Refine
Year of publication
Document Type
- Doctoral Thesis (16)
- diplomthesis (2)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Datenanalyse (2)
- Elementarteilchen (2)
- Kernphysik (2)
- Schwerionenphysik (2)
- Anregungsfunktion (1)
- Azimuthal angular distributions (1)
- Azimuthale Winkelverteilung (1)
- Blei-208-Reaktion (1)
- Bleitarget ; Blei-Reaktion ; Lambda-Hyperon (1)
- CBM (1)
Institute
- Physik (18)
Resistive Plate Chambers (RPCs) are gaseous parallel plate avalanche detectors that implement electrodes made from a material with a high volume resistivity between 10 high 7 and 10 high 12 omega cm. Large area RPCs with 2mm single gaps operated in avalanche mode provide above 98% efficiency and a time resolution of around 1 ns up to a flux of several kHz/cm high 2. These Trigger RPCs will, as an example, equip the muon detector system of the ATLAS experiment at CERN on an area of 3650 m high 2 and with 355.000 independent read out channels. Timing RPCs with a gas gap of 0.2 to 0.3mm are widely used in multi gap configurations and provide 99% efficiency and time resolution down to 50 ps. While their performance is comparable to existing scintillator-based Time-Of-Flight (TOF) technology, Timing RPCs feature a significantly, up to an order of magnitude, lower price per channel. They will for example equip the 176 m high 2 TOF barrel of the ALICE experiment at CERN with 160.000 independent read out cells. RPCs were originally operated in streamer mode providing large signals which simplifies readout electronics and gap uniformity requirements. However, high rate applications and detector aging issues made the operation in avalanche mode popular. This was also facilitated by the development of new highly quenching C2F4H2-based gas mixtures with small contents of SF6. While the physics of streamers is difficult to study, the avalanche mode opened the possibility for a detailed simulation of the detector physics processes in RPCs. Even though RPCs were introduced in the early eighties and have been (will be) used in experiments, there are still disagreements about the explanation of several aspects of the RPC performance. The high efficiency of single gap RPCs would require a large ionization density of the used gases, which according to some authors contradicts measurements. Even in the case of a large ionization density the gas gain has to be extremely large, in order to arrive at the observed RPC efficiency. This raises other questions: A very strong space charge effect is required to explain the observed small avalanche charges around 1 pC. Doubts have been raised whether an avalanche can progress under such extreme conditions without developing into a streamer. To overcome these difficulties, other processes, like the emission of an electron from the cathode, were suggested. Moreover, the shape of measured charge spectra of single gap RPCs differs largely from what is expected from the statistics of the primary ionization and the avalanche multiplication. In this thesis we discuss the detector physics processes of RPCs, from the primary ionization and the avalanche statistics to the signal induction and the read out electronics. We present Monte-Carlo simulation procedures that implement the described processes. While the fundament of the described model and some results were already published elsewhere [1], the subject of this thesis is the implementation of the space charge effect. We present analytic formulas for the electrostatic potential of a point charge in the gas gap of an RPC. These formulas were developed in collaboration with the University of Graz [2] and were published in [3, 4]. The simulation model presented in [1] is completed by the dynamic calculation of the space charge field using these formulas. Since the gas parameters like drift velocity and the Townsend and attachment coefficients depend on the electric field, they are calculated dynamically as well. The functional dependence of these parameters on the field is obtained with the simulation programs MAGBOLTZ and IMONTE. For the primary ionization parameters, we use the values that are predicted by the program HEED. While the described procedure only simulates the longitudinal avalanche development towards the anode of the RPC, we also present more dimensional models that allow a careful study of the transverse repulsive and attractive forces of the space charge fields, and of the consequences for the avalanche propagation. We shall show that the efficiencies of single gap Timing RPCs is indeed explained by the high primary ionization density (about 9.5 /cm as predicted by HEED) and a large effective Townsend coefficient (around 113 /mm as predicted by IMONTE). We show that the space charge field reaches the same magnitude as the applied electric field in avalanches at large gas gain. This strong space charge effect effectively suppresses large values for the avalanche charges. The shape of the simulated charge spectra is very similar to the measurements. Also the simulated average charges are close to the experimental results. RPCs are operated in a strong space charge regime over a large range of applied voltage, contrary to wire chambers. We apply only standard detector physics simulations to RPCs. The performance of Timing and Trigger RPCs is well reproduced by our simulations. The results concerning the space charge effect were presented and discussed at the 'RPC 2001' workshop [5] and on the '2002 NSS/MIC' conference [6].
For this thesis photon and pi0 spectra in Gold-Gold-collisions at an energy of sqrt(s_NN) = 62 GeV were measured using the STAR-experiment at RHIC. Heavy ion collisions allow to study strongly interacting matter under extreme condiditons in the laborartory. Nuclear matter is strongly compressed and heated. Theories predict in a system of strongy interacting matter at high temperature and pressure a phase transition from hadronic matter, in which quarks are bound into hadrons, to a plasma of free quarks and gluons (QGP). To study the properties of this created medium, a number of different observables is available. One possibility to determine the temperature of such a system, is to measure the photon emission from the medium. The experimental difficulty is that there are more mechanisms producing photons than just the thermal production. Photons are produced in hard scattering processes or can be the result of the interaction of hard partons with the medium. According to theoretical calculations the photon yield from hard processes exceeds the thermal production for transverse momenta above 3 GeV/c. Photons from hard processes and thermal photons are referred to as direct photons, because they are produced inside of the medium. The largest part of the photons below pt=3GeV/c, however, comes from electromagnetic decays of hadrons in the final state of the collision. The largest fraction comes from the pi0- and the eta-mesons. Their contribution to the photon spectra can be determined by measuring the spectra of these decaying particles and calculating the resulting, corresponding photon spectra. The experimental difficulty is to measure these spectra to an accuracy of a few percent because the decay photons make up about 90% of all photons in the relevant phase space region. The STAR-experiment provides different detectors to measure photons and pi0-mesons. The primary detector for this kind of measurement are the electromagnetic calorimeters. However, the analysis described in this thesis uses the time projection chamber (TPC). Because photons don't carry electric charge and the TPC is only sensitive to charged particles, a conversion of the photon into an electron-positron-pair is required. This happens inside the electromagnetic fields of the nuclei and the electrons in the atomic shell of the detector material in the experimental setup of STAR. The resulting electron and positron tracks are measrued in the TPC. In chapter 3 the reconstruction of conversions from the measured tracks is described. Chapter 4 discusses the efficiency of the measurement, which is determined with a Monte-Carlo-Method, and the uncertainties of the correction. Chapter 5 presents the results of the analysis. The data set, on which the analysis is based, consists of Gold-Gold-Collisions an a center of mass energy of sqrt(s_NN)=62GeV. The selection criteria for individual events during data taking and during the analysis are explained. The data set is divided into four centrality selection classes. The first result are the transverse momentum and rapidity spectra of inclusive photons for all four centralities and the whole data set. Pi0-spectra versus transverse momentum for the four centralities and the whole data set are also shown. The pi0-spectra are compared to the spectra of pi0-mesons measured by the PHENIX-Collaboration at the same energy and with pi0-spectra measured by STAR at full RHIC energy. In addition a comparison to charged pi+- and pi--spectra is shown, which were also measured by the STAR collaboration. It is attempted to extract the fraction of direct photons by dividing the spectra of inclusive photons by the spectra of simulated decay photons. In these simulations pi0- and eta-spectra are modeled based on the pi+- and pi--spectra. Studying the uncertainties of this procedure shows that the size of the uncertainties is of the same magnitude as the signal of direct photons. Also the systematic uncertainties of the pi+- and pi--spectra are similar. Therefore the measurement of direct photon spectra is not possible. In chapter 6 possibilities are described to reduce the large systematic uncertainties. In addition it is discussed, what could be done with an already existing data set at full RHIC energy and how the addition of a dedicated converter during a future data taking period could reduce the systematic errors. The result of this thesis are inklusive photon and pi0 spectra. The systematic uncertainties were extensively studied. It is described, which enhancements are necessary to provide the perspective for measuring direct photons in the area of 1 to 3 GeV/c transverse momentum.
Bei der Kollision ultra-relativistischer Schwerionen wird die Kernmaterie extrem verdichtet und erhitzt. Die dabei erzeugte Energiedichte könnte ausreichen, um für kurze Zeit in einem begrenzten Volumen ein Quark-Gluon-Plasma entstehen zu lassen. Dieser Zustand der Materie, bei dem die Quarks und Gluonen nicht mehr in Hadronen gebunden sind, lag möglicherweise innerhalb der ersten Millisekunde nach dem Urknall vor und wird im Inneren von schweren Neutronensternen erwartet. Das NA49-Experiment am SPS-Beschleuniger des CERN untersucht hauptsächlich die Produktion von Hadronen in ultra-relativistischen Blei-Blei-Kollisionen. Eine erhöhte Produktion seltsamer Teilchen ist eine der vorgeschlagenen Signaturen für das Auftreten eines Quark-Gluon-Plasmas. Neutrale seltsame Teilchen werden aus den Spuren ihrer geladenen Zerfallsprodukte, die diese in den großvolumigen Spurendriftkammern (TPC) des NA49-Experiments hinterlassen, rekonstruiert. Bei der Auslese der TPCs entstehen Datenmengen von ca. 8 TByte (8 x 10 exp 12 Byte) pro Strahlzeit. Diese riesigen Datenmengen und die aufwendige Spurrekonstruktion stellen hohe Anforderungen an die Software-Infrastruktur. Daher wurde zur Vereinfachung und Modularisierung der Software-Entwicklung eine Software-Entwicklungs- und Analyseumgebung konzipiert und implementiert. Sie basiert auf dem Client-Server-Prinzip und kann über ein heterogenes TCP/IPNetzwerk aus UNIX-Workstations verteilt werden. Der zentrale Bestandteil des Systems ist der Daten-Server, der Datenobjekte mit persistenten Relationen verwaltet und die Kommunikation mit den Clients zur Steuerung des Systems übernimmt. Programmierschnittstellen (API) für verschiedene Sprachen (C, FORTRAN, C++, Fortran90) erlauben eine einfache Entwicklung von Clients, beispielsweise für die Datenanalyse und -visualisierung. Für die Rekonstruktion neutraler seltsamer Teilchen wurden 93497 zentrale Blei-Blei-Ereignisse aus der Strahlzeit im Herbst 1995 analysiert. Aus den Rohdaten der zweiten Vertex-TPC (VTPC2), die zur Bestimmung der Impulse in einem Magnetfeld positioniert ist, wurden zunächst die Ladungs-Cluster und dann die Teilchenbahnen rekonstruiert. Mit diesen Spuren wurden anschließend die Zerfalls-Vertices von neutralen seltsamen Teilchen gesucht. Dabei wurde neben den tatsächlichen Vertices auch ein Untergrund von zufälligen Kombinationen gefunden. Das Verhältnis von Signal zu kombinatorischem Untergrund wurde durch die Anwendung von Qualitätskriterien optimiert. Die Phasenraumakzeptanz liegt für die drei untersuchten Teilchen Lambda, Antilambda und K 0 s in den Rapiditäts-Intervallen 2,9 < y lambda < 3,9, 3,0 < y antilambda < 3,8 und 3,25 <= yK < 4,05. Der verwendete Transversalimpuls-Bereich ist abhängig von der Teilchenspezies und dem betrachteten Rapiditätsintervall und liegt zwischen 0,6 GeV/c und 2,4 GeV/c. Die inversen Steigungsparameter der Transversalimpuls-Spektren sind rapiditätsabhängig. Im Rapiditätsintervall, das jeweils am nächsten an Midrapidity liegt, betragen sie T lambda = 281 +- 13 MeV, T antilambda = 308 +- 28 MeV und T K 0 s = 239 +- 9 MeV. Die beobachtete lineare Abhängigkeit der inversen Steigungsparameter von der Ruhemasse und die Überschreitung der Hagedornschen Grenztemperatur für ein ideales Hadronengas sind ein Indiz für die Existenz eines kollektiven transversalen Flusses. Im Rahmen eines hydrodynamischen Modells ergibt sich eine mittlere transversale Flußgeschwindigkeit <vT> ~ 0,65 c und eine Freeze-out-Temperatur T fo ~ 110 MeV. Während die Rapiditäts-Verteilungen für Antilamda und K 0 s bei Midrapidity ein deutliches Maximum aufweisen, zeigt die Rapiditäts-Verteilung der Lambda einen flachen Verlauf. Die Multiplizitäten im Rapiditätsintervall bei oder nahe Midrapidity betragen 19,2 +- 1,1 für Lambda, 3,2 +- 0,3 für Antilambda und 27,1 +- 1,8 für K 0 s . Aufgrund der in der Analyse verwendeten Qualitätskriterien kann angenommen werden, daß die Spektren von Lambda und Antilambda in erster Näherung frei von Lambda und Antilambda aus den Zerfällen mehrfach-seltsamer Baryonen sind. Aus dem Vergleich mit den Rapiditäts-Spektren, die von anderen NA49-Gruppen mit unterschiedlichen Analyseansätzen ermittelt wurden, konnte der systematische Fehler der Analyse auf etwa 20-30% abgeschätzt werden. Beim Vergleich der Rapiditäts-Spektren von verschiedenen Stoßsystemen bei der gleichen Energie besitzen die Lambda-Verteilungen für Schwefel-Schwefel- (S+S) und Blei-Blei-Stöße (Pb+Pb) die gleiche flache Form. Hingegen weist die p+p-Verteilung zwei deutliche Maxima auf. Die Rapiditäts-Verteilungen von K 0 s und Antilambda zeigen für alle drei Stoß-Systeme annähernd die gleiche Form. Während bei den Lambda- und K 0 s -Verteilungen die Teilchenausbeute beim Übergang von S+S zu Pb+Pb etwa mit der Anzahl der Partizipanten skaliert, ist der Anstieg bei den Antilambda nur halb so groß. Im Vergleich zu p+p nimmt die Produktion aller drei Spezies um etwa das Zweifache der Partizipanten-Anzahl zu. Die Lambda-Multiplizität bei Midrapidity wird durch Rechnungen des UrQMD-Modells sehr gut reproduziert. Allerdings scheint die Form des Lambda-Rapiditäts-Spektrums flacher als die des Modells zu sein. Bei den Antilambda - und K 0 s -Spektren wird die Form der Verteilung besser durch das Modell beschrieben, jedoch reproduziert es nicht die Gesamtmultiplizität. Während die K 0 s-Daten um 30% unter der UrQMD-Verteilung liegen, wird für die Antilambda nur ungefähr die Hälfte der tatsächlich gemessenen Multiplizität vorhergesagt. Eine Abschätzung für die Anzahl von s- und s-Quarks, die bei einem zentralen Blei-Blei-Stoß erzeugt werden, zeigt eine Übereinstimmung innerhalb der systematischen Fehler dieser Abschätzung und ist damit konsistent mit der erwarteten Erhaltung der Seltsamkeits-Quantenzahl. Das Antilambda/Lambda-Verhältnis bei Midrapidity beträgt 0,17 +- 0,02. Der Vergleich der Verhältnisse von seltsamen zu nicht-seltsamen Teilchen zeigt keinen signifikanten Unterschied zwischen Proton-Proton- und Proton-Kern-Stößen; beim Übergang zu S+S kommt es zu einer Erhöhung der Seltsamkeits-Produktion um etwa einen Faktor 2. In Blei-Blei-Kollisionen kommt es jedoch zu keiner weiteren Erhöhung. Mit steigender Anzahl der Partizipanten, die proportional zur Größe des Reaktionsvolumens ist, kommt es zu einer Sättigung der Strangeness-Produktion. Die Energieabhängigkeit der Strangeness-Produktion zeigt für Nukleon-Nukleon-Stöße (N+N) ein anderes Verhalten als für Kern-Kern-Kollisionen (A+A). Während sie für N+N-Stöße zwischen AGS- und SPS-Energien um einen Faktor 2 zunimmt, kommt es bei A+A-Kollsionen zu einer Sättigung auf dem AGS-Niveau. Dieser Unterschied kann durch eine Reduktion der Masse der Seltsamkeitsträger bei den A+A-Stößen erklärt werden, wie sie in einem Quark-Gluon-Plasma erwartet wird. Dies läßt vermuten, daß der Phasenübergang von einem Quark-Gluon-Plasma zu einem Hadronengas im Energiebereich zwischen AGS und SPS stattfindet.
Das HADES-Experiment (High Acceptance DiElectron Spectrometer) am SIS der GSI wurde zur Messung der e+e- - Paare dileptonischer Zerfälle der leichten Vektormesonen im Energiebereich von 1 - 2 AGeV entwickelt. Im Rahmen dieser Arbeit wurden die Eigenschaften des Spurverfolgungssystems de HADES-Spektrometers untersucht. Das Spurverfolgungssystem besteht aus vier Ebenen mit Vieldrahtdriftkammern (Mini Drift Chambers (MDCs)) niedriger Massenbelegung (low-mass), die aus je 6 Auslesedrahtebenen bestehen. Eine der Hauptanforderungen an das Spurverfolgungssystem ist eine Ortsauflösung von 100 µm (hauptsächlich in y-Richtung), die benötigt wird, um die geforderte Massenauflösung von 1 % im Bereich der w-Masse zu erzielen. Gleichzeitig muss die Nachweiseffizienz für schwach ionisierende Elektronen/Positronen hoch sein. Die primäre Messgröße von Driftkammern ist die Driftzeit der entlang einer Teilchenspur generierten Elektronen der Primärionisation zum Auslesedraht. Um die gemessene Driftzeit in eine Ortskoordinate umrechnen zu können, ist eine genaue Kenntnis der Ort-Zeit-Korrelation der Driftzellen nötig. Es wurden detaillierte Simulationen der He/i - Butan Zählgasmischung mit GARFIELD, MAGBOLTZ und HEED vorgenommen. Dabei wurden Gastemperatur, Gasdruck, sowie die Kontamination des Zählgases mit O2 und H20 und die Konzentration des Löschgases variiert und die Auswirkung auf die Driftgeschwindigkeit der Elektronen und damit auf Ort-Zeit-Korrelation der Driftzellen studiert Des Weiteren wurden die Auswirkung der Höhe der Diskriminatorschwelle der Ausleseelektronik und der Einfluss des magnetischen Feldes auf die Driftzeitmessung untersucht. Ein zweidimensionales Modell der Driftzellen, das die Abhängigkeit der Ort-Zeit-Korrelation vom Einfallswinkel des Teilchens in die Driftzelle berücksichtigt, wurde in die Spurrekonstruktionssoftware integriert. Das realistische Ansprechverhalten der Driftkammern wurde in die GEANT-Simulation des HADES-Experimentes implementiert. In der vorliegenden Arbeit wird das Ansprechverhalten der inneren Driftkammern anhand von C + C Daten analysiert, die bei einer Einschussenergie von 2 AGeV im November 2001 gemessen wurden. Es wurde eine neue Methode entwickelt, die aus der Breite des am Auslesedraht influenzierten Signals (time above threshold) eine dem Energieverlust eines Teilchens korrelierte Größe bestimmt, die sich zur Identifikation von Teilchen eignet. Die vorgestellte Methode der Energieverlustmessung besitzt eine Auflösung von etwa 10 % für minimal ionisierende Teilchen und etwa 7, 2 % für stark ionisierenden Teilchen. Die Ortsauflösung der Driftzellen betrug 128 - 154 µm für minimal ionisierende Teilchen und 84 - 116µm für stark ionisierende Teilchen. Für minimal ionisierende Teilchen wurde die Ortsauflösung der Driftkammern in x- und y-Richtung zu x = 181 - 195µm und y = 87 - 104 µm bestimmt. Für stark ionisierende Teilchen wird eine Ortsauflösung von x = 119 - 148 µm und y = 57 - 79 µm erreicht. Eine Teilchenspur wird redundant in den 6 Drahtebenen einer Driftkammer nachgewiesen. Die Nachweiseffizienz der Drahtebenen einer Driftkammer lag für minimal ionisierende Teilchen bei 90 - 96 % und für stark ionisierende Teilchen bei 94 - 98 %. Es konnte somit gezeigt werden, dass die Driftkammern des HADES-Experiment über die geforderte Ortsauflösung und Nachweiseffizienz für e+|e- verfügen und aufgrund der Messung des Energieverlustes in den Driftkammern zur Teilchenidentifikation und Reduktion des Untergrundes beitragen können.
Die Untersuchung der Eigenschaften von Hadronen und ihren Konstituenten (Quarks und Gluonen) in heißer und/oder dichter Kernmaterie ist eines der Hauptziele der Physik mit schweren Ionen. Der Zustand dichter und heißer Materie kann im Labor für kurze Zeit in der Reaktionszone von relativistischen Schwerionenkollisionen geschaffen werden. Einen Einblick über die Eigenschaften der starken Wechselwirkung und über die Massenerzeugung der Hadronen geben Dileptonen-Experimente, da Leptonen nicht von der starken Wechselwirkung beeinflusst werden. Unabhängig von der Strahlenergie zeigen die invarianten Massenspektren der Dileptonen in Schwerionenkollisionen im Vergleich zur Superposition der erwarteten hadronischen Zerfälle im Vakuum einen Überschuss im invarianten Massenbereich 0,2 - 0,6 GeV/c². Während dieser Überschuss bei CERN-SPS Energien in Zusammenhang mit der In-Medium-Modifikation der Spektralfunktion des Rho-Mesons gebracht wird, konnte die hohe Zahl der Dileptonen, die von der DLS Kollaboration in C + C und Ca + Ca bei 1 GeV/u beobachtet wurde, bis zum Erscheinen der HADES Daten nicht zufrieden stellend erklärt werden. Die Diskrepanz zwischen experimentellen Daten und Transportrechnungen erhielt den Namen "DLS Puzzle". In diesem Zusammenhang wurde eine kontroverse Diskussion über die Validität der Ergebnisse der DLS Kollaboration geführt. Das HADES Detektorsystem (High Acceptance Di-Electron Spectrometer), das sich am Schwerionensynchroton der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt befindet, ist zur Zeit das einzige Experiment, das Dielektronen bei Projektilenergien von 1 - 2 GeV/u misst. Es tritt somit die Nachfolge des DLS Experiments an. Jedoch ist HADES durch zahlreiche technische Verbesserungen, u.a. Massenauflösung und Akzeptanz, im Vergleich zum Spektrometer DLS ein Experiment der 2. Generation. Erste Ergebnisse der Messung 12C + 12C bei 2 GeV/u der HADES Kollaboration bestätigen den generellen Trend einer erhöhten Zählrate im Vergleich zu den erwarteten Beiträgen von hadronischen Zerfällen. Es stellt sich die Frage, wie sich diese Beobachtung zu kleineren Strahlenergien hin fortsetzt. Im Rahmen der vorliegenden Arbeit wird die mit dem HADES Detektorsystem durchgeführte Messung der Dielektronenproduktion in der Schwerionenkollision 12C + 12C bei einer Projektilenergie von 1 GeV/u ausgewertet. Wesentliche Zielsetzungen sind u. a. die Überprüfung der DLS Daten und die Bestimmung der Anregungsfunktion des Überschusses. In der Analyse wird demonstriert, dass Leptonen effizient nachgewiesen werden. Die dargestellte Paaranalyse zeigt, dass der kombinatorische Untergrund erfolgreich reduziert und die Menge der wahren Dielektronen weitgehend erhalten werden kann. Nach Abzug des kombinatorischen Untergrundes werden die effizienzkorrigierten und normierten invarianten Massen-, Transversalimpuls- und Rapiditätsverteilungen der Dielektronen untersucht. Die Ergebnisse werden mit hadronischen Cocktails verschiedener theoretischer Ansätze verglichen. Diese beinhalten die Beiträge kurz- und langlebiger Dileptonenquellen einer thermischen Quelle (PLUTO) sowie mikroskopische Transportrechnungen (HSD,IQMD). Im Massenbereich 0,2 - 0,6 GeV/c² wird der gemessene Überschuss relativ zu den Vorhersagen bestätigt. Zusammen mit den Ergebnissen der Messung 12C + 12C bei 2 GeV/u zeigt sich, dass der Überschuss mit abnehmender Strahlenergie relativ zunimmt. Eine detaillierte Analyse zeigt, dass der Überschuss in dem Massenintervall 0,15 - 0,5 GeV/c² als Funktion der Projektilenergie entsprechend der Zahl der produzierten neutralen Pionen und nicht wie die Zahl des Eta-Mesons skaliert. Der direkte Vergleich der HADES mit den DLS Ergebnissen zeigt, dass die Daten der vorliegenden Arbeit mit den für lange Zeit angezweifelten DLS Resultaten übereinstimmen. Die Frage nach dem physikalischen Ursprung des Überschusses rückt somit erneut in den Vordergrund. In diesem Zusammenhang ist das Studium der Dileptonenproduktion in elementaren Reaktionen p + p und d + p wichtig. Neuere Rechnungen mit einem One Boson Exchange (OBE) Modell deuten darauf hin, dass die Beiträge von p-p und hauptsächlich p-n zur Bremsstrahlung signifikant höher sind als bisher vermutet. Eine aktualisierte Transportrechnung (HSD), deren Parametrisierung der Bremsstrahlung durch dieses OBE Resultat inspiriert ist, scheint in der Lage zu sein, die Ergebnisse der Messungen 12C + 12C bei 1 GeV/u der HADES und DLS Kollaboration recht gut zu beschreiben. Die entsprechenden Vergleiche sind dargestellt und werden diskutiert. Aber auch die Transportrechnung IQMD erklärt die HADES Daten recht gut. Daher ist es offensichtlich, dass eine direkte Gegenüberstellung der OBE Modellrechnungen und der von der HADES Kollaboration gemessenen und derzeit analysierten Daten zur Dileptonenproduktion in p + p und d + p Reaktionen erforderlich ist. Nur so können sichere Schlüsse über den Ursprung der Dileptonen bei SIS Energien gezogen werden.
The Kaon-Spectrometer (KaoS) at the heavy-ion synchrotron (SIS) at the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt has been used to study production and propagation of K+ and K- mesons from Au+Au collisions at a kinetic beam energy of 1.5 AGeV. This energy for K+ mesons is close to the corresponding production threshold in binary nucleon-nucleon collisions and far below for K- mesons. The azimuthal angular distributions of particles as a function of the collision centrality and particle transverse momenta have been measured. The properties of strange mesons are expected to be modified by the in-medium meson-baryon potential. Theoretical calculations show that the superposition of the scalar and vector potentials leads to a small repulsive K+N and a strong attractive K-N potential. Additionally, the interaction of kaons and antikaons with nuclear matter is different. The strangeness conservation law inhibits the absorption probability of K+ mesons as they contain an s-quark. K- mesons, however, interact with nucleons via strangenessexchange (K- + N ->Y + pion, where Y = lambda, sigma). Moreover, the reverse process (pion + Y -> K- + N) is the dominant production mechanism of K- mesons at SIS energies. The azimuthal angular emission patterns of kaons are expected to be sensitive to the in-medium potentials. An enhanced out-of-plane emission of K+ mesons was observed in Au+Au reactions at 1.0 AGeV and 1.5 AGeV, and also in Ni+Ni at 1.93 AGeV. The out-of-plane emission of K+ mesons in Au+Au reactions at 1.0 AGeV was interpreted as a consequence of a repulsive K+N potential in the nuclear medium, however, recent transport calculations show that the emission patterns obtained in Au+Au at 1.5 AGeV and Ni+Ni at 1.93 AGeV are additionally influenced by the re-scattering of kaons. For K- mesons the calculations predict an almost isotropic emission pattern due to the attractive K-N potential which counteracts the absorption of K- mesons in the spectator fragments. In Ni+Ni collisions at 1.93 AGeV the azimuthal distribution of K- mesons has been found to be isotropic. In this case, however, the spectators are rather small and have large relative velocities. In addition, the delay of antikaon emission due to strangenessexchange reaction minimizes the interaction with the spectators. As a consequence the sensitivity of the K- meson emission pattern to the K-N in-medium potential is reduced. In Au+Au collisions we found a dependence of the K- meson azimuthal emission pattern on the transverse momentum. The antikaons registered with pt < 0.5 GeV/c are preferentially emitted in the reaction plane and the particles with pt > 0.5 GeV/c show strong out-of-plane enhancement. The emission patterns of K- can be explained in terms of two competing phenomena: one of them is indeed the influence of the attractive K-N potential, however, the second one originates from the strangeness-exchange process.
The HADES (High Acceptance DiElectron Spectrometer) is an experimental
apparatus installed at the heavy-ion synchrotron SIS-18 at GSI, Darmstadt.
The main physics motivation of the HADES experiment is the measurement
of e+e− pairs in the invariant-mass range up to 1 GeV/c2 in heavy-ion collisions
as well as in pion and proton-induced reactions.
The HADES physics program is focused on in-medium properties of the light
vector mesons ρ(770), ω(783) and φ(1020), which decay with a small branching
ratio into dileptons. Dileptons are penetrating probes which allow to study
the in-medium properties of hadrons. However, in heavy-ion collisions, the
measurement of such lepton pairs is difficult because they are rare and have a
very large combinatorial background.
Recently, HADES has been upgraded with new detectors and new electronics
in order to handle higher intensity beams and reactions with heavy nuclei up
to Au.
HADES will continue for a few more years its rich physics program at its
current place at SIS-18 and then move to the upcoming international Facility
for Antiproton and Ion Research (FAIR) accelerator complex. In this context
the physics results presented in this work are important prerequisites for the investigation
of in-medium vector meson properties in p + A and A+A collisions.
This work consists of five chapters. The first chapter introduces the physics
motivation and a review of recent physics results. In the second chapter, the
HADES spectrometer is described and its sub-detectors are presented. Chapter
three deals with the issue of lepton identification and the reconstruction of
the dielectron spectra in p + p collisions is presented. Here, two reactions
are characterized: inclusive and exclusive dilepton production reactions. From
the spectra obtained, the corresponding cross sections are presented with the
respective statistical and systematical errors. A comparison with theoretical
models is included as well. Conclusions are given in chapter four.
The final part of this work is dedicated to the HADES upgrade, whose goal
is among others the achievement of a reliable and fast data acquisition of the
Multiwire Drift Chambers (MDCs). Chapter five presents my contribution to
this successful project during the three years of my stay at GSI.
Ein wesentlicher Forschungsgegenstand der Kernphysik ist die Untersuchung der Eigenschaften von Kernmaterie. Das Verständnis darüber gibt in Teilen Aufschluss über die Erscheinungsweise und Wechselwirkung von Materie. Ein Schlüssel liegt dabei in der Untersuchung der Modifikation der Eigenschaften von Hadronen in dem Medium Kernmaterie, das durch Parameter wie Dichte und Temperatur gekennzeichnet werden kann. Man hofft damit unter anderem Einblick in die Mechanismen zu bekommen, welche zur Massenbildung der Hadronen beitragen. Zur Untersuchung solcher Modifikationen eignen sich insbesondere Vektormesonen, die in e+e- Paare zerfallen. Die Leptonen dieser Paare wechselwirken nicht mehr stark mit der Materie innerhalb der Reaktionszone, und tragen somit wichtige Informationen ungestört nach außen. Das HADES-Spektrometer bei GSI wird dazu verwendet die leichten bei SIS-Energien produzierten Vektormesonen rho, omega und phi zu vermessen. Hierzu wurde zum erste mal das mittelschwere Stoßsystem Ar+KCl bei einer Strahlenergie von 1,76 AGeV gemessen. Die im Vergleich zum früher untersuchten System C+C höhere Spurmultiplizität innerhalb der Spektrometerakzeptanz verlangte eine Anpassung der bisher verwendeten Datenanalyse. Das bisher verwendete Verfahren, mehrere scharfe Schnitte auf verschiedene Observablen seriell anzuwenden, um einzelne Leptonspuren als solche zu identifizieren, wurde durch eine neu entwickelte multivariate Analyse ersetzt. Dabei werden die Informationen aller beteiligten Observablen mit Hilfe eines Algorithmus zeitgleich zusammengeführt, damit Elektronen und Positronen vom hadronischen Untergrund getrennt werden können. Durch Untersuchung mehrerer Klassifizierer konnte ein mehrschichtiges künstliches neuronalen Netz als am besten geeigneter Algorithmus identifiziert werden. Diese Art der Analyse hat den Vorteil, dass sie viel robuster gegenüber Fluktuationen in einzelnen Observablen ist, und sich somit die Effizienz bei gleicher Reinheit steigern lässt. Die Rekonstruktion von Teilchenspuren im HADES-Spektrometer basiert nur auf wenigen Ortsinformationen. Daher können einzelne vollständige Spuren a priori nicht als solche gleich erkannt werden. Vielmehr werden durch verschiedene Kombinationen innerhalb derselben Mannigfaltigkeit von Positionspunkten mehr Spuren zusammengesetzt, als ursprünglich produziert wurden. Zur Identifikation des maximalen Satzes eindeutiger Spuren eines Ereignisses wurde eine neue Methode der Spurselektion entwickelt. Während dieser Prozedur werden Informationen gewonnen, die im weiteren Verlauf der Analyse zur Detektion von Konversions- und pi0-Dalitz-Paaren genutzt werden, die einen großen Beitrag zum kombinatorischen Untergrund darstellen. Als Ergebnis wird das effizienzkorrigierte, und auf die mittlere Zahl der Pionen pro Ereignis normierte, Spektrum der invarianten Elektronpaarmasse präsentiert. Erste Vergleiche mit der konventionellen Analysemethode zeigen dabei eine um etwa 30% erhöhte Rekonstruktionseffizienz. Das Massenspektrum setzt sich aus mehr als 114.000 Paaren zusammen -- über 16.000 davon mit einer Masse größer als 150 MeV. Ein erster Vergleich mit einem einfachen thermischen Modell, welches durch den Ereignisgenerator Pluto dargestellt wird, eröffnet die Möglichkeit, die hier gefundenen Produktionsraten des omega- und phi-Mesons durch m_T-Skalierung an die durch andere Experimente ermittelten Raten des eta zu koppeln. In diesem Zusammenhang findet sich weiterhin ein von der Einschussenergie abhängiger Produktionsüberschluss von F(1,76) = Y_total/Y_PLUTO = 5,3 im Massenbereich M = 0,15...0,5 GeV/c^2. Die theoretische Erklärung dieses Überschusses birgt neue Erkenntnisse zu den in-Medium Eigenschaften von Hadronen.
Ultrarelativistische Schwerionenstöße werden seit etwa 15 Jahren untersucht, um Kernmaterie unter extremen Bedingungen zu erforschen; in Kollisionen schwerer Atomkerne kann bei hohen Einschußenergien Kernmaterie stark komprimiert und aufgeheizt werden. Die Bedeutung dieser Experimente wird durch Berechnungen der Quanten-Chromo-Dynamik auf raumzeitlichen Gittern hervorgehoben, die bei ausreichend hoher Energiedichte eine Phase voraussagen, in der die Quarks nicht mehr in Hadronen gebunden sind, sondern zusammen mit den Gluonen ein partonisches System ausbilden. Ist das System hinreichend groß und equilibriert, wird es als Quark-Gluon-Plasma bezeichnet. Die als Signatur für das Überschreiten der Phasengrenze vorgeschlagene erhöhte Produktion Seltsamkeit tragender Teilchen wurde in der Gegenüberstellung von elementaren Proton+Proton-Interaktionen und Kern+Kern-Stößen experimentell über einen weiten Energiebereich bestätigt. Eine solche Überhöhung kann aber auch durch rein hadronische Phänomene hervorgerufen werden. So tritt beispielsweise in statistischen Modellen bereits in einem Hadrongas eine Seltsamkeitserhöhung aufgrund des Übergangs von einem kanonischen zu einem großkanonischen Ensemble mit steigender Systemgröße in Kern+Kern-Stößen auf. Das motivierte die Messung der Systemgrößenabhängigkeit der Seltsamkeitsproduktion bei einer Einschußenergie, bei der in den Stößen der größten Kerne die partonische Phase erreicht werden sollte, während Proton-Proton-Interaktionen überlicherweise als hadronische Systeme betrachtet werden. In Kollisionen von Kohlenstoff- und Siliziumkernen bei 158 GeV pro Nukleon, deren Untersuchung Gegenstand dieser Arbeit ist, kann möglicherweise die Umgebung der Phasengrenze abgetastet werden. Besondere Aufmerksamkeit gilt der Frage nach dem Mechanismus der Seltsamkeitsproduktion in diesen Reaktionen. Das Experiment wurde am SPS-Beschleuniger am CERN in Genf durchgeführt, erstmals wurden dort leichte Projektilkerne durch den Aufbruch des primären Bleistrahls an einem Produktionstarget erzeugt. Das Herzstück des NA49-Spektrometers, mit dem die Daten aufgezeichnet wurden, sind die vier großvolumigen Spurendriftkammern, die die große Akzeptanz ermöglichen. Die Lambda- und Antilambda-Hyperonen aus C+C und Si+Si Kollisionen werden anhand ihrer Zerfallstopologie rekonstruiert und ihre Impulsverteilungen über einen weiten Bereich gemessen; mit zusätzlichen Annahmen werden schließlich die totalen Multiplizitäten extrapoliert. Die Produktion der Hyperonen pro Pion ist im Vergleich zu p+p-Daten bereits in C+C-Reaktionen deutlich erhöht, in Si+Si--Kollisionen ist annähernd der Wert aus Pb+Pb-Stößen erreicht. Mehrere Ursachen für diese Beobachtung werden diskutiert und mögliche Interpretationen vorgeschlagen. Der Grad an chemischer Equilibration und die Lage des Ausfrierpunktes im Phasendiagramm und im Vergleich zu anderen Stoßsystemen wird besprochen. Die Rapiditätsspektren der Lambda-Hyperonen entsprechen zunehmendem Stopping mit steigender Anzahl von Stößen pro Nukleon. Dadurch wird die Energie pro Nukleon im Feuerball erhöht, was zunehmende kinetische Energie der Teilchen und eine ansteigende Teilchenproduktion erzeugt. Die Verbreiterung der Transversalimpulsspektren mit der Systemgröße fügt sich in der Tat in das Bild anwachsenden radialen Flußes ein.