Refine
Document Type
- Doctoral Thesis (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
- Physik (3)
The topic of this thesis is the theoretical description of the hadron gas stages in heavy-ion collisions. The overall addressed question hereby is: How does the hadronic medium evolve i.e. what are the relevant microscopic reaction mechanisms and the properties of the involved degrees of freedom? The main goal is to address this question specifically for hadronic multi-particle interactions. For this goal, the hadronic transport approach SMASH is extended with stochastic rates, which allow to include detailed balance fulfilling multi-particle reactions in the approach. Three types of reactions are newly-accounted for: 3-to-1, 3-to-2 and 5-to-2 reactions. After extensive verifications of the stochastic rates approach, they are used to study the effect of multi-particle interactions, particularly in afterburner calculations.
These studies follow complementary results for the dilepton and strangeness production with only binary reactions, which show that hadronic transport approaches are capable of describing observables when employed for the entire evolution of low-energy heavy-ion collisions. This is illustrated by the agreement of dilepton and strangeness production for smaller systems with SMASH calculations. It is, in particular, possible to match the measured strangeness production of phi and Xi hadrons via additional heavy nucleon resonance decay channels. For larger systems or higher energies, hadronic transport cascade calculations with vacuum resonance properties can point to medium effects. This is demonstrated extensively for the dilepton emission in comparisons to the full set of HADES dielectron data. The dilepton invariant mass spectra are sensitive to a medium modification of the vector meson spectral function for large collision systems already at low beam energies. The sensitivity to medium modifications is mapped out in detail by comparisons to a coarse-graining approach, which employs medium-modified spectral functions and is based on the same evolution.
The theoretical foundation of stochastic rates are collision probabilities derived from the Boltzmann equation's collision term with the assumption of a constant matrix element. This derivation is presented in a comprehensive and pedagogical fashion. The derived collision probabilities are employed for a stochastic collision criterion and various detailed-balance fulfilling multi-particle reactions: the mesonic Dalitz decay back-reaction (3-to-1), the deuteron catalysis (3-to-2) and the proton-antiproton annihilation back-reaction (5-to-2). The introduced stochastic rates approach is extensively verified by studies of the numerical stability and comparisons to previous results and analytic expectations. The stochastic rates results agree perfectly with the respective analytic results.
Physically, multi-particle reactions are demonstrated to be significant for different observables, most notably the yield of the partaking particles, even in the late dilute stage of heavy-ion reactions. They lead to a faster equilibration of the system than equivalent binary multi-step treatments. The difference in equilibration consequently influences the yield in afterburner calculations. Interestingly, the interpretation of results is not dependent on employing multi-particle or multi-step treatments, which a posteriori validates the latter.
As the first test case of multi-particle reactions in heavy-ion reactions, the mesonic 3-to-1 Dalitz decay is found to be dominated by the omega Dalitz decay back-reaction. While the effect on the medium is found to be negligible overall, the regeneration is found to be sizable: up to a quarter of Dalitz decays are regenerated.
Non-equilibrium rescattering effects are shown to be relevant for late collision stages for two particle species: deuteron and protons. In both cases, the relevant rescatterings involve multiple particles.
The deuteron pion and nucleon catalysis reactions equilibrate quickly in the afterburner stage at intermediate energies. The constant formation and destruction keeps the yield constant and microscopically explains the "snowballs in hell"-paradox. The yield is also generated with no d present at early times, which explains why coalescence models can also match the multiplicity.
New is the study of the 5-body back-reaction of proton-antiproton annihilations. This work marks the first realization of microscopic 5-body reactions in a transport approach to fulfill detailed balance for such reactions. A sizable regeneration due to the back-reaction of up to half of the proton-antiproton pairs lost due to annihilations is found. Consequently, both annihilation and regeneration in the late non-equilibrium stage are shown to have a significant effect on the p yield.
This thesis provides a detailed derivation of dissipative spin hydrodynamics from quantum field theory for systems composed of spin-0, spin-1/2, or spin-1 particles.
The Wigner function formalism is introduced for quantum fields in the respective representations of the Poincaré group, and the conserved currents, i.e., the energy-momentum tensor and the total angular momentum tensor, in various so-called pseudogauges are derived. An expansion around the semiclassical limit in powers of the Planck constant is performed.
Subsequently, kinetic equations are obtained for binary elastic scattering, using both the de Groot-van Leeuwen-van Weert and Kadanoff-Baym method, with the latter retaining the effect of quantum statistics. The resulting collision term features both local and nonlocal contributions, with the latter providing a relaxation mechanism for the spin degrees of freedom of the quasiparticles. The local-equilibrium distribution function is derived from the requirement that the local part of the collision term vanishes.
From quantum kinetic theory, dissipative spin hydrodynamics is then constructed via the method of moments, extended to particles with spin. The system of moment equations is closed via the Inverse-Reynolds Dominance (IReD) approach, resulting in a set of equations of motion describing the evolution of both ideal and dissipative degrees of freedom. The application to polarization phenomena relevant to heavy-ion collisions is discussed.
This thesis aims to investigate the properties of hadronic matter by analyzing fluctuations of conserved charges. A transport model (SMASH) is used for these studies to achieve this. The first part of this thesis focuses on examining transport coefficients, specifically the diffusion coefficients of conserved charges and the shear viscosity. The second part investigates equal-time correlations of particle numbers in the form of cumulants. The last chapter studies different aspects of the isobar collision systems Ru and Zr.
As a first step, the hadronic medium and interactions between its constituents are introduced, and simultaneously, their impact on transport coefficients is investigated. The methodology is verified by comparing the results of SMASH with Chapman-Enskog calculations, followed by examining 3-to-1 multi-particle reactions, revealing their influence on shear viscosity and electrical diffusion. The analysis of the full hadron gas considers angle-dependent cross-sections and additional elastic cross-sections via the AQM description, showing significant impacts on transport coefficients. The dependency on the number of degrees of freedom is explored, with noticeable effects on diffusion coefficients but a smaller influence on the shear viscosity. At non-zero baryon chemical potential, the diffusion coefficients are strongly influenced, while the shear viscosity remains unaffected. Overall, the study underscores the importance of individual cross-sections and the modeling of interactions on transport coefficients.
The following chapter explores fluctuations of conserved charges, crucial for understanding phase transitions in heavy-ion collision from the quark-gluon plasma to the hadronic phase. Using SMASH, the impact of global charge conservation on particle number cumulants in subvolumes of boxes simulating infinite matter is studied. Comparisons with simpler systems highlights the influence of hadronic interactions on cumulants, especially via charge annihilation processes and the results from SMASH shows agreement with analytical calculations. Calculations at finite baryon chemical potential reveals a transition from a Poisson to Skellam distribution within the net proton cumulants. It is shown that an unfolding procedure to obtain the net baryon fluctuations from the net proton ones deviates from the actual net baryon result, particularly in larger volumes. Finally, net proton correlations at vanishing baryon chemical potential align with ALICE measurements and the net proton cumulants are unaffected by deuteron formation.
In the next step, the goal is to investigate critical fluctuations in the hadronic medium. Therefore, the hadronic system is initialized with critical equilibrium fluctuations by coupling the hadron resonance gas with the 3D Ising model. The single-particle probability distributions are derived from the principle of maximum entropy. Evolving these distributions in SMASH, their development in an expanding sphere adjusted to experimental conditions can be analyzed. It reveals resonance decay and formations as the primary source that affects the particle cumulants. Because of isospin randomization processes, critical fluctuations are better preserved in net nucleon numbers. However, for the strongest coupling investigated in this work, correlations of the critical field are still present in the final state of the evolution in the net proton fluctuations. Examining cumulant dependence on rapidity windows shows a non-monotonic trend.
In the third part, collisions involving the isobars Ru and Zr are studied at a center-of-mass energy of 200 GeV. Initially, SMASH is used to study the initial conditions to hydrodynamical simulations, emphasizing the importance of the nuclear structure of isobars on the geometry of the collision area. It is found that the deformation parameters notably influence the initial state. Correlations between nucleon-nucleon pairs on eccentricity fluctuations yield no significant effect. Subsequently, the hydrodynamic model vHLLE evolves the previously explored initial conditions and for the transition between the hydrodynamic and kinetic descriptions, the Cooper-Frye formula is used. Usage of the canonical ensemble ensures the exact conservation of the conserved charges B, Q, and S. The neutron skin effect, which changes the charge distribution within Ru nuclei, is additionally considered. Fluctuations are assessed, revealing suppression in large rapidity windows due to global charge conservation. The hadronic phase modifies fluctuations of net pions, net kaons, and net protons via annihilation processes, yet fluctuations remain unaffected by the neutron skin effect.