Refine
Year of publication
Document Type
- Doctoral Thesis (29)
Has Fulltext
- yes (29)
Is part of the Bibliography
- no (29)
Keywords
- 3-alkylphenols (1)
- 6-methylsalicylic acid synthase (1)
- Fabclavine (1)
- Fatty acid synthases (1)
- Natural Products (1)
- Natural products (1)
- Polyketide synthases (1)
- Protein engineering (1)
- Svetamycin (1)
- Xenorhabdus (1)
Institute
In the last couple of years the research on natural products concerning ecological questions has gained more and more interest. Especially natural products play an important role for the maintenance of symbiotic relationships.
Here we present the application of the “overlap extension PCR-yeast homologous recombination“(ExRec) to simplify the availability of natural products. We successfully cloned a 45 kb gene cluster and characterized two new peptides ambactin and xenolindicin from Xenorhabdus – the latter derived from a silent gene cluster. ExRec is a very efficient cloning technique and resembles a powerful method regarding the assembly of large gene clusters as well as the cloning from metagenomic libraries or RNA pools.
In addition, we discovered bacterial pyrrolizidine alkaloids from Xenorhabdus, referred to as pyrrolizixenamides. The gene cluster consisted of a NRPS and a hydroxylase encoding gene. Surprisingly, this gene cluster and its variations (type A to D) can be found throughout the bacterial kingdom which might indicate an essential function. While these substances are mainly known to play a role in the defense mechanism of plants, the function of the identified pyrrolizixenamides from Xenorhabdus yet remains unsolved.
Moreover, we firstly identified a phosphopantetheinyl transferase (PPTase) from the lichenized fungus of Evernia prunastri. The gene eppA encoding a Sfp-type PPTase was heterologously expressed in Escherichia coli and Saccharomyces cerevisiae and functional characterized by indigoidine production and complementation of lys5, respectively. All represented results contribute to the elucidation of natural products and thereby to their role in nature with special regard to symbiotic associations.
This work comprises the investigation of four different biosynthesis gene clusters from Xenorhabdus. Xenorhabdus is an entomopathogenic bacterium that lives in mutualistic symbiosis with its Steinernema nematode host and together they infect and kill insect larvae. Xenorhabdus is well known for the production of so-called specialised metabolites and many of these compounds are synthesised by non-ribosomal peptide synthetases (NRPSs) or NRPS-polyketide synthase (PKS)-hybrids. These enzymes are organised in a modular manner and produce structurally very diverse molecules, often with the help of modifying domains and tailoring enzymes. In general, the genes involved in the biosynthesis are organised in so-called biosynthetic gene clusters (BGCs) in the genome of the producing strain. Exchanging the native promoter with an inducible promoter, e.g. PBAD, allows the targeted activation of the BGC and in turn the analysis of the biosynthesis product via LC-MS analysis.
The first BGC investigated in this work is responsible for the biosynthesis of xenofuranones. Based on gene deletions, this work shows that the NRPS-like enzyme XfsA produces a carboxylated furanone intermediate which is subsequently decarboxylated by XfsB to yield xenofuranone B. The next step in xenofuranone biosynthesis is the O-methylation of xenofuranone B to yield xenofuranone A. A comparative proteomics approach allowed the identification of four methyltransferase candidates and subsequent gene deletions confirmed one of the candidates to be responsible for methylation of xenofuranone B. The proteome analysis was based on the comparison of X. szentirmaii WT and X. szentirmaii Δhfq because distinct levels of the methylated xenofuranone A were observed when the xfs BGC was activated in either WT or Δhfq strain. Hfq is a global transcriptional regulator whose deletion is associated with the down regulation of natural product biosynthesis in Xenorhabdus. The strong PBAD activation of the xfs BGC also allowed the detection of two novel xenofuranone derivatives which arise from incorporation of one 4-hydroxyphenylpyruvic acid as first or second building block, respectively.
PBAD based activation of the second BGC addressed in this work lead to the detection of a novel metabolite and compound purification allowed NMR-based structure elucidation. The molecule exhibits two pyrrolizidine moieties and was named pyrrolizwilline (pyrrolizidine + twin (German: “Zwilling”)). The BGC comprises seven genes and single gene deletions as well as heterologous expression in E. coli and NRPS engineering were conducted to investigate the biosynthesis. The first two genes xhpA and xhpB encode a bimodular NRPS and a monooxygenase which synthesise a pyrrolizixenamide-like structure, similar to PxaA and PxaB in pyrrolizixenamide biosynthesis. It is suggested that the acyl side chain incorporated by XhpA is removed by the α,β-hydrolase XhpG. The keto function is then reduced by two subsequent two electron reductions catalysed by XhpC and XhpD. One of these two reduced pyrrolizidine units most likely is extended with glyoxalate prior to non-enzymatic dimerisation with the second pyrrolizidine moiety. To finally yield pyrrolizwilline, L-valine is incorporated, probably by the free-standing condensation domain XhpF.
The third BGC investigated is responsible for the production of a tripeptide composed of β-D-homoserine, α-hydroxyglycine and L-valine and is referred to as glyoxpeptide. This work demonstrates that the previously observed glyoxpeptide derivative is derived from glycerol present in the culture medium. Furthermore, this work shows that the monooxygenase domain, which is found in an unusual position between motifs A8 and A9 within the adenylation domain, is responsible for the α-hydroxylation of glycine. It is suggested that the α-hydroxylation of glycine renders the tripeptide prone to hydrolysis via hemiacetal formation. Hence, the XgsC_MonoOx domain might be an interesting candidate for further NRPS engineering.
The fourth BGC addressed is responsible for the production of xildivalines and this work describes two additional derivatives which are detected only when the promoter is exchanged and activated in the X. hominickii WT strain but not in X. hominickii Δhfq. Deletion of the methyltransferase encoding gene xisE results in the production of non-methylated xildivalines. It remains to be determined when the N-methylation of L-valine takes place. It is discussed that the methyltransferase could act on the NRPS released product but also during the assembly. The peptide deformylase is not involved in the proposed biosynthesis as xildivaline production is detected in a ΔxisD strain. The PKS XisB features two adjacent, so-called tandem T domains. The inactivation of the first or the second T domain by point mutation causes decreased production titres of detected xildivalines in the respective mutant strain when compared to the wild type.
Non-ribosomal peptide synthetase docking domains : structure, function and engineering strategies
(2021)
Non-ribosomal peptide synthetases (NRPSs) are known for their capability to produce a wide range of natural compounds and some of them possess interesting bioactivities relevant for clinical application like antibiotics, anticancer, and immunosuppressive drugs. The diverse bioactivity of non-ribosomal peptides (NRPs) originates from their structural diversity, which results not only from the incorporation of non-proteinogenic amino acids into the growing peptide chain, but also the formation of heterocycles or further peptide modifications like methylation, hydroxylation and acetylation.
The biosynthesis of NRPs is achieved via the orchestrated interplay of distinct catalytic domains, which are grouped to modules that are located on one or more polypeptide chains. Each cycle starts with the selection and activation of a specific amino acid by the adenylation (A) domain, which catalyzes the aminoacyl adenylate formation under ATP consumption. This activated amino acid is then bound via a thioester bond to the 4’-phosphopantetheine cofactor (PPant-arm) of the following thiolation (T) domain. Before substrate loading, the PPant-arm is post-translationally added to the T domain by a phosphopantetheinyl transferase (PPTase), which converts the inactive apo-T domain in its active holo-form. In the last step of the catalytic cycle, two T domain bound peptide building blocks are connected by the condensation (C) domain, resulting in peptide bond formation and transfer of the nascent peptide chain to the following module. Each catalytic cycle is performed by a C-A-T elongation module until the termination module with a C-terminal thioesterase (TE) domain is reached. Here, the peptide product is released by hydrolysis or intramolecular cyclisation.
In comparison to single-protein NRPSs, where all modules are encoded on a single polypeptide chain, multi-protein NRPS systems must also maintain a specific module order during the peptide biosynthesis. Therefore, small C-terminal and N-terminal communication-mediating (COM) domains/docking domains (DD) were identified in the C- and N-terminal regions of multi-protein NRPSs. It was shown that these domains mediate specific and selective non-covalent protein-protein interaction, even though DD interactions are generally characterized by low affinities.
The first publication of this work focuses on the Peptide-Antimicrobial-Xenorhabdus peptide-producing NRPS called PaxS, which consists of the three proteins PaxA, PaxB and PaxC. Here, in particular the trans DD interface between the C-terminal attached DD of PaxB and N-terminal attached DD of PaxC was structurally investigated and thermodynamically characterized by isothermal titration calorimetry (ITC), yielding a dissociation constant (KD) of ~25 µM, which is a DD typical affinity known from further characterized DD pairs. The artificial linking of the PaxB/C C/NDD pair via a glycine-serine (GS) linker facilitated the structure determination of the DD complex by solution nuclear magnetic resonance (NMR) spectroscopy. In comparison to known docking domain structures, this DD complex assembles in a completely new fold which is characterized by a central α-helix of PaxC NDD wrapped in two V-shaped α-helices of PaxB CDD.
The first manuscript of this work focuses on the application of synthetic zippers (SZ) to mimic natural docking domains, enabling the easy assembly of NRPS building blocks encoded on different plasmids in a functional way. Here, the high-affinity interaction of SZs unambiguously defines the order of the synthetases derived from single-protein NRPSs in the engineered NRPS system and allows the recombination in a plug-and-play manner. Notably, the SZ engineering strategy even facilitates the functional assembly of NRPSs derived from Gram-positive and Gram-negative bacteria. Furthermore, the functional incorporation of SZs into NRPS modules is not limited to a specific linker region, so we could introduce them within all native NRPS linker regions (A-T, T-C, C-A).
The second publication and the second manuscript of this thesis again focus on the multi-protein PaxS, in particular on the trans interface between the proteins PaxA and PaxB on a molecular level by solution NMR. Therefore, the PaxA CDD adjacent T domain was included into the structural investigation besides the native interaction partner PaxB NDD. Before a three-dimensional structure could be obtained from NMR data, the NH groups located in the peptide bonds had to be assigned to the respective amino acids of the proteins (backbone assignment). Based on these backbone assignments, the secondary structure of PaxA T1-CDD and PaxB NDD in the absence and presence of the respective interaction partner were predicted.
The structural and functional characterization of the PaxA T1-CDD:PaxB NDD complex is summarized in manuscript two. The thermodynamic analysis of this complex by ITC determined a KD value of ~250 nM, whereas the discrete DDs did not interact at all. The high-affinity interaction allowed to determine the solution NMR structure of the PaxA T1-CDD:PaxB NDD complex without the covalent linkage of the interaction partners and an extended docking domain interface could be determined. This interface comprises on the one hand α-helix 4 of the PaxA T1 domain together with the α-helical CDD, and on the other hand the PaxB NDD, which is composed of two α-helices separated by a sharp bend.
...
The application of natural products (NPs) as drugs and lead compounds has greatly improved human health over the past few decades. Despite their success, we still need to find new NPs that can be used as drugs to combat increasing drug resistance via new modes of action and to develop safer treatments with less side effects.
Entomopathogenic bacteria of Xenorhabdus and Photorhabdus that live in mutualistic symbiosis with nematodes are considered as promising producers of NPs, since more than 6.5% of their genomes are assigned to biosynthetic gene clusters (BGCs) responsible for production of secondary metabolites. The investigation on NPs from Xenorhabdus and Photorhabdus can not only provide new compounds for drug discovery but also help to understand the biochemical basis involved in mutualistic and pathogenic symbiosis of bacteria, nematode host and insect prey.
Nonribosomal peptides (NRPs) are a large class of NPs that are mainly found in bacteria and fungi. They are biosynthesized by nonribosomal peptide synthetases (NRPSs) and display diverse functions, representing more than 20 clinically used drugs. Although a large number of NRPs have been identified in Xenorhabdus and Photorhabdus, the advanced genome sequencing and bioinformatic analysis indicate that these bacteria still have many unknown NRPS-encoding gene clusters for NRP production that are worth to explore. Therefore, this thesis focuses on the discovery, biosynthesis, structure identification, and biological functions of new NRPs from Xenorhabdus and Photorhabdus.
The first publication describes the isolation and structure elucidation of seven new rhabdopeptide/xenortide-like peptides (RXPs) from X. innexi, incorporating putrescine or ammonia as the C-terminal amines. Bioactivity testing of these RXPs revealed potent antiprotozoal activity against the causative agents of sleeping sickness (Trypanosoma brucei rhodesiense) and malaria (Plasmodium falciparum), making them the most active RXP derivatives known to date. Biosynthetically, the initial NRPS module InxA might act iteratively with a flexible methyltransferase activity to catalyze the incorporation of the first five or six N-methylvaline/valine to these peptides.
The second publication focuses on the structure elucidation of seven unusual methionine-containing RXPs that were found as minor products in E. coli carrying the BGC kj12ABC from Xenorhabdus KJ12.1. To confirm the proposed structures from detailed HPLC-MS analysis, a solid-phase peptide synthesis (SPPS) method was developed for the synthesis of these partially methylated RXPs. These RXPs also exhibited good effects against T. brucei rhodesiense and P. falciparum, suggesting RXPs might play a role in protecting insect cadaver from soil-living protozoa to support the symbiosis with nematodes.
The third publication presents the identification of a new peptide library, named photohexapeptide library, which occurred after the biosynthetic gene phpS was activated in P. asymbiotica PB68.1 via promoter exchange. The chemical diversity of the photohexapeptides results from unusual promiscuous specificity of five out of six adenylation (A) domains being an excellent example of how to create compound libraries in nature. Furthermore, photohexapeptides enrich the family of the rare linear D-/L-peptide NPs.
The fourth publication concentrates on the structure elucidation of a new cyclohexapeptide, termed photoditritide, which was produced by P. temperata Meg1 after the biosynthetic gene pdtS was activated via promoter exchange. Photoditritide so far is the only example of a peptide from entomopathogenic bacteria that contains the uncommon amino acid homoarginine. The potent antimicrobial activity of photoditritide against Micrococcus luteus implies that photoditritide can protect the insect cadaver from food competitor bacteria in the complex life cycle of nematode and bacteria.
The last publication reports a new family of cyclic lipopeptides (CLPs), named phototemtides, which were obtained after the BGC pttABC from P. temperata Meg1 was heterologously expressed in E. coli. The gene pttA encodes an MbtH protein that was required for the biosynthesis of phototemtides in E. coli. To determine the absolute configurations of the hydroxy fatty acids, a total synthesis of the major compound phototemtide A was performed. Although the antimalarial activity of phototemtide A is only weak, it might be a starting point towards a selective P. falciparum compound, as it shows no activity against any other tested organisms.
Nematophilic bacteria as a source of novel macrocyclised antimicrobial non-ribosomal peptides
(2020)
A solution to ineffective clinical antimicrobials is the discovery of new ones from under-explored sources such as macrocyclic non-ribosomal peptides (NRP) from nematophilic bacteria. In this dissertation an antimicrobial discovery process –from soil sample to inhibitory peptide– is demonstrated through investigations on six nematophilic bacteria: Xenorhabdus griffiniae XN45, X. griffiniae VH1, Xenorhabdus sp. nov. BG5, Xenorhabdus sp. nov. BMMCB, X. ishibashii and Photorhabdus temperata. To demonstrate the first step of bacterium isolation and species delineation, endosymbionts were isolated from Steinernema sp. strains BG5 and VH1 that were isolated directly from soil samples in Western Kenya. After genome sequencing and assembly of novel Xenorhabdus isolates VH1 and BG5, species delineation was done via three overall genome relatedness indices. VH1 was identified as X. griffiniae VH1, BG5 as Xenorhabdus sp. nov. BG5 and X. griffiniae BMMCB was emended to Xenorhabdus sp. nov. BMMCB. The nematode host of X. griffiniae XN45, Steinernema sp. scarpo was highlighted as a putative novel species. To demonstrate the second step of genome mining and macrocyclic non-ribosomal peptide structure elucidation, chemosynthesis and biosynthesis, the non-ribosomal peptide whose production is encoded by the ishA-B genes in X. ishibashii was investigated. Through a combination of refactoring the ishA-B operon by a promoter exchange mechanism, isotope labelling experiments, high resolution tandem mass spectrometry analysis, bioinformatic protein domain analysis and chemoinformatic comparisons of actual to hypothetical mass spectrometry spectra, the structures of Ishipeptides were elucidated and confirmed by chemical synthesis. Ishipeptide A was a branch cyclic depsidodecapeptide macrocyclised via an ester bond between serine and the terminal glutamate. It chemosynthesis route was via a late stage macrolactamation and linearised Ishipeptide B was synthesised via solid phase iterative synthesis. Ishipeptides were not N-terminally acylated despite being biosynthesised from the IshA protein that had a C-starter domain. It was highlighted that more than restoration of the histidine active site of this domain is required to restore N-terminal acylation activity.
To demonstrate the final step of determination of antimicrobial activity, minimum inhibitory concentrations of Ishipeptides and Photoditritide from Photorhabdus temperata against fungi and bacteria were determined. None were antifungal while only the macrocyclic compounds were inhibitory, with Ishipeptide A inhibitory to Gram-positive bacteria at 37 µM. The cationic Photoditritide, a cyclic hexapeptide macrocyclised via a lactam bond between homoarginine and tryptophan, was 12 times more inhibitory (3.0 µM), even more effective than a current clinical compound, Ampicillin (4.2 µM). For both, macrocyclisation was hypothesised to contribute to antimicrobial activity. Ultimately, this dissertation demonstrated not only nematophilic bacteria as a source of novel macrocyclic antimicrobial non-ribosomal peptides but also a process of antimicrobial discovery–from soil sample to inhibitory peptide– from these useful bacteria genera. This is significant for the fight against antimicrobial resistance.
Myxobacteria are on order of Gram-negative, soil dwelling bacteria that feature an impressive number of properties: they can glide on solid surfaces by using two different motility motors, subsist by preying on other microorganisms, are often producers of multiple natural products, and upon adverse environmental conditions, they are able to form multicellular structures called “fruiting bodies”. The process, in which these macroscopically visible structures arise from independent single cells, has been the predominant subject of myxobacterial research for many decades. More precisely, researchers have strived for the discovery of genes, proteins and small molecules that act as signals, receivers or modulators of this complex process. In this regard, the species Myxococcus xanthus has evolved into the model organism due to its relatively simple and reliable handling in a laboratory environment. The research underlying this thesis focused on the identification and biosynthesis of lipids that may act as intercellular signaling molecules during the course of fruiting body formation of the myxobacterium Myxococcus xanthus as part of the “E-signal” system. In general, lipids containing branched-chain fatty acids with an uneven number of carbon atoms were found to be important players in this particular process. Nevertheless, their exact roles remain largely unknown as of this day. The first publication that is part of this thesis deals with an aspect that even strengthened the importance of role of iso-branched compounds in myxobacteria: myxobacterial metabolism is able to transform precursors of iso-lipids to isoprenoids. It addresses the question whether isoprenoids in general are important for fruiting body formation. Phenotypic analysis of mutants impaired in the biosynthesis of the central isoprenoid precursor 3-hydroxymethylglutaryl-Coenzyme A (3-HMG-CoA) from acetate and/or branched chain keto acids and their genetic and metabolic complementation clearly showed that isoprenoids are essential for fruiting body formation and confirmed that leucine derived isovalerate is an important source for isoprenoid precursors in myxobacteria. The second, and by far and away most tedious and sophisticated study, addressed the question as to how myxobacteria form fatty acid derived iso-branched ether lipids and to what extent they are important for fruiting body formation and sporulation. In a previous study, those unusual lipids were identified as specific biomarkers for myxobacterial development. No biochemical pathways to ether lipids specific for prokaryotes were known by then. In this study, a putative candidate gene that may be in involved in ether lipid biosynthesis was investigated. A combination of gene disruption and complementation experiments, phenotypic analysis and monitoring of ether lipid formation by means of GC-MS demonstrated its involvement in myxobacterial ether lipid biosynthesis and the importance of these lipids for the developmental process. Heterologous expression and biochemical testing of this gene together with in-silico sequence analysis and docking experiments confirmed the functions of its predicted domains. The discussion section provides an additional suggestion on how the ether bond formation is performed. Furthermore and most importantly, iso-branched ether lipids were found to be essential for sporulation but not for fruiting body formation. In summary, one or several molecules derived from an iso-branched alkylglycerol seem to play a role during sporulation in M. xanthus and a multidomain enzyme unique for myxobacteria is involved in their biosynthesis. The last manuscript addresses the complexity of lipid metabolism in myxobacteria. Prior to this work, there was limited knowledge about the exact composition of the myxobacterial lipidome and no method was available to monitor putative changes in the myxobacterial lipidome down to the single molecular species for studying lipid biosynthesis or regulation. An ultra-performance liquid chromatography coupled with mass spectrometry based method with electrospray ionization (UPLC-ESI-MS) utilizing standard equipment and a water/acetonitrile/isopropanol based eluent system proved to be geared for the construction of lipid profiles for wild type and mutant cells of M. xanthus and to show their differences. Fragmentation spectra based structure elucidation of lipid molecular species resulted in the identification of 99 molecular species comprising glycerophosphoethanolamines, glycerophosphoglycerols, glycerolipids, ceramides and ceramide phosphoinositols. The latter have never been described for any prokaryotes before. Three dimensional plots were created from the relative intensity differences of the single molecular ion species between the different samples to provide an efficient and versatile visualization of the data and enable the researcher to quickly detect differences.
The metabolome of any live cell consists of several hundred, if not thousands of different molecules at any given moment, be it a relatively small bacterial cell or a whole multicellular organism. Although there are continuous attempts to differentiate between primary and secondary metabolites, the borders often blur in the eye of almost perfect interconvertability of all such matter. With chemistry and physics dominating this domain of biology it is an interdisciplinary endeavor to tackle the questions surrounding the workings of the metabolic pathways involved, searching for answers that ultimately help us to better understand life and find solutions to problems that affect us humans. One area of biochemistry that serves as a formidable example of the intertwined primary and secondary metabolic pathways are fatty acids, essential components of bacterial membranes, sources of energy and carbon but also important building blocks of several natural products. The second area to be mentioned is the metabolism of amino acids, the basic components of proteins and enzymes, which also serve as precursors to a diverse set of metabolites with many biological purposes.
This work focuses on these two areas of biochemistry, as several intermediates of their metabolism serve as building blocks for complex secondary metabolites whence many interesting and bioactive natural products are derived. The powerful and relatively novel tool of click-chemistry is employed to track azide-labeled precursors of primary and secondary metabolism in various bacterial strains to observe biochemistry at work and adds to the knowledge gained through other methods. The methods presented in this work serve the observation of fatty acid biosynthesis, degradation, modification and transport through direct ligation of azido fatty acids with cyclooctynes on one hand, leading to a revision of fatty acid transport in general. On the other hand a cleavable azide-reactive resin is devised to generally track the fate of azidated compounds through the myriads of metabolic pathways offered by entomopathogenic bacteria possessing a rich secondary metabolism. The resulting findings led to the identification of several antimicrobial peptides, amides and other compounds of which many had remained so far undetected in the strains that underwent investigation, underlining the worth of this method for future metabolomic research and beyond.
Natural products (NPs) have been a rich source for pharmaceutically used anti-infectives and other drugs. However, the application of anti-infectives inevitably causes the development of resistant and multiresistant pathogens, which have to be treated with novel anti-infectives. The industrial research for novel anti-infectives has been concentrating on members of the bacterial Actinomycetales for a long time. Due to several reasons, e.g. the rediscovery of already known NPs, pharmaceutical companies abandoned their NP-research and focused on drug development based on combinatorial chemistry. However, the limited structural diversity of merely synthetic compound libraries has not been a fruitful source for bioactive compounds. Hence the discovery of novel bioactive NPs as a source for anti-infectives is still of economical and humanitarian interest and will remain to be an important branch of research in the future. One strategy to circumvent the rediscovery of bioactive NPs is the analysis of yet unexplored bacterial taxa. Based on this assumption, this work aimed at the discovery of novel NPs from the entomopathogenic bacterial genera Xenorhabdus and Photorhabdus and other promising taxa, as well as the investigation of their biosynthesis. ...
Xenorhabdus and Photorhabdus bacteria are gaining more and more attention as a subject of research because of their unique yet similar life cycle with nematodes and insects. This work focused on the secondary metabolites that are produced by Xenorhabdus and Photorhabdus. With the help of modern HPLC-MS methodologies and increasingly available bacterial genome sequences, the structures of unknown secondary metabolites could be elucidated and thus their biosynthesis pathways could be proposed, too.
The first paper reported 17 depsipeptides termed xentrivalpeptides produced by the bacterium Xenorhabdus sp. 85816. Xentrivalpeptide A could be isolated from the bacterial culture as the main component. The structure of xentrivalpeptide A was elucidated by NMR and the Marfey´s method. The remaining xentrivalpeptides were exclusively identified by feeding experiments and MS fragmentation patterns.
The second paper described the discovery and isolation of xenoamicin A from Xenorhabdus mauleonii DSM17908. Additionally, other xenoamicin derivatives from Xenorhabdus doucetiae DSM17909 were analyzed by means of feeding experiments and MS fragmentation patterns. The xenoamicin biosynthesis gene cluster was identified in Xenorhabdus doucetiae DSM17909.
The manuscript for publication focused on the biosynthesis of anthraquinones in Photorhabdus luminescens. The Type II polyketide synthase for the biosynthesis of anthraquinone derivatives was discovered in P. luminescens in a previous publication by the Bode group,1 in which a partial reaction mechanism for the biosynthesis has been proposed. The manuscript reported in this thesis however elucidated the biosynthetic mechanisms in a greater detail as compared to the previous publication. Particularly, the biosynthetic mechanism was deciphered through heterologous expression of anthraquinone biosynthesis (ant) genes in E. coli. Additionally, deactivation of the genes antG encoding a putative CoA ligase and antI encoding a putative hydrolase, was performed in P. luminescens. Selected ant genes were over-expressed in E. coli as well as the corresponding proteins purified for in vitro assays. Model compounds were chemically synthesized as possible substrates of AntI and were used for in vitro assays. Here, it was revealed that the CoA ligase AntG played an essential role in the activation of the ACP AntF. Furthermore, a chain shortening mechanism by the hydrolase AntI was identified and was further confirmed by in vitro assays using model compounds. Additionally, this chain shortening mechanism was supported by homology based structural modeling of AntI.
Xenorhabdus and Photorhabdus are bacterial genera that live in symbiosis with entomopathogenic nematodes of the genera Steinernema and Heterorhabditis, respectively. These nematodes infect insect larvae through the trachea and then enter the hemocoel. Once inside the hemocoel, the nematodes release the bacteria through their intestine. Thereafter, the bacteria become active and kill the larvae within 48 h. During this process, the immune system of the insect host is compromised by molecules produced and secreted by the bacteria. This illustrates that the bacteria possess not only a large arsenal of biological weaponry such as antibiotics and fungicides but also lipases, proteases, etc. Therefore, they are not only able to kill the insect but also protect the cadaver from other food competitors.
During the past decades, a large number of natural products have been identified from Xenorhabdus and Photorhabdus. However, the targets and functions for many of these biological molecules are still unknown. Therefore, the goal of the doctoral thesis is to elucidate the modes of action of these natural products from Xenorhabdus and Photorhabdus with the main focus on non-ribosomal peptides (NRPs). The work can be divided into two parts. Initially, it starts with the synthesis of natural compounds and various chemically modified derivatives. Besides that, a number of peptides were synthesized for other projects to either verify their structures or quantify the amount produced by the bacteria. Then, secondary analysis methods are applied and provide additional insight into the modes of action of these compounds.
During the thesis, I carried out peptide synthesis either manually or with an automatic synthesizer system from Biotage. Here, the Fmoc-protecting group strategy was preferred in most cases. Natural products, such as silathride, xenoautoxin, phenylethylamide, tryptamide, rhabdopeptide, 3-hydroxyoctanoic acid, and PAX, were produced during this process. Furthermore, new peptide derivatives derived from synthetic NRPS approaches using the XU concept or SYNZIP were generated as standards.
Most of these natural compounds were experimentally verified by MIC tests (broth microdilution, plate diffusion) to be biologically active. For example, silathride, phenylethylamide, and tryptamide showed quorum quenching effects when tested against Chromobacterium violaceum. Initial results from collaborators (PD Dr. Nadja Hellmann/Mainz) showed that tryptamide and phenylethylamide interact with membrane or membrane proteins.
(R)-3-hydroxyoctanoic acid was synthesized to verify the molecule structure of phototemtide A, a cyclic lipopeptide with antiprotozoal activity. The rhabdopeptides are another class, which showed remarkable antiprotozoal effects. However, their mode of action was unknown. These compounds are relatively short peptide sequences, which contain hydrophobic residues, such as valine, leucine, or phenylalanine. Moreover, they possess N methylation, resulting in a rod-shaped highly hydrophobic structure. In this work, I synthesized eight new derivatives of rhabdopeptides for photo-affinity labeling (PAL). These molecules should react covalently under UV-light irradiation with the biological target of the peptides. In addition, these derivatives can be enriched in a pull-down assay using click chemistry. Afterward, analytic methods such as mass detection (proteome analysis) can be applied to elucidate the protein targets.
The PAX peptides derivatives are well-known to have anti-microbial activities and believed to be secreted into the environment by the producing bacteria. However, I found that the majority of these peptides are located in the cell pellet fraction and not in the supernatant. This has been shown through quantification using HPLC MS. New PAX derivatives were synthesized, which carry a moiety suitable for covalent modification using click-chemistry, therefore being functionalizable with a fluorescence dye. In collaboration with Dr. Christoph Spahn (Prof. Dr. Mike Heilemann group), we used confocal, as well as super-resolution microscopy, in particular, single-molecule localization microscopy (SMLM) to investigate the spatial distribution of clickable PAX molecules and revealed that they localize at the bacterial membrane. Furthermore, bioactivity assays revealed that the promotor exchanged X. doucetiae PAX mutants, which do not produce PAX molecules without chemical induction (hereby termed as pax-), were more susceptible to several insect AMPs tested. Based on these findings, a new dual mechanism of action for PAX was proposed. Besides the previously shown antimicrobial activity, these molecules with a positive net charge of +5 (pH = 7) would bind to the negatively charged bacterial surface. Hereby, the surface charge (typically negative) would be inversed resulting in a protective effect for Xenorhabdus against other positively charged AMPs. Furthermore, PAX was investigated as AMP against E. coli to study its antimicrobial mechanism of action. Here, the results show that PAX can disrupt the E. coli membrane at higher concentrations (> 30 µg/ml), enter the cytosol, and lead to reorganization of subcellular structures, such as the nucleoid during this process.
Another aspect of secondary analysis is the application of proteomic analysis. Therefore, I induced X. nematophila, X. szentirmaii, and P. luminescens with insect lysate. These samples were analyzed using HPLC-MS/MS (Q Exactive) together with a database approach (Maxquant/Andromeda). The results showed that in all strains the lipid degradation and the glyoxylate pathway were induced. This is in line with the given insect lysate diet, which mostly contained lipids. Moreover, several interesting unknown peptides and proteins were also upregulated and might get into the focus of future research.