Refine
Document Type
- Doctoral Thesis (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
- Genfallen-Vektoren (2)
- Gentherapie (2)
- Primäre Immundefekte (2)
- Apoptosis (1)
- Breast cancer (1)
- Brustkrebs (1)
- Gene trap (1)
- Genfalle (1)
- Tumor necrosis factor alpha (1)
- Tumor-Nekrose-Faktor <alpha> (1)
Institute
- Pharmazie (3)
- Biowissenschaften (2)
- Biochemie und Chemie (1)
- Medizin (1)
A gene trap strategy was used to identify genes induced in hematopoietic cells undergoing apoptosis by growth factor withdrawal. IL-3 dependent survival of hematopoietic cells relies on a delicate balance between proliferation and apoptosis that is controlled by the availability of cytokines (Thompson, 1995; Iijima et al., 2002). From our previous results of gene trap assay, we postulated that transcriptionally activated antagonistic genes against apoptosis might actually block or delay cell death (Wempe et al., 2001) causing cells to have carcinogenic behavior. The analysis attempted to better understand the outcome of a death program following IL-3 deprivation and to identify those survival genes whose expression is affected by time dependent manner. As described in the chapter 4, there would be two major conclusions evident from the three separate experiments (Genetrap, Atlas cDNA array and Affymetrix chips): Firstly 56% of trapped genes, that are up-regulated by IL-3 withdrawal (28 of 50), are directly related to cell death or survival. Secondly, unlike most array technologies, gene trapping only selects for the transiently induced genes that is independent of pre-existing steady state mRNA levels. In regarding correlations of the genes with potential carcinogenesis, the pre-existing mRNA makes difficult to describe the unique characteristics of deregulated tumor tissue genes. For a joint project with Schering (Schering AG, Berlin), the genes of our GTSTs were examined. The first screen with custom array was used to look for whether the survival genes of our GTSTs are involved in various cancer cell lines, whilst the second screen with Matched Tumor/Normal Array was used to characterize if the selected seven genes (ERK3, Plekha2, KIAA1140, PI4P5Ka/g, KIAA0740, KIAA1036 and PEST domains) are transformation-related genes or not in different tumor tissues. Twenty-six genes were identified as either induced or repressed in one or more cell lines. Genetic information is expressed in complex and ever changing patterns throughout a life span of cells. A description of these patterns and how they relate to the tissue specific cancer is crucial for our understanding of the network of genetic interactions that underlie the processes of normal development, disease and evolution. The development of cancer and its progression is clearly a multiplex phenotype, as a function of time, involving dozens of primary genes and hundreds of secondary modifier genes. There would be a major conclusion evident from the three separate experiments (Genetrap, Affymetrix mouse chip and Matched Tumor/Normal Array): ERK3 could play a significant role in breast, stomach and uterus carcinogenesis with tissue specific regulations. It is clear that ERK3 is obvious putative survival gene in these tumor tissues. Especially, in breast tumors, seven times up-regulation was considerable and the activation of ERK3 could be a feature of breast tumors. My results imply that the unique deregulation of ERK3 is perhaps the major consequence of possible transformation of normal cells into malignant cancer cells, even though further analysis remains to be determined whether an alterated activity of associated survival genes is primarily responsible for a carcinogenesis. However unlike all the other known MAP Kinases, no stimuli and no nuclear substrates of ERK3 is reported. Therefore, it will be necessary first to determine the spectrum of substrates and to identify the proximal effectors for the ERK3 in breast carcinoma cells.
Eine Erkrankung wird als monogen bezeichnet, wenn sie auf einen Gendefekt eines einzelnen Gens zurückzuführen ist. Durch einen angeborenen Gendefekt kann bei den sog. primären Immundefekten (PIDs) das Immunsystem von asymptomatisch bis lebensbedrohlich mehr oder weniger stark beeinträchtigt werden. Für lebensbedrohliche Immundefekte gilt die allogene Stammzelltransplantation eines passenden Spenders als einzig kurative Therapie. Weil jedoch für etwa 30 % aller Patienten kein passender Spender verfügbar ist, bietet die Gentherapie in Kombination mit einer autologen Stammzelltransplantation eine häufig lebensrettende Alternative. Dabei werden patienteneigene CD34+-Blutstammzellen isoliert, ex vivo mit einer funktionalen Kopie des defekten Gens genetisch modifiziert und anschließend zurück in den Patienten infundiert. Die dabei eingesetzten Genfähren basieren in der Regel auf viralen Vektoren, mit denen das gesunde Gen in die Patientenzellen eingeschleust wird. Retrovirale Vektoren wurden für die Gentherapie am häufigsten eingesetzt.
In mehreren klinischen Gentherapie-Studien zur Behandlung diverser PIDs kam es aufgrund insertionsbedingter Transaktivierung benachbarter Proto-Onkogene zur Leukämieentwicklung. Deswegen wurde gezielt an der Sicherheit retroviraler Genfähren gearbeitet. Insbesondere wurden die in der ersten Generation benutzten retroviralen Promotor/Enhancer-Elemente aus der U3-Region des 5’ LTRs deletiert (self-inactivating, SIN-Vektoren) und durch interne, gewebespezifische Promotoren ersetzt. Auf Genfallen basierende Vektoren (gene trap, GT-Vektoren) könnten eine sicherere Alternative zu den Standardvektoren bieten, weil sie zum einen auf den γ-retroviralen SIN-Vektoren basieren und zum anderen keinen internen Promotor enthalten, der zur Transaktivierung benachbarter Gene führen kann. Bei GT-Vektoren wird das integrierte Transgen von endogenen Promotoren kontrolliert, was zu einer robusteren Transgenexpression und zu einem erhöhten Sicherheitsprofil führen sollte.
Ziel dieser Arbeit war, GT-Vektoren hinsichtlich ihres Potentials als Vektoren für die Gentherapie zu bewerten. Dafür wurde zunächst die Gentransduktionseffizienz unterschiedlicher GT-Vektoren in murinen, embryonalen Stammzellen (mES-Zellen) untersucht. In einem klassischen GT-Vektor ist das Therapiegen von einem 5‘ liegenden Spleißakzeptor (SA) und einer 3‘ liegenden Polyadenylierungssequenz (pA) flankiert. Dies bewirkt, dass das Therapiegen nach Integration in ein exprimiertes Gen als Fusionstranskript mit den 5‘ liegenden endogenen Genfragmenten exprimiert wird. Sind diese kodierend, entsteht ein Fusionsprotein, das die Funktionalität des Therapiegens beeinträchtigen kann. Zu Vermeidung einer derartigen Konstellation wurden drei Strategien zur Verhinderung N-terminaler Fusionen getestet: Die Fusion (i) einer internen ribosomalen Eintrittsstelle (IRES) und (ii) eines viralen Proteinspaltungspeptids (T2A) an das 5‘ Ende des Therapiegens sowie (iii) die Insertion von drei Stop-Codons hinter den SA. Die Versuche in mES-Zellen zeigten, dass die GT-Variante mit den Stop-Codons am effizientesten war, weshalb sie für alle weiteren Ansätze verwendet wurde.
Dieser Arbeit vorangegangen war die Entwicklung einer Genfallenstrategie zur Korrektur des septischen Granulomatose (X-CGD) verursachenden gp91phox (CYBB)-Gendefektes in einer gp91phox-defizienten Leukämiezelllinie (PLB-XCGD). Obwohl Genfallen transduzierte PLB-XCGD-Zellen das Therapiegen gp91phox exprimierten, war diese Expression im Vergleich zu den mit einem positiven, Promotor-enthaltenden Kontrollvektor (FES-gp91phox) transduzierten Zellen sehr gering. Deswegen war es notwendig eine effiziente Selektionsstrategie für Genfallenereignisse in hämatopoetischen Zellen zu entwickeln. Eine Strategie basierte auf einem FKBP12/Thrombopoetinrezeptor-Fusionsprotein, dessen Expression in hämatopoetischen BaF3 Zellen eine 25-fache Anreicherung von Genfallen exprimierenden Zellen nach Zugabe des chemischen Liganden AP20187 ermöglichte. Allerdings konnte dieses System in primären, hämatopoetischen Zellen leider nicht etabliert werden.
Die andere Selektionsstrategie basierte auf dem X-SCID Krankheitsmodell, in dem IL2RG-Mutationen, einer Untereinheit verschiedenster Zytokinrezeptoren (z. B. des IL-2-Rezeptors), zu einem kompletten Verlust von T-Zellen und somit zur Reduktion funktionaler B-Zellen führen. Nach ex vivo Korrektur und Transplantation der korrigierten, autologen hämatopoetischen Stammzellen (HSZ), kann eine Expansion der IL2RG exprimierenden T-Zellen erzielt werden. Initiale Versuche wurden an der IL2RG-/--Zelllinie ED-7R in vitro durchgeführt. Nachdem über die durchflusszytometrische Analyse der pSTAT5-Expression eine Aktivierung des IL2RG-abhängigen Signalweges in GT-IL2RG-Genfallen transduzierten ED-7R-Zellen nachgewiesen werden konnte, wurde in einem X-SCID-Mausmodell (IL2RG-/-) überprüft, ob es zu der erwarteten Anreicherung von IL2RG exprimierenden T-Zellen nach Transplantation autologer GT-IL2RG transduzierter HSZ kommt. Dabei wurde sowohl die immunologische Rekonstitution der Mäuse als auch die Funktionalität der rekonstituierten Lymphozyten untersucht. In der GT-Gruppe konnte nach Transplantation genetisch modifizierter Zellen weder ein Unterschied der absoluten Zahl an Lymphozyten (B-Zellen, T-Zellen) im Blut, noch ein erhöhter Prozentsatz der verschiedenen Lymphozyten-subpopulationen in KM, Milz oder Thymus beobachtet werden. Lediglich im Thymus einer Maus aus der GT-Gruppe konnten IL2RG exprimierende Zellen nachgewiesen werden. Andererseits konnten aus der Milz transplantierter GT-Mäuse T-Zellen isoliert werden, die nach Interleukin-2-Stimulation STAT5-Phosphorylierung aufwiesen, was eine erfolgreiche obgleich geringe GT-IL2RG Transduktion belegt. Durch die Beurteilung des Engraftments, also des Anwachsens der transplantierten Spenderzellen im Empfängerorganismus, konnte gezeigt werden, dass die niedrigere IL2RG-Rekonstitutionseffizienz durch Genfallen nicht auf einem suboptimalen Engraftment, sondern auf einer zu geringen Anzahl an produktiven Genfallenereignissen beruht.
Zusammenfassend legen die Ergebnisse nahe, dass Genfallen zu diesem Zeitpunkt keine realistische Alternative gegenüber konventionellen Gentherapievektoren zur Korrektur monogener Bluterkrankungen bieten. Neue Entwicklungen, die eine Genkorrektur mittels sog. „Designer Endonukleasen“ vor Ort ermöglichen, werden sicherlich in der nahen Zukunft sämtliche, beliebig ins Genom integrierende Gentherapievektoren ersetzen.
Eine Erkrankung wird als monogen bezeichnet, wenn sie auf einen Gendefekt eines einzelnen Gens zurückzuführen ist. Durch einen angeborenen Gendefekt kann bei den sog. primären Immundefekten (PIDs) das Immunsystem von asymptomatisch bis lebensbedrohlich mehr oder weniger stark beeinträchtigt werden. Für lebensbedrohliche Immundefekte gilt die allogene Stammzelltransplantation eines passenden Spenders als einzig kurative Therapie. Weil jedoch für etwa 30 % aller Patienten kein passender Spender verfügbar ist, bietet die Gentherapie in Kombination mit einer autologen Stammzelltransplantation eine häufig lebensrettende Alternative. Dabei werden patienteneigene CD34+-Blutstammzellen isoliert, ex vivo mit einer funktionalen Kopie des defekten Gens genetisch modifiziert und anschließend zurück in den Patienten infundiert. Die dabei eingesetzten Genfähren basieren in der Regel auf viralen Vektoren, mit denen das gesunde Gen in die Patientenzellen eingeschleust wird. Retrovirale Vektoren wurden für die Gentherapie am häufigsten eingesetzt.
In mehreren klinischen Gentherapie-Studien zur Behandlung diverser PIDs kam es aufgrund insertionsbedingter Transaktivierung benachbarter Proto-Onkogene zur Leukämieentwicklung. Deswegen wurde gezielt an der Sicherheit retroviraler Genfähren gearbeitet. Insbesondere wurden die in der ersten Generation benutzten retroviralen Promotor/Enhancer-Elemente aus der U3-Region des 5’ LTRs deletiert (self-inactivating, SIN-Vektoren) und durch interne, gewebespezifische Promotoren ersetzt. Auf Genfallen basierende Vektoren (gene trap, GT-Vektoren) könnten eine sicherere Alternative zu den Standardvektoren bieten, weil sie zum einen auf den γ-retroviralen SIN-Vektoren basieren und zum anderen keinen internen Promotor enthalten, der zur Transaktivierung benachbarter Gene führen kann. Bei GT-Vektoren wird das integrierte Transgen von endogenen Promotoren kontrolliert, was zu einer robusteren Transgenexpression und zu einem erhöhten Sicherheitsprofil führen sollte.
Ziel dieser Arbeit war, GT-Vektoren hinsichtlich ihres Potentials als Vektoren für die Gentherapie zu bewerten. Dafür wurde zunächst die Gentransduktionseffizienz unterschiedlicher GT-Vektoren in murinen, embryonalen Stammzellen (mES-Zellen) untersucht. In einem klassischen GT-Vektor ist das Therapiegen von einem 5‘ liegenden Spleißakzeptor (SA) und einer 3‘ liegenden Polyadenylierungssequenz (pA) flankiert. Dies bewirkt, dass das Therapiegen nach Integration in ein exprimiertes Gen als Fusionstranskript mit den 5‘ liegenden endogenen Genfragmenten exprimiert wird. Sind diese kodierend, entsteht ein Fusionsprotein, das die Funktionalität des Therapiegens beeinträchtigen kann. Zu Vermeidung einer derartigen Konstellation wurden drei Strategien zur Verhinderung N-terminaler Fusionen getestet: Die Fusion (i) einer internen ribosomalen Eintrittsstelle (IRES) und (ii) eines viralen Proteinspaltungspeptids (T2A) an das 5‘ Ende des Therapiegens sowie (iii) die Insertion von drei Stop-Codons hinter den SA. Die Versuche in mES-Zellen zeigten, dass die GT-Variante mit den Stop-Codons am effizientesten war, weshalb sie für alle weiteren Ansätze verwendet wurde.
Dieser Arbeit vorangegangen war die Entwicklung einer Genfallenstrategie zur Korrektur des septischen Granulomatose (X-CGD) verursachenden gp91phox (CYBB)-Gendefektes in einer gp91phox-defizienten Leukämiezelllinie (PLB-XCGD). Obwohl Genfallen transduzierte PLB-XCGD-Zellen das Therapiegen gp91phox exprimierten, war diese Expression im Vergleich zu den mit einem positiven, Promotor-enthaltenden Kontrollvektor (FES-gp91phox) transduzierten Zellen sehr gering. Deswegen war es notwendig eine effiziente Selektionsstrategie für Genfallenereignisse in hämatopoetischen Zellen zu entwickeln. Eine Strategie basierte auf einem FKBP12/Thrombopoetinrezeptor-Fusionsprotein, dessen Expression in hämatopoetischen BaF3 Zellen eine 25-fache Anreicherung von Genfallen exprimierenden Zellen nach Zugabe des chemischen Liganden AP20187 ermöglichte. Allerdings konnte dieses System in primären, hämatopoetischen Zellen leider nicht etabliert werden.
Die andere Selektionsstrategie basierte auf dem X-SCID Krankheitsmodell, in dem IL2RG-Mutationen, einer Untereinheit verschiedenster Zytokinrezeptoren (z. B. des IL-2-Rezeptors), zu einem kompletten Verlust von T-Zellen und somit zur Reduktion funktionaler B-Zellen führen. Nach ex vivo Korrektur und Transplantation der korrigierten, autologen hämatopoetischen Stammzellen (HSZ), kann eine Expansion der IL2RG exprimierenden T-Zellen erzielt werden. Initiale Versuche wurden an der IL2RG-/--Zelllinie ED-7R in vitro durchgeführt. Nachdem über die durchflusszytometrische Analyse der pSTAT5-Expression eine Aktivierung des IL2RG-abhängigen Signalweges in GT-IL2RG-Genfallen transduzierten ED-7R-Zellen nachgewiesen werden konnte, wurde in einem X-SCID-Mausmodell (IL2RG-/-) überprüft, ob es zu der erwarteten Anreicherung von IL2RG exprimierenden T-Zellen nach Transplantation autologer GT-IL2RG transduzierter HSZ kommt. Dabei wurde sowohl die immunologische Rekonstitution der Mäuse als auch die Funktionalität der rekonstituierten Lymphozyten untersucht. In der GT-Gruppe konnte nach Transplantation genetisch modifizierter Zellen weder ein Unterschied der absoluten Zahl an Lymphozyten (B-Zellen, T-Zellen) im Blut, noch ein erhöhter Prozentsatz der verschiedenen Lymphozyten-subpopulationen in KM, Milz oder Thymus beobachtet werden. Lediglich im Thymus einer Maus aus der GT-Gruppe konnten IL2RG exprimierende Zellen nachgewiesen werden. Andererseits konnten aus der Milz transplantierter GT-Mäuse T-Zellen isoliert werden, die nach Interleukin-2-Stimulation STAT5-Phosphorylierung aufwiesen, was eine erfolgreiche obgleich geringe GT-IL2RG Transduktion belegt. Durch die Beurteilung des Engraftments, also des Anwachsens der transplantierten Spenderzellen im Empfängerorganismus, konnte gezeigt werden, dass die niedrigere IL2RG-Rekonstitutionseffizienz durch Genfallen nicht auf einem suboptimalen Engraftment, sondern auf einer zu geringen Anzahl an produktiven Genfallenereignissen beruht.
Zusammenfassend legen die Ergebnisse nahe, dass Genfallen zu diesem Zeitpunkt keine realistische Alternative gegenüber konventionellen Gentherapievektoren zur Korrektur monogener Bluterkrankungen bieten. Neue Entwicklungen, die eine Genkorrektur mittels sog. „Designer Endonukleasen“ vor Ort ermöglichen, werden sicherlich in der nahen Zukunft sämtliche, beliebig ins Genom integrierende Gentherapievektoren ersetzen.
Das pro-inflammatorische Zytokin Tumornekrose-Faktor alpha (TNFalpha) kann, abhängig vom zellulären Kontext, sowohl Wachstum als auch Apoptose in Säugerzellen induzieren. Diese gegensätzlichen Effekte sind zurückzuführen auf die Fähigkeit von TNFalpha verschiedene Signalwege in der Zelle zu aktivieren. Nach einer vorübergehenden Aktivierung eines antiapoptotischen Genexpressionsprogrammes über einen membranständigen TNF-Rezeptor-Multiproteinkomplex und den Transkriptionsfaktor NF-KB, kommt es zur Modifikation des Signaltransduktionskomplexes. Dieser ist nun in der Lage andere Adapterproteine und Caspasen zu rekrutieren, was letztendlich zur Einleitung der Apoptose führt. Ziel dieser Arbeit war es neue Überlebensgene zu identifizieren, die nach TNFalpha-Behandlung transient aktiviert werden, da diese Gene in Tumorzellen möglicherweise dazu beitragen, apoptotischen Prozessen entgegenzuwirken. Langfristig könnten ihre Genprodukte als diagnostische Marker oder als Angriffspunkte für neue Therapieansätze dienen. Um TNFalpha-induzierte Überlebensgene zu identifizieren wurde als Modellsystem die menschliche Cervixkarzinomzellinie HeLa eingesetzt, welche resistent gegenüber TNFalpha ist. Allerdings wird bei Blockade der Translation, zusätzlich zu der Zytokinbehandlung, Apoptose ausgelöst. Dies zeigt, dass bei der alleinigen Zugabe von TNFalpha die Transkription von Überlebensgenen induziert wird, deren Aktivität apoptotische Signalwege blockiert. Zur Identifizierung dieser transient aktivierten Gene wurde eine Strategie benutzt, welche auf einer Kombination von Genfallen-Mutagenese und Cre/loxP-spezifischer Rekombination beruht. Zunächst wurde eine HeLa-Reporterzellinie mit einem stabil integrierten, Creabhängigen, molekularen Schalter generiert. Dieser besteht aus einer Kassette mit einem konstitutiv aktiven Promotor, der die Expression eines "gefloxten", selektionierbaren Markergens antreibt. 3’ hierzu befindet sich ein zweites Markergen, das in dieser Konfiguration transkriptionell inaktiv ist. Die Reporterzellinie wurde mit einer retroviralen Genfalle transduziert, die ein Cre-Rekombinasegen trägt, aber keine cis-regulatorischen DNA-Elemente besitzt, so dass die Cre-Expression vollständig von den zellulären Sequenzen in der Nachbarschaft der Integrationsstelle des Genfallen-Provirus abhängig wird. Eine transkriptionelle Aktivierung der Cre-Genfalle, auch wenn diese nur transient ist, führt zu einer Deletion des 5'-gelegenen Markergens in dem Selektionssystem und damit zur Expression des 3'-Markers. Diese irreversible Rekombination, die ein Indikator für eine transkriptionelle Aktivierung der Genfalle ist, wurde zur Selektion einer Zellpopulation mit Genfallen-Integrationen in TNFa-induzierten Genen genutzt. Aus einer aus 2 x 106 unabhängigen Insertionen bestehenden Genfallen-Integrationsbank wurde in einem zweistufigen Selektionsverfahren 50 HeLa-Zellinien mit Genfalleninsertionen in TNFalpha induzierbaren Genen isoliert. Die Sequenzierung Genfallen-flankierender genomischer Sequenzen und anschließender Datenbankanalyse ergab folgende Verteilung der Genfallen-Integrationen: 45 % lagen in annotierten Genen, 19 % in Genen mit unbekannter Funktion, 19 % in hypothetischen Genen, 5 % in ESTs (expressed sequence tags), 6 % in repetitiven Elementen und 6 % in nicht-annotierten Regionen. Neben bekannten TNFalpha-regulierten Genen wurde eine Reihe von neuen Genen identifiziert, welche bisher noch nicht mit der TNFalpha-Signaltransduktionskaskade assoziiert worden waren. Die Validierung der so gefundenen Gene in Northern-Blots machte deutlich, dass der Expressionsanstieg nach TNFalpha-Stimulation insgesamt nicht sehr stark ausgeprägt war, zeigte aber eine klare Induktion zweier Gene (rhobtb3, atf-1) nach Zytokin-Stimulation. Interessanterweise erfolgten die Genfalleninsertionen in 50 % aller Fälle in umgekehrter Orientierung zum annotierten Gen, was darauf hindeutet, dass mit Hilfe der gewählten Strategie nicht-kodierende RNAs identifiziert werden können. Obwohl der Nachweis dieser Transkripte und ihre biologische Relevanz noch aussteht, können sie in zwei Kategorien eingeteilt werden. Integrationen oberhalb von Genen oder in 5'-UTRs, repräsentieren entweder regulatorische RNAs, die mit Promotorelementen interagieren oder Transkripte, welche unter der Kontrolle von bidirektionalen Promotoren stehen. Die zweite Kategorie, Insertionen auf dem nicht-kodierenden Strang, innerhalb von Introns, legen das Vorkommen natürlicher antisense-Transkripte nahe. Interessanterweise liegen 50 % aller antisense-Integrationen 3' zu potentiellen Transkriptionsstartstellen, die mit verschiedenen Algorithmen vorhergesagt wurden. Dies kann als Hinweis darauf gewertet werden, dass entsprechende genomische Regionen tatsächlich transkribiert werden. Aufgrund neuer Erkenntnisse über die Funktionen von nicht-kodierenden RNA-Molekülen, gerade auch in Zusammenhang zur Tumorprogression, könnte deren mögliche regulatorische Rolle innerhalb der TNFalpha-Signaltransduktionskaskade von großem Interesse sein. Die im Rahmen dieser Dissertation durchgeführten Experimente führten nicht nur zur Identifizierung neuer, potentieller TNFalpha-Zielgene, sondern zeigten auch, dass Genfallen ein nützliches Werkzeug bei der Suche nach nicht-kodierenden RNAs in lebenden Zellen sein können und ihr Einsatz möglicherweise die Methode der Wahl für die Identifizierung derartiger Transkripte darstellt.
Identification and characterization of TNFalpha responsive genes in human breast cancer cells
(2006)
One of the hallmarks of cancer is the escape of the transformed cells from apoptosis. Therefore, the identification of survival genes, allowing cancer cells to circumvent programmed cell death, could provide new diagnostic markers as well as targets for therapeutic intervention. A well known transcription factor regulating the balance between pro- and anti- apoptotic factors is NF-kappaB, which is strongly induced by tumor necrosis factor alpha (TNFalpha). When cells are stimulated by TNFalpha their response is biphasic with an initial NF-kappaB induction of survival genes which is overridden by the subsequent activation of initiator caspases triggering apoptosis. By combining gene trap mutagenesis with site specific recombination a strategy was developed, which enriches for genes induced by TNFalpha in the human breast cancer cell line MCF-7. The strategy relies on a one way gene expression switch based on Cre/loxP mediated recombination, which uncouples the expression of a marker gene from the trapped cellular promoter thereby enabling the recovery of genes that are only transiently induced by TNFalpha. The marker gene used in these experiments was a dominant negative variant of the TNFalpha-receptor associated protein FADD (dnFADD), which blocks the apoptotic branch of the TNFalpha induced signaling pathway. Initial experiments indicated that MCF-7 cells expressing high levels of dnFADD were insensitive to TNFalpha induced apoptosis and therefore suitable for the installment of a one way gene expression switch susceptible to Cre/loxP mediated recombination. A MCF-7 reporter clone harboring the recombinase dependent gene expression switch was infected with the gene trap retrovirus U3Cre, which inserts the Cre recombinase gene into a large collection of chromosomal sites. Insertion of Cre downstream of an active cellular promoter induces dnFADD expression from the gene expression switch enabling the cells to block TNFalpha triggered apoptosis. From a gene trap integration library containing approximately 2000000 unique proviral integrations, 69 unique TNFalpha inducible gene trap insertion sites were recovered in a two step selection procedure. Sequencing of the genomic regions adjacent to the insertion sites, which were obtained by inverse PCR (gene trap sequence tags, GTSTs), and data base analysis revealed that 42% of the GTSTs belonged to annotated genes, 13% to known cDNAs with open reading frames, 17% to Genscan predicted genes, 9% to ESTs, 9% to repetitive sequences and 10% to unannotated genomic sequence. Overall, 44% of the annotated genes recovered in this screen were directly or indirectly related to cancer, indicating that the gene trap strategy developed here is suitable for the identification of cancer relevant genes. Analysis of the expression patterns of the trapped and annotated genes in wild type cells revealed that 19 out of 24 genes were either up- or down- regulated by a factor of at least 1.45 by TNFalpha. A large fraction of the gene trap insertions were located upstream, in introns or in opposite orientation to annotated transcripts, indicating that the strategy efficiently recovers non-coding RNAs (ncRNAs). While the biological significance of these transcripts still needs to be elucidated, they fall into two main categories. The first category includes gene trap insertions upstream of genes, which could either represent regulatory RNAs interacting with promoter elements or transcripts driven by bidirectional promoters. The second includes inverse orientation gene trap insertions in introns of annotated genes suggesting the presence of natural antisense transcripts (NATs). Interestingly, more than 50% of all antisense integrations are located downstream of transcription start sites predicted by different algorithms supporting the existence of RNAs transcribed from the corresponding genomic regions. Intronic integrations on the coding strand could be derived from cryptic splicing, alternative promoter usage or additional, so far uncharacterized transcripts. Preliminary functional analysis of two genes recovered in this screen encoding the transcription factor ZFP67 and the FLJ14451 protein revealed that FLJ14451 but not ZFP67 inhibited anchorage independent growth in soft agar, suggesting that FLJ14451 might have some tumor suppressor functions. In summary, besides identifying a putative tumor suppressor protein, the present experiments have shown that gene trapping is useful in identifying non-coding transcripts in living cells and may turn out to be the method of choice in characterizing these transcripts whose functions are still largely unknown.
In allen bislang durchgeführten Experimenten zur Mutagenese von embryonalen Stammzellen war auffällig, dass Gene, die für sekretierte oder membranständige Proteine kodieren, stark unterrepräsentiert waren. Im Rahmen dieser Arbeit wurden zwei Genfallen untersucht, die speziell diese Gene mutieren sollten. Als Selektionskassetten tragen beide Genfallen den 5' Bereich des humanen CD2, der eine kryptische Spleißakzeptorsequenz enthält und für eine Transmembrandomäne kodiert, als Fusion mit der bakteriellen Neomycinphosphotransferase. U3Ceo trägt diese Kassette als klassische retrovirale Genfalle im LTR des Mouse Molony Leukemia Virus, wogegen die ebenfalls retrovirale FlipRosaCeo Genfalle die Selektionskassette im Viruskörper enthält. Diese wird von Rekombinaseerkennungssequenzen flankiert, welche eine konditionale Aktivierung der Mutation für die spätere Analyse in einem Mausmodell ermöglichen. Beide Genfallen zeigten mit ca. 80% aller Integrationen eine hohe Spezifität für Gene, die für sezernierte und membranständige Proteine kodieren. Allerdings war die Frequenz für Insertionen in sogenannte „hot spots“ bei beiden Genfallen aufgrund der geringeren Zahl an Zielgenen höher als bei anderen im GGTC verwendeten Genfallen (z.B. FlipRosabetageo). Innerhalb dieser „hot spots“ zeigte sich die bekannte Präferenz retroviraler Genfallenvektoren, in das 5’ Ende von Genen zu integrieren, wobei hier meist die größten Introns zu finden sind. Ebenso zeigte sich für die in dieser Arbeit untersuchten sekretorischen Genfallen genau wie bei anderen bekannten Genfallen eine bevorzugte Integration in Chromosomen mit einer hohen Gendichte. Die Funktionalität der konditionalen Genfalle konnte in vitro sowohl in Prokaryoten als auch in Eukaryoten durch Einbringen der Genfalle und der jeweiligen Rekombinasen bestätigt werden. In ES Zellen, die eine X-chomosomale Integration aufwiesen, wurde der Mechanismus durch transiente Expression der Rekombinasen in Klonen überprüft. Hierbei stellte sich heraus, dass das Wildtyptranskript eines mutierten Gens nach der einmaligen Rekombination der FlipRosaCeo wieder exprimiert wird und nicht durch die auf dem Gegenstrang befindliche Genfalle beeinflusst wird. Nach einer weiteren Rekombination mittels FLPe konnte der mutagene Ausgangszustand der Genfalle wieder hergestellt werden. Die Mutagenität der beiden Genfallen wurde durch Überprüfung der Konzentration der restlichen endogenen Transkripts der mutierten Gene per quantitativer PCR an X-chromosomalen Klonen analysiert. Hier konnte bei etwa 80% der untersuchten Klone eine sehr starke Mutation des jeweils getroffenen Gens festgestellt werden. Zur in vivo Überprüfung der U3Ceo Genfalle wurde ein Mausmodell durch Blastozysteninjektion des ES Zellklons M076C04 generiert. Die Integration der Genfalle in das erste Intron des Gens C030019F02Rik sollte eine deutliche Verkürzung des membranständigen Genproduktes bewirken. In Gehirnen von homozygoten Mäusen konnte die Expression des Wildtyptranskripts nicht mehr festgestellt werden, so dass diese Mauslinie eine Nullmutation des Gens trägt. Die in dieser Arbeit untersuchte KO Maus zeigte bisher keinen feststellbaren Phänotyp, obwohl das Genprodukt in vielen Spezies hoch konserviert vorliegt und auch nur in bestimmten Bereichen im Organismus nachweisbar ist, so dass eine wichtige Funktion des Proteins anzunehmen ist. Eine weitere Analyse dieser Mauslinie wird sich dieser Arbeit anschließen.
Im Rahmen dieser Dissertation sollte der Effekt der Zelldichte auf Proliferation und Apoptose bei der RKO-Rektumkarzinomzelllinie untersucht werden. Neben Invasion, Entdifferenzierung und Metastasierung kann bei Krebserkrankungen auch eine hohe Wachstumsgeschwindigkeit zu den Charakteristika der Malignität gezählt werden. Bei Leukämien, Lymphomen und bestimmten soliden Tumoren, bei denen eine chirurgische Resektion nur eingeschränkt möglich ist, bedeutet jedoch ein langsames Wachstum, d.h. eine geringe Proliferation der Tumorzellen, in der Regel keine verbesserte Prognose, da sie mit schlechterem Ansprechen auf Chemotherapie und Bestrahlung einhergeht. Die molekularen Ursachen dieser Behandlungsresistenz sind bisher nicht vollständig geklärt und wahrscheinlich nicht bei allen Krebserkrankungen auf identischen Mechanismen beruhend. Vorstellbar ist, dass sich das Gesamtsystem der Zelle während des Teilungsprozesses sensibler gegenüber Schädigungen der DNA, wie sie durch Bestrahlung und die meisten Chemotherapeutika ausgelöst werden, präsentiert. Dies kann durch unterschiedlichste molekulare Mechanismen verursacht sein. Um den möglichen Einfluss des Proliferationsverhaltens einer Zellpopulation auf das Apoptose-Verhalten zu untersuchen, wurde im Rahmen dieser Arbeit versucht, die Proliferationsgeschwindigkeit einer Zellkultur mittels Dichte-Arretierung zu senken. Hierzu wurden RKO-Zellen in konfluenter und subkonfluenter Dichte kultiviert. Ebenfalls wurden Unterschiede bei der Verteilung der Zellen auf die verschiedenen Zellzyklusphasen ermittelt. Durch Inkubation mit CD95L konnte dann ein Zusammenhang von Proliferation und Apoptosesensitivität ermittelt werden, d.h. die „Zellzyklusabhängigkeit“ der CD95L-induzierte Apoptose untersucht werden. Hierbei zeigten sich Zellen mit geringerer Proliferationsrate resistenter gegenüber CD95L. Verschiedene Methoden (z.B. Western-Blot-Analyse, FACS-Messungen) wurden zur Aufklärung der molekularen Ursachen genutzt. Die Arbeit zeigte auch das Vorhandensein eines molekular nicht identifizierten, autokrin in das Medium sezernierten Faktors, der zu verstärkter Resistenz gegenüber CD95L führte. Dieser Faktor erhöhte auch die Migration und Invasivität der RKO-Zellen und verstärkte damit die malignen Eigenschaften der Tumorzellen. Die zukünftige molekulare Identifikation dieses Faktors könnte therapeutisch bedeutsam sein.