Refine
Year of publication
Document Type
- Doctoral Thesis (7)
- Bachelor Thesis (3)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- ALICE (1)
- ALICE, Teilchendetektor (1)
- Blei (1)
- Dielectron (1)
- Hadronenjet (1)
- Heavy-Ion Collision (1)
- Hochenergiephysik (1)
- Proton (1)
- QGP (1)
- Quark-Gluon-Plasma (1)
Institute
- Physik (10)
In der vorliegenden Arbeit werden Stabilitätstests an einer Vieldrahtproportionalkammer nach ALICE-Geometrie vorgestellt. Wegen elektrischer Instabilitäten, das heißt dem Abschalten der Hochspannungsversorgung einzelner Kammern aufgrund von Entladungen an der Ausleseebene, wurde die ALICE-TPC bisher mit zwei unterschiedlichen Gasmischungen betrieben. Es wurden die Gasmischungen Ne-CO2 (90-10) und Ne-CO2-N2 (90-10-5) verwendet.
In dieser Arbeit soll nun mit systematischen Stabilitätstests mit einer α- und einer γ-Quelle am Testaufbau am IKF untersucht werden, ob eine Beimischung von Stickstoff zur Gasmischung Ne-CO2 wirklich positive Auswirkungen auf die elektrische Stabilität der Vieldrahtproportionalkammern der ALICE-TPC hat. Messungen mit der Gasmischung Ar-CO2 (90-10) dienen dabei als Referenzmessungen.
Zunächst wurden vorbereitende Messungen zum bessseren Verständnis des Einflusses der Ausleseelektronik auf die Padsignale am Testaufbau durchgeführt. Die Untersuchung der von einem Pulser induzierten Signale zeigt, dass keine Korrektur der Nullverschiebung nötig ist. Auÿerdem konnten durch diese Messung die Verstärkungsfaktoren des verwendeten Hauptverstärkers ermittelt werden. Ein weiterer wichtiger Faktor für Stabilitätstests ist die Genauigkeit des Mischungsverhältnisses des Gases. Um eine hohe Genauigkeit zu gewährleisten, wurde der Gasfliss der verschiedenen Kanäle des zur Herstellung der Gasmischung genutzten Gasmischers überprüft und so die Bereiche für den Gasfluss gefunden, in denen sich das Mischungsverhältnis nicht ändert.
Eine gute Auflösung kann mit Vieldrahtproportionalkammern erreicht werden, wenn die Kammern auch bei einem möglichst groÿen Gain noch stabil betrieben werden können. Um den Gain aus Anodestrommessungen bestimmen zu können, wurden die Primärströme für die α- und die γ-Quelle ermittelt.
Frühere Messungen mit einer γ-Quelle, aufgrund derer Stickstoff als Beimischung in den Fokus rückte, ließen vermuten, dass sich durch die Beimischung von Stickstoff die Stabilität der Auslesekammern verbessern lassen würde. Die durchgeführten Messungen mit der γ-Quellen sollten diese Aussage nun überprüfen. Sie können die früheren Ergebnisse jedoch nicht bestätigen, sondern zeigen, dass die Gasmischung Ne-CO2-N2 (90-10-5) im Gegensatz zur Gasmischung Ne-CO2 (90-10) bei Bestrahlung mit der γ-Quelle zu instabileren Bedingungen für die Auslesekammer führt.
Zum Erzeugen der Anodensignale bei Stabilitätstests wurden erstmals geladene Teilchen aus einer α-Quelle verwendet. Im Gegensatz zur Messung mit der γ-Quelle kann die Auslesekammer bei der Beimischung von Stickstoff zu Ne-CO2 bis zu einem um 25% höheren Gain stabil betrieben werden als bei der Gasmischung Ne-CO2.
Aufgrund des je nach verwendeter Quelle unterschiedlichen Effekts auf die Stabilität der Auslesekammer lässt sich nicht mit absoluter Sicherheit sagen, ob eine Beimischung von Stickstoff die gewünschten Auswirkungen hat. Allerdings werden die Spuren in der ALICE-TPC durch geladene Teilchen hervorgerufen, sodass die Messungen mit der α-Quelle den experimentellen Bedingungen bei ALICE näher kommen als die Messungen mit der γ-Quelle und deshalb die Gasmischung Ne-CO2-N2 (90-10-5) zu bevorzugen ist.
The elliptic flow of heavy-flavour decay electrons is measured at midrapidity |eta| < 0.8 in three centrality classes (0-10%, 10-20% and 20-40%) of Pb-Pb collisions at sqrt(sNN) = 2.76TeV with ALICE at LHC. The collective motion of the particles inside the medium which is created in the heavy-ion collisions can be analyzed by a Fourier decomposition of the azimuthal anisotropic particle distribution with respect to the event plane. Elliptic flow is the component of the collective motion characterized by the second harmonic moment of this decomposition. It is a direct consequence of the initial geometry of the collision which is translated to a particle number anisotropy due to the strong interactions inside the medium. The amount of elliptic flow of low-momentum heavy quarks is related to their thermalization with the medium, while high-momentum heavy quarks provide a way to assess the path-length dependence of the energy loss induced by the interaction with the medium.
The heavy-quark elliptic flow is measured using a three-step procedure.
First the v2 coefficient of the inclusive electrons is measured using the event-plane and scalar-product methods. The electron background from light flavours and direct photons is then simulated, calculating the decay kinematics of the electron sources which are initialised by their respective measured spectra. The final result of this work emerges by subtracting the background from the inclusive measurement. A significant elliptic flow is observed after this subtraction. Its value is decreasing from low to intermediate pT and from semi-central to central collisions.
The results are described by model calculations with significant elastic interactions of the heavy quarks with the expanding strongly-interacting medium.
Der Urknall vor ungefähr 13.8 Milliarden Jahren markiert die Entstehung des Universums. Die gesamte Energie und Materie war in einem Punkt konzentriert und expandiert seitdem kontinuierlich. Wenige Sekundenbruchteile nach dem Urknall war die Temperatur und Dichte dieser Materie extrem hoch und die erschaffenen Elementarteilchen, speziell Quarks und Gluonen, durchliefen einen Zustand den man als Quark-Gluon-Plasma (QGP) bezeichnet und innerhalb dessen die starke Wechselwirkung dominiert. Innerhalb dieses Plasmas können Quarks und Gluonen, welche sonst in Hadronen gebunden sind, sich frei bewegen. Die direkte Beobachtung des frühzeitlichen QGPs ist mit heutigen Mitteln nicht möglich. Allerdings ist es möglich die Dynamik und Kinematik innerhalb eines künstlich erzeugten QGPs zu erforschen und damit Rückschlüsse auf die Vorgänge während des Urknalls zu machen.
Um künstliche QGPs unter kontrollierten Bedingungen zu erzeugen, werden heutzutage ultrarelativistische Schwerionen zur Kollision gebracht. Der stärkste je gebaute Schwerionenbeschleuniger LHC befindet sich am Kernforschungzentrum CERN in der Nähe von Genf. Das ALICE Experiment, als eines der vier großen Experimente am LHC, wurde speziell gebaut um das QGP näher zu untersuchen. Vollständig ionisierte Bleikerne werden mit nahezu Lichtgeschwindigkeit in den Experimenten zur Kollision gebracht. Die deponierte Energie lässt die Temperatur der Quarks und Gluonen innerhalb der kollidierenden Nukleonen ansteigen bis eine kritische Temperatur überschritten wird und ein Phasenübergang in das QGP erfolgt. Im Laufe der Kollision kühlt das Medium ab und gelangt unter die kritische Temperatur. Nun werden aus den ehemals freien Quarks Hadronen gebildet. Diese Hadronen oder Zerfallsprodukte dieser Hadronen können daraufhin in die Detektoren des Experiments fliegen und werden dann dort gemessen.
Es gibt mehrere mögliche Observablen des QGP, die messbar mit dem ALICE Experiment sind. Die Observablen, die in dieser Arbeit detailliert untersucht werden, sind die invariante Masse und der Paartransversalimpuls eines Dielektrons. Ein Dielektron besteht aus einem Elektron und einem Positron, welche miteinander korreliert sind. Dielektronen sind ideale Sonden zur Vermessung des QGPs. Sie werden durch verschiedene Prozesse während allen Kollisionsphasen produziert, wie beispielsweise bei den initialen, harten Stößen der kollidierenden Nukleonen oder durch den elektromagnetischen Zerfall verschiedener Hadronen wie π0 und J/ψ. Zusätzlich strahlt das QGP Dielektronen abhängig von seiner Temperatur ab. Theoretisch erlaubt dies die direkte Temperaturmessung des QGPs. Ein weiterer Vorteil der Dielektronenmessung gegenüber der Messung von Hadronen liegt darin, dass Elektronen und Positronen keine Farbladungen tragen und somit auch nicht mit der dominierenden starken Wechselwirkung innerhalb des QGPs interagieren und somit unbeeinflusst Informationen über seine Dynamik liefern können.
In dieser vorliegenden Arbeit werden Dielektronenspektren als Funktion der invarianten Masse und des Paartransversalimpulses in Blei-Blei-Kollisionen mit einer Schwerpunktsenergie von √sNN = 5.02 TeV gemessen. Das erste Mal in Schwerionenkollisionen konnte an einem der großen LHC Experimente der minimale Transversalimpuls der gemessenen Elektronen und Positronen auf peT > 0.2 GeV/c minimiert werden. Dies gibt im Vergleich zu der publizierten Messung mit peT > 0.4 GeV/c die Möglichkeit auch sogenannte weiche Prozesse zu messen, erhöht aber auch den Komplexit ätsgrad der Messung durch massiv gesteigerten Untergrund. Zusätzlich ist die Messung zentralitäsabhängig durchgeführt. Zentralität ist ein Maß für den Abstand der beiden Bleikerne zum Zeitpunkt der Kollision. Je zentraler eine Kollision, desto größer ist die deponierte Energie und desto größer und heißer ist das erzeugte QGP und die daraus resultierenden Effekte.
Die gemessenen Dielektronenverteilungen werden mit dem erwarteten Beiträgen aus hadronischen Zerfällen verglichen. Die Messung ergibt, dass der Beitrag aus semileptonischen Zerfällen von Charmquarks gemessen im Vakuum, welcher mit der Anzahl der binären Nukleon-Nukleon-Kollisionen in Blei-Blei-Ereignissen hochskaliert ist, nicht das Dielektronenspektrum beschreibt. Eine Modifizierung des Beitrag gemäß des unabhängig gemessenen nuklearen Modifikationsfaktors für einzelne Elektronen aus Charm- und Beautyquarks verbessert die Beschreibung des Dielektronenspektrums. Zusätzlich wurde der Beitrag virtueller direkter Photonen abgeschätzt. Die gemessenen Werte sind vergleichbar mit vorangegangenen Messungen bei einer niedrigeren Schwerpunktsenergie. Ebenso ist es möglich in periphären Kollisionen einen Beitrag durch eine Quelle zu vermessen, die Dielektronen bei niedrigem Transversalimpuls pT,ee < 0.15 GeV/c aussendet.
The production cross section and the transverse momentum distribution of charged particles is measured in pp collisions at √s = 2.76 TeV, 5.02 TeV, 7 TeV and 13 TeV, as well as for Pb-Pb collision at √s_NN = 5.02 TeV and Xe-Xe at √s_NN = 5.44 TeV in ALICE at the LHC. The measurement is performed in the transverse momentum region of 0.15 < p_T < 50 GeV/c and in the pseudorapidity range of |η| < 0.8. The precision of the measurement has been substantially enhanced as a result of the improved corrections, by taking into account a more realistic particle composition in the MC simulations. As a result, the systematic uncertainties have been reduced by more than a factor two in all systems and energies.
The average transverse momentum <p_T> results show a faster-than-linear increase with the center-of-mass energy and follow a similar trend with respect to previous measurements. The analysis of the p_T spectra in multiplicity intervals show a weak center-of-mass energy dependence when they are compared to their respective inelastic (INEL) pp measurement. The average multiplicity as a function of the collision energy shows a quadratic trend, and the comparison with other ALICE multiplicity measurements exhibits a remarkable agreement, within uncertainties.
The transverse momentum spectra in pp collisions are compared to state-of-the-art MC simulations, EPOS LHC and PYTHIA 8 event generators; none of them is able to reproduce the distributions over the full p_T range.
The differential cross section in pp collisions is an essential observable for the study of the Quark Gluon Plasma (QGP) created in ultra-relativistic heavy-ion collisions. The absence of a medium formation in pp collisions serves as an essential baseline for studies of particle production and suppression due to parton energy-loss in the QGP. Since pp collisions at √s = 5.44 TeV were not measured by ALICE, the pp reference at this energy was constructed by using a power law interpolation between the s = 5.02 TeV and 7 TeV data. The pp results are compared to the particle production in Pb-Pb collisions at √s_NN = 5.02 TeV and Xe-Xe collisions at √s_NN = 5.44 TeV.
The nuclear modification factor R_AA for Pb-Pb and Xe-Xe collisions was calculated and a strong suppression of high-p_T particles is observed in central collisions. The R AA in different systems allows for a differential study of the parton energy loss in the QGP. The comparison of the R AA in multiplicity intervals between the two systems provide insights into the path length dependence of a parton that propagates in the medium.
Das CBM-Experiment an der Forschungseinrichtung FAIR in Darmstadt wird in Zukunft das Phasendiagramm der QCD im Bereich von niedrigen bis moderaten Temperaturen und hohen Baryondichten untersuchen und dabei mit hadronischen und elektromagnetischen Sonden eine Vielzahl an Observablen messen. Um Elektronen und Positronen von geladenen Pionen effizient zu unterscheiden werden mehrere Lagen von Übergangsstrahlungsdetektoren auf Basis von Vieldrahtproportionalkammern verwendet. Bei den hohen Reaktionsraten des CBM-Experiments von bis zu 10MHz am target sind schnelle Detektoren notwendig um die vielen Teilchen mit einer hohen zeitlichen Auflösung nachzuweisen. Aus diesem Grund werden am IKF der Goethe-Universität dünne MWPCs ohne zusätzliche Driftregion entwickelt, für die ein Eintrittsfenster aus dünner Mylarfolie mit einer kleinen Absorptionswahrscheinlichkeit der TR-Photonen in Betracht gezogen wird. Bei großen Detektoren beult sich ein dünnes Folienfenster bereits bei Druckunterschieden von einigen Mikrobar aus, was eine Variation der Gasverstärkung zur Folge hat.
Mit Garfield-Simulationen wurde die relative Änderung der Gasverstärkung in Abhängigkeit der Ausbeulung des Eintrittsfensters für Detektoren der Größe 4+4 mm, 5+5mm und 6+6mm mit den Gasgemischen Xe(80%)/CO2(20%) und Xe(90%)/CO2(10%) bestimmt. Um eine Gain-Stabilität von Δ,G = +/- 10% zu gewährleisten, beträgt die maximale Ausbeulung des Folienfensters durchschnittlich 120 μm +/- 5 μm bei der 4+4mm Kammer, 137 μm +/- 5 μm bei der 5+5mm Kammer und 154 μm +/- 6 μm bei der 6+6mm Kammer unabhängig vom Gasgemisch. Diese Ergebnisse stellen eine große Herausforderung für die Detektorentwicklung und -konstruktion dar. Eine Möglichkeit die Ausbeulung des Folienfensters zu minimieren ist ein geeigneter Aufbau, der die Folie verstärkt. Eine weitere Herangehensweise ist die Entwicklung einer Korrekturmethode, die die Gasverstärkung bzw. die gemessenen Signale abhängig von verschiedenen Drücken, Druckunterschieden und der damit verbundenen Ausbeulung des Eintrittsfensters korrigiert, wodurch die Signale reproduzierbar und vergleichbar werden.
Weiterhin wurden die Elektron-Driftzeiten für die drei Kammergeometrien simuliert um eine Aussage über die Zeitauflösung des Detektors zu machen. Die Driftzeiten unter Verwendung eines Xe(90%)/CO2(10%) Gasgemischs sind dabei grundsätzlich größer als mit Xe(80%)/CO2(20%) und führen zu Zeitauflösungen von Δt ~ 40 ns bzw. Δt ~ 30 ns. Die maximalen Driftzeiten am äußeren Rand der Detektoren sind für alle Detektorgeometrien mit beiden Gasgemischen sehr klein im Vergleich zu den erwarteten durchschnittlichen Teilchenraten. Daraus folgt, dass die Zeitauflösung der untersuchten Detektoren die Erwartungen mit Hinblick auf die Reaktionsraten des CBM-Experiments erfüllt.
Particle collisions provide insight into the structure of matter and the interaction of its constituents. Furthermore, they also allow a better understanding of the processes involved in the formation of the universe. To cover these diverse areas, it is necessary to study different observables and collision systems. A particular challenge is to find a suitable measurable observable for a theoretically meaningful variable and to develop a measurement process taking into account the experiment. The analyses of particle collisions in this thesis cover many of the challenges and objectives mentioned above. The focus of the work is the analysis of isolated photons at an energy of √s = 7 TeV. In addition, the work also includes measurements of the average transverse momentum in Pb-Pb collisions at an energy of √s = 2.76 TeV.
Apart from the collision system, the two analyses complement each other in other respects. The measurement of isolated photons represents the first measurement of this observable with ALICE and thus lays the foundation for further measurements at other collision systems and energies. The measurement of the mean transverse momentum, on the other hand, is based on an established measurement and thus allows the comparison of different collision systems. Likewise, the physical processes studied differ. With the measurement of isolated photons, hard scattering processes in the collisions can be investigated, while the average transverse momentum allows a description of the underlying event.
When measuring isolated photons, it should be noted that isolated photons are a measurable observable that cannot be assigned to an explicit physical process. The isolation criterion used in the analysis serves to increase the fraction of prompt photons from 2→2 processes. These photons can contribute to a better understanding of the parton density function (PDF) of gluons, as well as be used as a reference for perturbative QCD calculations.
Of particular importance for the analysis are the cluster shape and the energy within a certain radius around the potential photon. The combination of these two quantities allows determining the background using the ABCD method established by CDF and ATLAS. The result obtained in this way extends the previous measurements of the cross-section of isolated photons at the LHC to lower transverse momenta. Similarly, the previous measurements of the cross-section as a function of the scale variable xT are extended to lower values.
The main focus of the measurement of the average transverse momentum of charged particles ⟨pT⟩ is to compare the measurement for the pp, p-Pb, and Pb-Pb collision systems. To obtain a direct comparison between the different collision systems, ⟨pT ⟩ is measured against the true multiplicity nch. Since the multiplicity range of pp and p-Pb collisions is limited, the analysis in Pb-Pb collisions is restricted to nch = 100. This range corresponds to peripheral Pb-Pb collisions. A particular focus of the analysis is the determination and reduction of the electromagnetic background in peripheral Pb-Pb collisions and the determination of nch based on the measured multiplicity nacc . The different collision systems show similar behavior with increasing multiplicity. The steepest increase occurs at low multiplicities and changes for all collision systems at nch = 14. With higher multiplicities, the slope reduces further, with the effect being most pronounced in Pb-Pb collisions.
Die vorgestellte Arbeit beschreibt die Messung neutraler Pionen in pp-Kollisionen bei √s = 8 TeV. Die Messung kann als Referenz für Pb-Pb-Kollisionen dienen und somit dazu beitragen, die Eigenschaften des QGP zu untersuchen. Für die Messung werden Daten des ALICE-EMCal-Detektors verwendet, die 2012 gemessen wurden. Das EMCal kann die deponierte Energie und die Position von Photonen messen. Es fasst die deponierte Energie zu sogenannten Clustern zusammen. Durch die Kombination von Clustern aus derselben Kollision werden π0 rekonstruiert. Mithilfe des ITS wird der primäre Vertex bestimmt, um die Verteilung der Cluster-Paare als Funktion von minv und pT anzugeben. Die potentiellen π0 werden anschließend in pT-Bereiche eingeteilt. Durch die mixed Event Methode wird der unkorrelierte Untergrund abgezogen. Das im Folgenden extrahierte π0-Signal wird parametrisiert, um die Position des peaks zu bestimmen. Ausgehend von der Parametrisierung wird der korrelierte Untergrund subtrahiert und das Signal in einem definierten Bereich um die peak-Position integriert. Man erhält ein pT abhängiges Spektrum. Das Spektrum wird sowohl für die gemessenen Daten als auch für simulierte Daten berechnet. Durch die Simulation wird eine Korrektur des Spektrums hinsichtlich der Akzeptanz des Detektors und Effizienz der Analyse-Methoden ermöglicht. Das korrigierte Spektrum wird für die Standardanalyse sowie für systematische Variationen berechnet. Aufgrund von resultierenden Unterschieden kann eine systematische Unsicherheit für das Ergebnis abgeschätzt werden.
Ergebnis dieser Arbeit ist der Lorentz-invariante Yield (vgl. Abbildung 23) als Funktion von pT. Das Raw Yield wurde dazu mithilfe von Simulationen korrigiert und systematische Fehler wurden abgeschätzt.
Die Messung kann mit anderen π0 Analysen verglichen werden. Für π0 Analysen können neben dem EMCal auch weitere Detektoren verwendet werden. Eine dieser Analysen verwendet eine Rekonstruktion der π0 durch konvertierte Photonen, die sogenannte Photon-Conversion-Method (PCM). Außerdem sind Analysen mit dem PHOS Kalorimeter und hybride Methoden möglich, beispielsweise PCM-EMCal.
According to the standard model of particle physics, the most fundamental building blocks of the known matter are quarks and leptons, while the interactions between these fundamental objects is mediated through bosons. On one hand the leptons can exist in nature as individual particles, while on the other hand quarks appear always as bound states called hadrons. The knowledge that hadrons are built from more fundamental particles dates back to the second half of the 20th century when the work by Gell-Mann and Zweig led to the development of the quark model. The experimental proof that the hadrons are bound objects composed of more elementary particles was done through the study of deep inelastic scattering of electrons off protons. These experiments were done in a similar fashion to the studies of the atomic model led by Rutherford at the beginning of the 20th century. Further experimental analysis led to the conclusion that a large fraction of the proton momentum is not carried alone by the quarks, but by the bosons that mediate the strong interaction called gluons. The cleanest experimental signature for the existence of the gluons came from electron-positron annihilation experiments, where a quark-antiquark pair is created and one of the quarks radiates a hard gluon. Due to confinement neither the quarks nor the gluon can be observed directly, but are measured experimentally as three collimated showers of particles named jets. Since the ground breaking experiments performed at DESY, jets have provided a tool to study the properties of quarks and gluons...
Während den ersten Mikrosekunden nach dem Urknall glaubt man, dass unser Universum aus einer heißen, dichten und stark wechselwirkenden Materie bestanden haben soll, welche man das Quark-Gluonen-Plasma (QGP) nennt.
In diesem Medium sind die elementaren Bausteine der Materie, die Quarks und die Gluonen, nicht mehr in Hadronen gebunden, sondern können sich stattdessen wie quasi-freie Teilchen verhalten.
Für die ALICE Kollaboration an CERN's Large Hadron Collider (LHC) ist die Untersuchung dieses Mediums eines der Hauptziele. Um dieses Medium im Labor zu erzeugen, werden Protonen und Nukleonen auf nahezu Lichtgeschwindigkeit beschleunigt und anschließend zur Kollision gebracht. Dabei werden Schwerpunktsenergien von bis zu 13 TeV bei Proton-Proton (pp) Kollisionen und bis zu 5.02 TeV bei Blei-Blei (Pb--Pb) Kollisionen erreicht.
Bei solchen hochenergetischen Kollisionen werden die kritischen Werte der Energiedichte und Temperatur von jeweils ungefähr 1 GeV/c und undgefähr 155 MeV überschritten, welche mithilfe von "lattice QCD" bestimmt wurden. Sie bieten daher die perfekten Voraussetzungen für einen Phasenübergang von normaler Materie zu einem QGP.
Die Entwicklung eines solchen Mediums, beginnend bei der eigentlichen Kollision, gefolgt von der Ausbildung des Plasmas und der letztendlichen Hadronisierung, kann jedoch nicht direkt untersucht werden, da das Plasma eine extrem kurze Lebensdauer hat.
Die Studien die das QGP untersuchen möchten, müssen sich deshalb auf Teilchenmessungen und deren Veränderung aufgrund von Einflüssen durch das Medium beschränken.
Es ist noch nicht definitiv geklärt, ob sich ein QGP nur in Kollisionen schwerer Ionen bildet, oder ob dies auch in kleineren Kollisionssystemen wie Proton-Proton oder Proton-Blei der Fall ist.
Damit in dieser Thesis Einschränkungen bezüglich einer möglichen Erzeugung eines mini-GQP in kleinen Kollisionssystemen gemacht werden kann, wird der Fokus auf Messungen von neutralen Pionen und Eta Mesonen mit dem ALICE Detektor am CERN LHC gesetzt. Hierfür wird in einem Referenzsystem von Proton-Proton Kollisionen bei sqrt(s)=8 TeV und in einem Proton-Blei (p--Pb) System bei sqrt(sNN)=8.16 TeV, welches eine nukleare Modifikation erfährt, gemessen und die Ergebnisse verglichen.
Da in Proton-Proton Kollisionen die Bildung eines QGP, aufgrund zu geringer Energiedichte, nicht erwartet wird, dient eine Messung in diesem System als Messbasis, um Effekte der Kollision selbst von Effekten nach der Kollision zu separieren, welche die Teilchenproduktion beeinflussen.
Teilchen können zusätzlich zu dem QGP auch mit kalter Kernmaterie interagieren, was sich in asymmetrischen Proton-Blei Kollisionen testen lässt. In diesem Kollisionssystem wird größtenfalls ein vergleichsweise kleines QGP gebildet, wohingegen das Blei Ion selbst als kalte Kernmaterie agieren kann.
Zusätzlich zu den Mesonenmessungen wird in dieser Thesis auch die Erzeugung von direkten Photonen bei niedrigen Transversalimpulsen (pT) in multiplizitätsabhängigen p--Pb Kollisionen bei einer Schwerpunktsenergie von sNN=5.02 TeV gemessen, welche als direkte Probe, sowie als charakteristisches Signal des QGP gilt.
Die neutralen Pionen, welche in dieser Thesis gemessen werden, kann man als einen Überlagerungszustand der zwei leichtesten Quarksorten, dem "up" (u) und dem "down" (d) Quark, sowie deren entsprechenden Anti-Teilchen verstehen.
Das eta meson hingegen hat einen zusätzlichen Anteil des "strange" Quarks und eine resultierende höhere Masse.
Quarks sind Teil des Standardmodells der Teilchenphysik, welches die Elementarteilchen und die zwischen ihnen wirkenden Elementarkräfte, ausgeübt durch Bosonen, beschreibt.
Das Modell umfasst insgesamt sechs Quarks, welche sich durch ihre Masse und Ladung unterscheiden und als Grundbestandteil von gebundenen Zuständen, sogenannten Hadronen, fungieren.
Die "up" und "down" Quarks gelten hierbei als die leichtesten Quarks und kommen daher am häufigsten in der Natur vor. Das bekannteste Beipiel stellen hier die allgemein bekannten Protonen (uud) und Neutronen (udd) dar, welche die Grundkomponenten von Nukleonen sind.
Die restlichen Quarks tragen eine deutlich höhere Masse und haben daher eine große Tendenz, sich in leichtere Quarks umzuwandeln, wodurch ihre Lebensdauer sehr gering ist. Die "top" und "bottom" Quarks, welche die Schwersten sind, können daher nicht in gewöhnlicher Materie gefunden werden.
Sie können jedoch experimentell durch hoch energetische Teilchenkollisionen erzeugt werden und indirekt über ihre Zerfallsprodukte nachgewiesen werden.
Quarks tragen eine elektrische Ladung von entweder 1/3 oder 2/3, sowie eine Farbladung, wobei Letztere verantwortlich für ihre Bindung in Hadronen ist.
Hadronen bestehen entweder aus drei Quarks, dann werden sie Baryonen genannt, oder aus einem Quark-Antiquark Paar, welches Meson genannt wird.
Diese gebundenen Zustände erfüllen eine insgesamt neutrale Farbladung, sowie eine vollzählige elektrische Ladung.
Des Weiteren gibt es auch exotische Penta-Quark Zustände, welche aus vier Quarks und einem Antiquark bestehen und bereits experimentell nachgewiesen wurden.
Aufgrund der starken Wechselwirkung, welche durch Gluonen vermittelt wird, können Quarks nicht einzeln beobachtet werden.
...
Die Arbeit behandelt die Messung von Photonen mit Teilchendetektoren, die auf digitalen Silizium-Pixelsensoren basieren. Diskutiert werden zwei wesentliche Schritte in den Upgrade-Programmen des ALICE-Experiments am CERN-LHC:
1. FOCAL-Detektor-Upgrade (2027): Untersuchung der Detektorantwort des elektromagnetischen Pixel-Kalorimeters EPICAL-2 und der Form elektromagnetischer Schauer durch Teststrahl-Messungen und Monte Carlo Simulationen.
2. ALICE 3-Upgrade (2035): Simulationsstudien zum Untergrund in der Messung von Photonen mit sehr kleinem Transversalimpuls.
Teil 1: Performance des elektromagnetischen Pixel-Kalorimeters EPICAL-2
Detektordesign und Testmessungen: EPICAL-2, ein SiW-Sandwich-Design-Kalorimeter mit ALPIDE Sensoren, besitzt eine Tiefe von ca. 20 Strahlungslängen und etwa 25 Millionen Pixel. Testmessungen wurden an der Universität Utrecht (kosmische Myonen) sowie am DESY und CERN-SPS (Elektronen) durchgeführt.
Simulation und Validierung: Das EPICAL-2 wird im Simulationspaket Allpix2 implementiert, um die Testmessungen zu validieren und das Detektorverhalten zu untersuchen. Systematische Variationen bestätigen die Stabilität und Reproduzierbarkeit der Simulation.
Datenaufbereitung und Schauerprofile: Im Rahmen der Datenanalyse werden fehlerhafte Pixel ausgeschlossen, Pixel-Treffer zu Clustern gruppiert, Chips kalibriert und der Strahlwinkel korrigiert. Das longitudinale Profil elektromagnetischer Schauer zeigt, dass das Schauermaximum in der Simulation etwas tiefer liegt als in den Testdaten, was auf zusätzliches Material oder eine unvollständige Beschreibung der Schauerentwicklung in der Simulation zurückzuführen sein könnte. Das laterale Profil zeigt, dass eine Schauertrennung im Millimeter-Bereich möglich ist.
Energieantwort und -auflösung: Die nicht-lineare Energieantwort wird sowohl in Testdaten als auch in Simulationen beobachtet. Die Energieauflösung des EPICAL-2 für Cluster ist besser als für Pixeltreffer und vergleichbar mit dem analogen CALICE-Prototypen. Simulationen ohne Strahlenergie-Fluktuationen zeigen eine bessere Energieauflösung als in den Testdaten.
Teil 2: Untergrund in der Messung von Photonen in ALICE 3
Simulationssetup: Die ALICE 3-Detektorgeometrie wird in GEANT4 implementiert, um den Untergrund in der Messung weicher Photonen zu untersuchen. Simulationen mit PYTHIA und GEANT4 zeigen, dass der Untergrund hauptsächlich aus Zerfallsphotonen und Photonen aus externer Bremsstrahlung besteht.
Ergebnisse der Untergrundstudien: Der Untergrund durch Photonen aus externer Bremsstrahlung dominiert und liegt im Akzeptanzbereich des FCT um einen Faktor von 5 bis 10 über dem theoretischen Signal weicher Photonen. In der Simulation wird das Material zu 8%—14% X0 in ALICE 3 bestimmt, wobei bereits bei 5% X0 der Untergrund genauso stark ist wie das erwartete Signal.
Möglichkeiten zur Untergrundreduzierung: Untersuchungen zeigen, dass ein Elektron-Veto das Signal-zu-Untergrund-Verhältnis um den Faktor 30 verbessern und eine Materialreduktion durch ein optimiertes Strahlrohr um den Faktor 7.
Die Ergebnisse des ersten Teils dieser Arbeit demonstrieren insgesamt die gute Performance des EPICAL-2 in Bezug auf die Energiemessung und die Bestimmung der Schauerform. Darüber hinaus unterstützen sie den Einsatz digitaler Kalorimeter im FOCAL-Upgrade des ALICE-Experiments und zeigen das Potenzial der digitalen Kalorimetertechnologie für zukünftige Hochenergiephysik-Experimente.
Die Ergebnisse des zweiten Teils dieser Arbeit liefern einen wesentliche Beitrag zum geplanten ALICE 3-Upgrade. Weiterhin veranschaulichen sie, wie ein Elektron-Veto und die Reduzierung des Materials zusammen eine vielversprechende Messstrategie bilden können.