Refine
Document Type
- Bachelor Thesis (3)
- Doctoral Thesis (2)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Autorensysteme (1)
- DDC (1)
- Dewey Decimal Classification (1)
- Machine Learning (1)
- Medienproduktion (1)
- OpenStreetMap (1)
- Public Transport (1)
- Simulation (1)
- TTLab (1)
- Technologie Enhanced Learning (1)
Institute
- Informatik und Mathematik (3)
- Informatik (2)
Das Ziel dieser Arbeit ist die realitätsgetreue Entwicklung eines interaktiven 3D-Stadtmodells, welches auf den ÖPNV zugeschnitten ist. Dabei soll das Programm anhand von Benutzereingaben und mit Hilfe einer Datenquelle, automatisch eine dreidimensionale Visualisierung der Gebäude erzeugen und den lokalen ÖPNV mitintegrieren. Als Beispiel der Ausarbeitung diente das ÖPNV-Netz der Stadt Frankfurt. Hierbei wurde auf die Problematik der Erhebung von Geoinformationen und der Verarbeitung von solchen komplexen Daten eingegangen. Es wurde ermittelt, welche Nutzergruppen einen Mehrwert durch eine derartige 3D Visualisierung haben und welche neuen Erweiterungs- und Nutzungspotenziale das Modell bietet.
Dem Leser soll insbesondere ein Einblick in die Generierung von interaktiven 3D-Modellen aus reinen Rohdaten verschafft werden. Dazu wurde als Entwicklungsumgebung die Spiele-Engine Unity eingesetzt, welche sich als sehr fähiges und modernes Entwicklungswerkzeug bei der Erstellung von funktionalen 3D-Visualisierungen herausgestellt hat. Als Datenquelle wurde das OpenStreetMap Projekt benutzt und im Rahmen dieser Arbeit behandelt. Anschließend wurde zur Evaluation, das Modell verschiedenen Nutzern bereitgestellt und anhand eines Fragebogens evaluiert.
Zielsetzung dieser Arbeit ist es Nutzern, ohne Programmierkenntnisse oder Fachwissen im Bereich der Informatik, Zugang zu der automatischen Verarbeitung von Texten zu gewährleisten. Speziell soll es um Geotagging, also das Referenzieren verschiedener Objekte auf einer Karte, gehen. Als Basis soll ein ontologisches Modell dienen, mit Hilfe dessen Struktur die Objekte in Klassen eingeteilt werden. Zur Verarbeitung des Textes werden NaturalLanguage Processing Werkzeuge verwendet. Natural Language Processing beschreibt Methoden zur maschinellen Verarbeitung natürlicher Sprache. Sie ermöglichen es, die in Texten enthaltenen unstrukturierten Informationen in eine strukturierte Form zu bringen. Die so erhaltenen Informationen können für weitere maschinelle Verarbeitungsschritte verwendet oder einem Nutzer direkt bereitgestellt werden. Sollten sie direkt bereitgestellt werden, ist es ausschlaggebend, sie in einer Form zu präsentieren, die auch ohne Fachkenntnisse oder Vorwissen verständlich ist. Im Bereich der Geographie wird oft der Ansatz befolgt, die erhaltenen Informationen auf Basis verschiedener Karten, also visuell zu verarbeiten. Visualisierungen dienen hierbei der Veranschaulichung von Informationen. Durch sie werden die relevanten Aspekte dem Nutzer verdeutlicht und so die Komplexität der Informationen reduziert. Es bietet sich also an, die durch das Natural Language Processing gesammelten Informationen in Form einer Visualisierung für den Nutzer zugänglich zu machen. Im Rahmen dieser Arbeit über Geotagging und Ontologie-basierte Visualisierung für das TextImaging wird ein Tool entwickelt, das diese Brücke schlägt. Die Texte werden auf einer Karte visualisiert und bieten so eine Möglichkeit, beschriebene geographische Zusammenhänge auf einen Blick zu erfassen. Durch die Kombination der Visualisierung auf einer Karte und der Markierung der entsprechenden Entitäten im Text kann eine zuverlässige und nutzerfreundliche Visualisierung erzeugt werden. Bei einer abschließenden Evaluation hat sich gezeigt das mit dem Tool der Zeitaufwand und die Anzahl der fehlerhaften Annotationen reduziert werden konnte.Die von dem Tool gebotenen Funktionen machen dieses auch für weiterführende Arbeiten interessant. Eine Möglichkeit ist die entwickelten Annotatoren zu verwenden um ein ontology matching auf Basis bestimmter Texte auszuführen. Im Bereich der Visualisierung bieten sich Projekte wie die Visualisierung historischer Texte auf Basis automatisch ermittelter, zeitgerechter Karten an.
Diese Bachelorarbeit befasst sich mit der Themenklassifikation von unstrukturiertem Text. Aufgrund der stetig steigenden Menge von textbasierten Daten werden automatisierte Klassifikationsmethoden in vielen Disziplinen benötigt und erforscht. Aufbauend auf dem text2ddc-Klassifikator, der am Text Technology Lab der Goethe-Universität Frankfurt am Main entwickelt wurde, werden die Auswirkungen der Vergrößerung des Trainingskorpus mittels unterschiedlicher Methoden untersucht. text2ddc nutzt die Dewey Decimal Classification (DDC) als Zielklassifikation und wird trainiert auf Artikeln der Wikipedia. Nach einer Einführung, in der Grundlagen beschrieben werden, wird das Klassifikationsmodell von text2ddc vorgestellt, sowie die Probleme und daraus resultierenden Aufgaben betrachtet. Danach wird die Aktualisierung der bisherigen Daten beschrieben, gefolgt von der Vorstellung der verschiedenen Methoden, das Trainingskorpus zu erweitern. Mit insgesamt elf Sprachen wird experimentiert. Die Evaluation zeigt abschließend die Verbesserungen der Qualität der Klassifikation mit text2ddc auf, diskutiert die problematischen Fälle und gibt Anregungen für weitere zukünftige Arbeiten.
Unter Web-based Trainings (WBTs) versteht man multimediale, interaktive und thematisch abgeschlossene Lerneinheiten in einem Browser. Seit der Entstehung des Internets in den 1990er Jahren sind diese ein wichtiger und etablierter Baustein bei der Konzeption und Entwicklung von eLearning-Szenarien. Diese Lerneinheiten werden üblicherweise von Lehrenden mit entsprechenden Autorensystemen erstellt. In selteneren Fällen handelt es sich bei deren Umsetzungen um individuell programmierte Einzellösungen. Betrachtet man WBTs aus der Sicht der Lernenden, dann lässt sich feststellen, dass zunehmend auch nicht explizit als Lerneinheiten erstellte Inhalte genutzt werden, die jedoch genau den Bedürfnissen des jeweiligen Lernenden entsprechen (im Rahmen des informellen und selbstgesteuerten Lernens). Zum einen liegt das an der zunehmenden Verfügbarkeit und Vielfalt von „alternativen Lerninhalten“ im Internet generell (freie Lizenzen und innovative Autorentools). Zum anderen aber auch an der Möglichkeit, diese Inhalte von überall aus und zu jeder Zeit einfach finden zu können (mobiles Internet, Suchmaschinen und Sprachassistenten) bzw. eingeordnet und empfohlen zu bekommen (Empfehlungssysteme und soziale Medien).
Aus dieser Veränderung heraus ergibt sich im Rahmen dieser Dissertation die zentrale Fragestellung, ob das Konzept eines dedizierten WBT-Autorensystems den neuen Anforderungen von frei verfügbaren, interaktiven Lerninhalten (Khan Academy, YouTube und Wikipedia) und einer Vielzahl ständig wachsender und kostenfreier Autorentools für beliebige Web-Inhalte (H5P, PowToon oder Pageflow) überhaupt noch gerecht wird und wo in diesem Fall genau die Alleinstellungsmerkmale eines WBTs liegen?
Zur Beantwortung dieser Frage beschäftigt sich die Arbeit grundlegend mit dem Begriff „Web-based Training“, den über die Zeit geänderten Rahmenbedingungen und den daraus resultierenden Implikationen für die Entwicklung von WBT-Autorensystemen. Mittels des gewählten Design-based Research (DBR)-Ansatzes konnte durch kontinuierliche Zyklen von Gestaltung, Durchführung, Analyse und Re-Design am Beispiel mehrerer eLearning-Projekte der Begriff WBT neudefininiert bzw. reinterpretiert werden, so dass sich der Fokus der Definition auf das konzentriert, was WBTs im Vergleich zu anderen Inhalten und Funktionen im Internet im Kern unterscheidet: dem Lehr-/Lernaspekt (nachfolgend Web-based Training 2.0 (WBT 2.0)).
Basierend auf dieser Neudefinition konnten vier Kernfunktionalitäten ausgearbeitet werden, die die zuvor genannten Herausforderungen adressieren und in Form eines Design Frameworks detailliert beschreiben. Untersucht und entwickelt wurden die unterschiedlichen Aspekte und Funktionen der WBTs 2.0 anhand der iterativen „Meso-Zyklen“ des DBR-Ansatzes, wobei jedes der darin durchgeführten Projekte auch eigene Ergebnisse mit sich bringt, welche jeweils unter didaktischen und vor allem aber technischen Gesichtspunkten erörtert wurden. Die dadurch gewonnenen Erkenntnisse flossen jeweils in den Entwicklungsprozess der LernBar ein („Makro-Zyklus“), ein im Rahmen dieser Arbeit und von studiumdigitale, der zentralen eLearning-Einrichtung der Goethe-Universität, entwickeltes WBT-Autorensystem. Dabei wurden die Entwicklungen kontinuierlich unter Einbezug von Nutzerfeedbacks (jährliche Anwendertreffen, Schulungen, Befragungen, Support) überprüft und weiterentwickelt.
Abschließend endet der letzte Entwicklungszyklus des DBR-Ansatzes mit der Konzeption und Umsetzung von drei WBT 2.0-Systemkomponenten, wodurch sich flexibel beliebige Web-Inhalte mit entsprechenden WBT 2.0-Funktionalitäten erweitern lassen, um auch im Kontext von offenen Lehr-/Lernprozessen durchgeführte Aktivitäten transparent, nachvollziehbar und somit überprüfbar zu machen (Constructive Alignment).
Somit bietet diese Forschungsarbeit einen interdisziplinären, nutzerzentrierten und in der Praxis erprobten Ansatz für die Umsetzung und den Einsatz von WBTs im Kontext offener Lehr-/Lernprozesse. Dabei verschiebt sich der bisherige Fokus von der reinen Medienproduktion hin zu einem ganzheitlichen Ansatz, bei dem der Lehr-/Lernaspekt im Vordergrund steht (Lernbedarf erkennen, decken und überprüfen). Entscheidend ist dabei, dass zum Decken eines Lernbedarfs sämtliche zur Verfügung stehenden Ressourcen des Internets genutzt werden können, wobei WBTs 2.0 dazu lediglich den didaktischen Prozess definieren und diesen für die Lehrenden und Lernende transparent und zugänglich machen.
WBTs 2.0 profitieren dadurch zukünftig von der zunehmenden Vielfalt und Verfügbarkeit von Inhalten und Funktionen im Internet und ermöglichen es, den Entwicklern von WBT 2.0-Autorensystemen sich auf das Wesentliche zu konzentrieren: den Lehr-/Lernprozess.
With the rise of digitalization and ubiquity of media use, both opportunities and challenges emerge for academic learning. One prevalent challenge is media multitasking, which can become distracting and hinder learning success. This thesis investigates two facets of this issue: the enhancement of data tracking, and the exploration of digital interventions that support self-control.
The first paper focuses on digital tracking of media use, as a comprehensive understanding of digital distractions requires careful data collection to avoid misinterpretations. The paper presents a tracking system where media use is linked to learning activities. An annotation dashboard enabled the enrichment of the log data with self-reports. The efficacy of this system was evaluated in a 14-day online course taken by 177 students, with results confirming the initial assumptions about media tracking.
The second paper tackles the recognition of whether a text was thoroughly read, an issue brought on by the tendency of students to skip lengthy and demanding texts. A method utilizing scroll data and time series classification algorithms is presented and tested, showing promising results for early recognition and intervention.
The third paper presents the results of a systematic literature review on the effectiveness of digital self-control tools in academic learning. The paper identifies gaps in existing research and outlines a roadmap for further research on self-control tools.
The fourth paper shares findings from a survey of 273 students, exploring the practical use and perceived helpfulness of DSCTs. The study highlights the challenge of balancing between too restrictive and too lenient DSCTs, particularly for platforms offering both learning content and entertainment. The results also show a special role of media use that is highly habitual.
The fifth paper of this work investigates facets of app-based habit building. In a study over 27 days, 106 school-aged children used the specially developed PROMPT-app. The children carried out one of three digital activities each day, each of which was supposed to promote a deeper or more superficial processing of plans. Significant differences regarding the processing of plans emerged between the three activities, and the results suggest that a child-friendly planning application needs to be personalized to be effective.
Overall, this work offers a comprehensive insight into the complexity and potentials of dealing with distracting media usage and shows ways for future research and interventions in this fascinating and ever more important field.