled in E. coli by expression into inclusion bodies. After purification, the 1HN, 15NH, 13Calpha, 13Cbeta, 13C’, 1Halpha and 1Hbeta resonances of HEWL-SMe and all-Ala-HEWL have been assigned almost completely using three-dimensional NMR experiments. The analysis of secondary chemical shifts revealed regions in the proteins sequence — particularly around the six tryptophan residues—with significantly populated alpha-helix like conformations. In order to further elucidate the influence of the tryptophan side chains, a set of two new pulse sequences has been developed that allowed for the successful assignment of the 13Cg, 15Ne and 1HNe resonances in these side chains. This knowledge was eventually exploited in the interpretation of two-dimensional 15N-1H photo-CIDNP spectra, which revealed a differential solvent accessibility of the tryptophan residues in all-Ala-HEWL but not in the single point mutant W62G-all-Ala-HEWL. In addition, heteronuclear R2 relaxation rates have been determined for the indole 15Ne nuclei of all-Ala-HEWL and W62G. While in the wild-type like all-Ala-HEWL, the rates are different among the six tryptophan residues, in W62G they are more uniform. Together with relaxation data from the amide backbone, these results indicate the significant destabilization of the hydrophobic clusters in the absence of W62. In contrast, in the W108G mutant the profile of the R2 relaxation rates was not found to be significantly altered. No evidence was found by R1rho relaxation rates and relaxation dispersion measurements for conformational exchange on slower (micro- to millisecond) timescales. Residual dipolar couplings have been determined for non-native HEWL in order to retrieve structural information of these states. The differences of the W62G and the wild-type like non-native HEWL is also picked up in NH-RDCs of these proteins aligned in polyacrylamide gels. Significant positive RDCs are observed in the regions of the hydrophobic clusters in all-Ala-HEWL, but to a much lesser degree in W62G. So far, all attempts to simulate RDCs from generated non-native ensembles failed even when including long-range contacts or specific phi/psi backbone angle propensities. However, the measured RDCs can be used to cross-validate structural ensembles of non-native HEWL generated by molecular dynamics simulations that are based on restraints from the other experimental data, such as the differential solvent accessibilities from the photo-CIDNP experiments and the data on the hydrophobic clustering gained from the combined mutational and relaxation studies. Finally, non-native HEWL has been investigated for the first time using two-dimensional NMR in organic solvents, which are able to induce secondary structures and ultimately lead to amyloid formation. Under these conditions severe line broadening was observed, which was attributed to exchange between different — mostly a-helical— conformations. In summary, in this thesis methods have been developed, optimized and successfully applied for the structural and dynamical characterization of non-native states of proteins and the effect of single-point mutants on the properties of such ensembles has been investigated. Data has been gained that can considerably contribute to the further elucidation of the nature of non-native states of HEWL by molecular dynamics simulations.
This thesis describes the structural characterization of interactions between biological relevant ribonucleic acid biomacromolecules (RNAs) and selected ligands to optimize the methodologies for the design of pharmacological lead compounds. To achieve this aim, not only the structures of the RNA, the ligand and their complexes need to be known, but also information about the inherent dynamics, especially of the target RNA, are necessary. To determine the structure and dynamics of these molecules and their complexes, liquid state nuclear magnetic resonance spectroscopy (NMR) is a suitable and powerful method. The necessity for these investigations arises from the lack of knowledge in RNA-ligand interactions, e.g. for the development of new medicinal drugs targeting crucial RNA sequences. In the first chapters of this thesis (Chapters II to IV), an introduction into RNA research is given with a focus on RNA structural features (Chapter II), into the interacting molecules, the biology of the specific RNA targets and the further development of their ligands (Chapter III) and into the NMR theory and methodologies used within this thesis (Chapter IV). Chapter II begins with a description of RNA characteristics and functions, placing the focus on the increasing attention that these biomacromolecules have attracted in recent years due to their diverse biological functionalities. This is followed by a detailed description of general structural features of RNA molecules. The biological functions of the RNAs investigated in this thesis (Human immunodeficiency virus PSI- and TAR-RNA and Coxsackievirus B3 Stemloop D in the 5’-cloverleaf element), together with their known structural characteristics are introduced in Chapter III. Furthermore, a description of the investigated ligands is given, focusing on the methods how their affinity and specificity were determined. The introduction is completed in Chapter IV, where the relevant NMR theory and methodologies are explained. First, kinetics and thermodynamics of ligand binding are summarized from an NMR point of view. Subsequently, a detailed description of the resonance assignment procedures for RNAs and peptidic ligands is given. This procedure mainly concentrates on the assignment of the proton resonances, which are essential for the later structure calculation from NMR restraints. The procedure for NMR structure calculation of RNA and its complexes follows with a short introduction into the programs ARIA and HADDOCK. The final part of this chapter explains the relaxation theory and the methodology to extract dynamic information from autocorrelated relaxation rates via the model-free formalism. In the Chapters V to VII of this thesis, the original publications are included and grouped into three topics. Chapter V comprehends the publications on the investigations of HIV PSI-RNA and its hexapeptidic ligand. These three publications[1-3] focus on the characterization of the ligand and its binding properties, its structure and the optimization of its composition aiming to improve its usage for further spectroscopic investigations.
Azopeptide: Peptide mit eingebauten lichtgesteuerten Schaltern sind interessante Systeme, um konformationelle Dynamik in Peptiden zu untersuchen. In dieser Arbeit ist es gelungen einen solchen Schalter herzustellen und in ein von Robertson et al. entworfenes Modellsystem als Teil des Peptidrückgrats einzuführen. Es wurde somit die Synthese von Peptiden mit eingebauten lichtgesteuerten Schaltern fortgeführt und auf ein größeres System übertragen. Die zu erwartenden Probleme bei der Synthese eines Systems dieser Größe (30 Aminosäuren + Schalter) konnten durch Modifizierung der Standardsynthese für Peptide (Fmoc-Strategie) an der Festphase erreicht werden. Es war daher möglich, ausreichende Mengen des Peptids herzustellen sowie die freie SH-Gruppe des Peptids mit einer Schutzgruppe zu versehen, was dem Molekül zu weiterer Stabilität verhalf. Das Azopeptid wurde mit UV/vis- und Ultrakurzzeit-Spektroskopie, und besonders im Vergleich mit dem Schalter AMPB alleine, charakterisiert. Hierbei wurden folgende Erkenntnisse offen gelegt: - Das Azopeptid in Wasser verhält sich bei Belichtung (367 nm) sehr ähnlich dem AMPB (7) in DMSO (isosbestischer Punkt bei 288 nm) - Die thermische Rückreaktion lässt sich bei 330 nm biexponentiell fitten, bei 260 nm nicht, was Rückschlüsse auf mangelnde Stabilität des Azopeptids nach Belichtung zulässt (freie SH-Gruppe). - Der Abfall des angeregten Zustandes des Azopeptids folgt multiexponentiellen Kinetiken auf Zeitskalen zwischen einigen hundert fs bis zu wenigen ps. - Der Schalter AMPB (7) in DMSO verhält sich bei Belichtung (367 nm) sehr ähnlich dem beidseitig entschütztem Schalter (8) in Wasser. - Es sehr ähnliche Kinetiken für AMPB (7) in DMSO und das Azopeptid in Wasser über den gesamten spektralen Bereich werden gefunden; Absorptionsaufbau erfolgt innerhalb der Zeitauflösung des Experiments, Unterschied um einen Faktor 2 in der Zerfallsdynamik, die für das Azopeptid langsamer ist. Parvulustat: Parvulustat ist wie Tendamistat ein alpha-Amylase-Inhibitor; die Struktur von Tendamistat ist bereits sehr gut sowohl durch NMR als auch durch Röntgenkristallographie untersucht ist. Mit Parvulustat teilt Tendamistat nur 29,6 % Sequenzidentität bei ähnlicher Länge und gleicher Funktion der beiden Proteine. Es war daher von großem Interesse, die Struktur von Parvulustat aufzuklären um Ähnlichkeiten und Unterschiede der beiden Proteine diskutieren zu können. In dieser Arbeit ist es gelungen mit Hilfe der hochauflösenden, heteronuklearen 3D NMR-Spektroskopie in Lösung und iterativen Rechungsmethoden die Struktur des Proteins Parvulustat, anhand von 15N- und 13C,15N-markierten Proben, in sehr guter Qualität aufzuklären. Weiterhin ist es gelungen, dynamische Eigenschaften des Proteins durch Relaxationsdaten darzustellen. Basierend auf diesen Daten war es möglich die beiden Proteine Parvulustat und Tendamistat umfassend miteinander zu vergleichen und Schlüsse bezüglich ihres Bindungsmechanismus zu ziehen. Insgesamt ist zwischen beiden Proteinen eine große Ähnlichkeit zu verzeichnen, aber es wurden auch einige Unterschiede festgestellt: beide Proteine besitzen zwar die gleiche beta-Faltblatt-Struktur, jedoch sind bei Parvulustat die einzelnen Stränge etwas kürzer ausgebildet. Weiterhin hat in Parvulustat ein Strang eine andere Krümmung, weil ein Prolin anstelle eines Leucins in Tendamistat sitzt und durch seine einzigartige Form die Struktur in dieser Region ändert. Bezug nehmend auf die Ladungsverteilung beider Proteine ist festzustellen, dass beide durch ein hydrophobes Herzstück stabilisiert werden und sich insgesamt sehr ähnlich sind, bis auf die Position R44 in Parvulustat bzw. Y46 in Tendamistat, was in Parvulustat eine positive Ladung an der Oberfläche generiert. Generell ist noch zu sagen, dass man beim Interpretieren der Daten in Bezug auf Tendamistat vorsichtig sein muss, da es durchaus Unterschiede in der Datenakquise gibt: im Gegensatz zu Tendamistat dessen Struktur anhand von homonuklearen 2D NMR-Techniken aufgeklärt wurde, waren für Parvulustat bereits 3D Pulssequenzen verfügbar, NMR-Spektrometer mit höheren Feldern, weiterentwickelte Rechenprogramme, so dass u. a. auch die Relaxationsdaten einflussnehmend in die Strukturrechnung mit eingebaut werden konnten.
Despite the well-known importance of ribonucleic acids (RNA) in cell biology, it is astounding to realize the pace at which new fundamental functions of RNAs have been discovered. One of the fundamental reasons for the multitude of functions of RNA is the property of RNA to adopt different conformations or folds. The primary sequence of RNA, a linear polymer built from four different repetition units, can fold into alternate secondary structure motifs which in turn form alternate long-range interactions in complex tertiary structures. Ligands such as metal ions or small molecular weight metabolites and also proteins or peptides can bind to RNA and induce the changes in tertiary conformation. For example, in the cell, RNA participates in gene regulation in the form of riboswitches. Riboswitches are found in untranslated regions of messenger RNA (mRNA) and adopt alternate conformations depending on the presence or absence of specific metabolites. If a metabolite is present above a specific concentration, it induces a conformational change in the respective riboswitch by binding and thereby alters gene expression. Another example is the RNA thermometer which participates in the cell translational mechanism by a similar strategy. Translation initiation requires the binding of RNA thermometers to the ribosome. The ribosome binding region is located in the 5’ untranslated region of mRNA. At low temperatures this region is prevented from binding to the ribosome by forming basepairs. At higher temperatures, these basepairs dissociate allowing ribosome binding and subsequent translation. Therefore, the characterization and delineation of the kinetics and pathway of RNA folding is important to understand the function of RNA and is an important contribution to fundamentally understand RNA’s role in the cell. RNA conformational transitions occur over a wide range of timescales. Depending on the timescale, various biophysical techniques are used to study RNA conformational transitions. In these biophysical studies, achieving good structural and temporal resolution constitute frequently encountered challenges or limitations. For example, single molecule FRET spectroscopy provides high temporal resolution in the milliseconds at high sensitivity but lacks atomic resolution. Recent advances in the field of Nuclear Magnetic Resonance (NMR) spectroscopy have enabled the elucidation of tertiary folding events to be characterized with atomic resolution. This thesis involves the use of NMR spectroscopy to characterize the folding of RNA molecules. Kinetics experiments require rapid initiation of the kinetics followed by monitoring of the reaction. In this thesis, two different folding initiation techniques have been applied and coupled to the subsequent detection of RNA folding using NMR spectroscopy, namely, photocaging and rapid mixing. The method of photocaging is well established (Kuhn and Schwalbe, 2000) and builds on the following principle: A photolabile moiety is attached to a molecule that prevents a specific interaction. Upon irradiation of the molecule with the photolabile group using laser light at a specific wave length, at which the molecule of interest is not absorbing, the protecting group is released. In our group, together with the group of S. Pitsch, ETH Lausanne, we could "cage" RNA at its equilibrium state by a photolabile molecule (similar work has been carried out in the group of A. Heckel). Rapid and traceless release of the photolabile precursor compound by a laser pulse releases the RNA to fold into its native state; the build-up of the native state of the RNA is monitored by NMR signals that are uniquely characteristic for the native state of the RNA. By optically coupling a laser source to an NMR magnet, the above procedure can take place in situ and the kinetics recorded by NMR. Several different molecules can be caged: The photocage can be attached to RNA. Then, a modified photolabile nucleotide can be placed at strategic positions of a target RNA whose folding properties is to be studied. The photocage can also be attached to a ligand: if folding is dependent on ligand binding then the ligand can be modified to carry a photosensitive unit whose degradation allows binding to RNA. In this thesis, an alternative method for photocaging is introduced. Here, metal ions essential for folding of the RNA are photocaged using the photolabile chelating agent Dimethyl-nitrophen (DMN). Photolysis of DMNr releases the metal ion, thereby RNA folding is initiated. In the rapid-mixing technique, one of (several) components required for proper folding of the RNA is rapidly injected into an NMR sample in situ by the use of a pneumatic injection device. ...
Das genetische Material der Zellen besteht aus Molekülketten der Desoxyribonukleinsäure (DNA), die ein Träger der Erbinformation ist. In normalen Körperzellen wird die Erbinformation der DNA in eine andere Molekülkette, die sogenannte Ribonukleinsäure (RNA), übersetzt. Die RNA reguliert die Bildung von neuem Protein in der Zelle. Dass die RNA nicht bloß ein „Stempel“ ist, der die Informationen der DNA weitervermittelt, darin sind sich die Experten heute einig. RNA-Moleküle können Informationen speichern, katalytische Aktivitäten entfalten, sich perfekt tarnen, und sie regulieren auch als Produkt ihre eigene Synthese. Manche Viren enthalten ebenfalls RNA (oder DNA) und können so den Produktionsapparat der Zelle täuschen. Erkenntnisse über die Wechselwirkung dieser RNA mit natürlichen und synthetischen Liganden können zur Suche nach potentiellen Wirkstoffen beitragen. Nukleinsäuren sind lineare Biopolymere von grundlegenden Untereinheiten, die Nukleotide genannt werden und aus Adenin (A), Cytosin (C), Guanin (G), Urazil (U), und Thymin (T) zusammengesetzt sind. Sie sind jedoch in der Lage sich zu falten und so eine Doppel-Helixstruktur auszubilden. Diese besteht größtenteils aus den bekannten "Watson-Crick-Basenpaaren" (G-C und A-U oder A-T), die zur Stabilität der Struktur beitragen, sowie aus den weniger stabilen G-U-Paaren. Durch die Wechselwirkung zwischen verschiedenen Sekundärstrukturelementen entstehen Tertiärstrukturelemente, deren Struktur und Dynamik oft nur schwer experimentell zu bestimmen sind. Fortschritte in der RNA-Strukturanalyse wurden durch Röntgenkristallographie und Kernresonanzspektroskopie (NMR) möglich. Durch die Röntgenkristallographie wurden viele RNA-Eigenschaften festgestellt. Allerdings besteht keine Kristallstruktur für alle mögliche Einzelnfaser-RNA-Haarnadeln, weil diese immer dazu neigen, in eine linearen doppelte Faserform zu kristallisieren, die geringe biologische Bedeutung hat. Außerdem wurde mit Hilfe der NMR-Spektroskopie das dynamische Verhalten von RNA, z.B. Entfaltungsprozesse bei ansteigender Temperatur, beobachtet. Jedoch erlauben diese experimentellen Daten oft keine direkte mikroskopische Beschreibung der molekularen Prozesse. Molekulardynamik (MD)-Simulationen von biologischen Systemen ermöglichen es hingegen, diese Prozesse in atomischem Detail zu untersuchen. Die MD-Simulation beschreibt ein molekulares System auf atomarer Ebene mit Hilfe der klassischen Mechanik. Kräfte werden von empirischen Potentialen abgeleitet. Sie liefern zeitabhängige Trajektorien, die sich aus den Newton'schen Bewegungsgleichungen ergeben. Durch verbesserte Computerleistung, bessere Kraftfelder, und neu entwickelte genauere Methoden stimmen heutzutage MD-Simulationen von RNA mit experimentellen Daten immer besser überein. In meiner Doktorarbeit wurden MD-Simulationen durchgeführt um die Dynamik, die Struktur und insbesondere die Stabilität von RNA-Hairpins theoretisch zu beschreiben, um so ein erweitertes Verständnis für die dynamischen Vorgänge zu erhalten. Auch der SFB 579 der Universität Frankfurt beschäftigt sich mit RNA-Systemen. Erforscht wird unter anderem der D-Loop des Coxsackievirus B3 (CVB3), der Virenmyocarditis verursacht. Die Interpretation dieser experimentellen Daten wird durch MD-Simulation möglich. In dieser Arbeit wurden das GROMACS Software-Paket und das AMBER Kraftfeld verwendet, um das strukturelle, dynamische und thermische Verhalten der RNA-Hairpins mit Hilfe von MD-Simulationen auf atomarer Ebene zu untersuchen. Betrachtet wurden die 14-mer RNA-Hairpins, uCACGg und cUUCGg. Die verfügbaren NMR-Strukturen zeigen, dass das uCACGg-Tetraloop auffallend ähnlich in der gesamten Geometrie und den Wasserstoffbindungen zu der experimentellen Struktur des cUUCGg-Tetraloop ist, obwohl die schließende Basenpaarsequenz der beiden Tetraloops unterschiedlich sind. Trotz beachtlicher struktureller Ähnlichkeit unterscheiden sich allerdings die uCACGg und cUUCGg Tetraloops in Funktionalität und Thermostabilität. Zunächst orientiert sich unser erstes Bemühen an der Frage nach einem guten Modell für RNA-Hairpins und Simulationsbedingungen, um die zu untersuchenden RNA-Hairpins in Wasser möglichst realitätsnah zu simulieren. Erstens werden drei Versionen des biomolekularen AMBER-Kraftfelds geprüft, indem man die 60 ns Simulationen des 14-mer uCACGg-Hairpins durchführt. Die simulierten strukturellen Eigenschaften und Atomfluktuationen zeigen hohe Ähnlichkeiten in den drei Kraftfeldern. Darüber hinaus stimmen die von MD-Simulationen berechneten Atomkernabstände mit den experimentellen NMR-Daten gut überein. Die gute Übereinstimmung zwischen den Simulationen und den strukturellen NMR Daten belegt die Fähigkeit des AMBER-Kraftfelds zur Beschreibung der strukturellen Eigenschaft von kleinen RNA-Hairpins. Anschließend werden die Einflüsse der Methoden, welche die langreichweitigen, elektrostatischen Wechselwirkungen beschreiben, auf die strukturellen Eigenschaften untersucht. Insbesondere werden die Ergebnisse der Reaktionfeld-Methode mit denen der Particle Mesh Ewald (PME)-Methode verglichen. Es zeigt sich, dass die PME-Methode die elektrostatischen Wechselwirkungen am besten beschreibt, auch wenn die Simulationen der beiden Methoden Ähnlichkeit in der Struktur-Stabilität und der Atomfluktuation bei niedriger Natriumkonzentration aufweisen. Drittens wird der Kationseffekt auf die RNA-Stabilität untersucht. Betrachtet wurden zwei unterschiedliche Kationen (ein- und zweiwertig) und verschiedene Konzentrationen. Die Simulationen weisen darauf hin, dass sich die Metallionen in der Affinität zum RNA-Hairpin unterscheiden, wenn Na+ und/oder Mg2+ als Gegenionen verwendet werden. Weiterhin wird gezeigt, dass sich die bevorzugten Positionen der Na+-Ionen in der großen Furche (major groove) des RNA-Hairpins befinden. Insbesondere die Anlagerungsort der Na+-Ionen liegen in der Nähe des schließenden Basenpaar U5-G10. Im Vergleich zu Na+-Ionen lagern sich Mg2+-Ionen sowohl an die RNA-Basen U3, A4-U11, und die Phosphat-Gruppe, als auch an das schließenden Basenpaar U5-G10 an. Bestätigt werden die Modelle und Simulationsbedingungen durch den Vergleich von Parametern, die sowohl experimentell als auch durch Simulationen ermittelt werden können. Ferner erlauben MD-Simulationen Einblick in das System, indem sie detallierte Konformations- und andere Verteilungen liefern. In der vorliegenden Arbeit wurden die Einflüsse der Loopsequenz und des schließenden Basenpaares auf die Verteilung der Konformationen, der internen Bewegungen, und auf die Thermostabilität von zwei RNA-Hairpins mit Hilfe dieser Modelle untersucht. Zunächst wurden die strukturellen Eigenschaften bei Raumtemperatur ausgewertet. Die starken strukturellen Ähnlichkeiten und die gute Übereinstimmung mit NMR-Daten bestätigen die Hypothese, dass die zwei Tetraloops zur gleichen “erweiterten” RNA-Familie gehören. Diese zwei Hairpins haben ähnliche Lösemittelzugängliche Oberflächen (solvent accessible surface), wobei deren Lösemittel zugänglichen funktionellen Gruppen unterschiedlich sind. Weiterhin weist das uCACGg-Hairpin eine stärkere Tendenz auf Wasserstoffe abzugeben als das cUUCGg-Hairpin, was in den unterschiedlichen Bindungsaffinitäten zwischen diesen Hairpins und der viralen Protease begründet liegt. Darüber hinaus wurde der Faltungs- und Entfaltungsprozess mit Hilfe der Replica-Exchange-Molekulardynamik-Simulationen untersucht. Diese Untersuchung zielt auf das bessere Verständnis der unterschiedlichen Thermostabilität der Hairpins, indem sie die möglichen Zwischenprodukte im atomaren Detail liefern. Sowohl experimentell als auch von den MD-Simulationen ergibt sich eine Differenz in den Schmelztemperaturen der beiden Hairpins von ungefähr 20 K. Allerdings sind die von MD beobachteten Schmelztemperaturen 20 % höher als die von Experiment zu ansehende Wert. Die Ergebnisse machen deutlich, dass die Schmelztemperaturdifferenz nicht auf die Unterschiede in der Sequenz, in der Struktur, oder in der Dynamik der Loops zurückführen sind, sondern auf die Unterschiede der Basenpaaren in den Stämmen. Weiterhin wird gezeigt, dass sich das uCACGg-Hairpin einerseits kooperativ entfaltet, und die Entfaltung des cCACGg-Hairpins anderseits weniger kooperativ stattfindet. Um die schnelle interne Dynamik der uCACGg- und cUUCGg-Hairpins zu untersuchen, erlauben die Simulationen von 50 ns eine akurate Beschreibung der schnellen internen Bewegung der RNA-Hairpin, obwohl der den Hairpins zugängliche Konformationsraum nicht vollständig abgedeckt wird. Die NMR-Relaxationsparameter, die mit Hilfe der MD-Simulationen zurückgerechnet wurden, bestätigen das Modell und die Simulationsbedingungen der MD-Simulationen. Im Hinblick auf die Übereinstimmung kann man den besten Ansatz zur Berechnung der NMR-Ordnungsparameter bestimmen. In dieser Arbeit wurden drei verschiedene Ansätze angewandt, nämlich das Fitting von 100 ps auf modellfreiem Ansatz nach Lipari-Szabo, equilibrium average, und das Gaussian Axial Fluctuation (GAF)-Modell. Die zwei letzteren können nur qualitativ mit den experimentellen Daten übereinstimmen. Die NMR-Ordnungsparameter können mit Hilfe des Modells von Lipari-Szabo richtig ermittelt werden, wenn sich die interne Bewegung in kleineren Zeitskalen als zur Gesamtbewegung vollzieht. Vorausetzung für die Berechnung dieses Modells ist aber, dass das Fitting der internen Korrelationsfunktionen nur auf den ersten Teil von 100 ps der Korrelationsfunktionen eingesetzt wird. Die berechneten Ordnungsparameter deuten auf ein unterschiedliches Verhalten der beiden Hairpins besonders im Loop-Bereich hin. Die konformationelle Umordnung, die beim UUCG-Loop beobachtet wurde, tritt beim CACG-Loop nicht ein. Zusammenfassend lässt sich sagen, dass es durch den Einsatz von MD Simulationen ermöglicht wird, die strukturellen und dynamischen Eigenschaften der RNA-Systeme auf atomarer Ebene zu untersuchen. Als Schlussfolgerung zeigt diese Doktorarbeit, dass sich die Studie der konformationell Dynamik der RNA-Systeme durch die Kombination aus MD-Simulation und NMR-Spektroskopie sowie der Leistungsfähigkeit der MD-Simulationen, die die interne Bewegungen deutlich beschreiben können, untersuchen lässt.
In this thesis the three dimensional solution strucutre of the RbfA protein from Thermotoga maritima was solved using multidimensional heteronuclear NMR spectroscopy. The RbfA protein binds to the helix I region of the 16S rRNA. To gain insights into the binding mode of RbfA to its target, a second RbfA construct from Helicobacter pylori was used. Comparison of the RbfA proteins with the published structure of RbfA from Escherichia coli, led to studies concerning the differences between proteins from thermophile and mesophile systems. In the second part of this thesis the native binding motive of the RbfA protein was identified. The RbfA protein binds to an alternate helix fold within the pre-sequence of the immature 16S rRNA.
The focus of this thesis has been to further advance and develop existing NMR techniques for the study of protein folding. In order to do so, experimental as well as theoretical approaches have been pursued. From the theoretical side, a successful attempt to the development of a general theory for the treatment of residual dipolar couplings in the case of unfolded proteins has been undertaken. Information contained in residual dipolar couplings is especially valuable due to its long-range nature. The dynamic character of unfolded states of proteins, which may be composed of distinct subsets of conformations, renders reliable interpretation of data a non-trivial task. Statistical-coil-based approaches have been shown to be powerful in data interpretation. A consistent theory based on fundamental polymer physics, however, had not been presented so far. The herein presented model addresses this problem building on the original work by Annila and co-workers. In this work, several shortcomings have been identified. These shortcomings have been corrected here leading to a general approach for the treatment of residual dipolar couplings of unfolded proteins. More specifically, it is shown that, in the case of fully unfolded proteins aligned by a steric mechanism, basic dependencies of dipolar couplings such as on chain length and location with in the chain can be analysed in simple analytical terms. The main predictions of the model are compared to experimental data showing reasonable agreement. The presented mathematical framework is principally suited for various improvements which could include the treatment of long-range interactions and of the actual geometry of the given aligment medium. From the experimental side, bovine alpha-lactalbumin has been chosen as a model system for the development of improved time-resolved 1D NMR methods aiming at the observation of conformational transitions by kinetic means. The presented results show that high-quality data can now be obtained at protein concentrations as low as 100uM. Rate constants characterising distinct conformational transitions of up to 8/s have been measured. These are the fastest rate constants which have been reported so far for protein folding events. The NMR data supplemented by complementary biophysical data furthermore demonstrate that the folding of bovine alpha-lactalbumin is more complex than has been anticipated. All data are consistent with a triangular folding mechanism involving parallel pathways of folding for formation of the native state of the protein. Interestingly, such a folding mechanism has also been found for the highly structurally homologous protein lysoyzme from hen egg white. Evidence is presented that the guiding role of long-range interactions in the unfolded state of lysoyzme for mediating intersubdomain interactions during folding is replaced in the case of bovine alpha-lactalbumin by the Ca2+ binding site.