Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Institute
Die Arbeit überprüft die Zusammensetzung der F1FO-ATP-Synthase in Säugetiermitochondrien, dem Enzymkomplex, der das meiste ATP für den Energiebedarf einer Zelle liefert. Es sind zwei neue Proteine identifiziert und als ATP-Synthase assoziiert verifiziert worden, das sog. dapit protein (diabetes-associated protein in insulin-sensitive tissue; Datenbanknummer in NCBI für Rattus norvegicus, gi|19424210) bzw. 6.8 kDa mitochondrial proteolipid (Datenbanknummer in NCBI für Rattus norvegicus, gi|109478763). Bis jetzt sind beide Proteine nicht zusammen mit dem Komplex V detektiert worden, da es sich bei beiden Proteinen um sehr kleine Membranproteine (kleiner 7 kDa) handelt und sie sehr leicht in Gegenwart von Detergenzien verloren gehen. Die etablierte Strategie zur milden Aufreinigung von Komplex V, die eingesetzte gelelektrophoretische Trennung und die gewonnenen Erkenntnisse zur Identifizierung solch kleiner Proteine können sicherlich auch Lösungsansätze für andere ungelöste Problemfälle in der Proteinkomplexanalytik liefern. Da beide neuen Proteine in die Modulation des metabolischen Zellzustandes involviert sein könnten, sind die erarbeiteten Daten für weitere funktionelle und biochemische Untersuchungen der ATP-Synthase äußerst nützlich. Außerdem könnten die Ergebnisse für neurologische und klinische Studien hinsichtlich der Ursachenforschung von Funktionsstörungen in den Mitochondrien von Interesse sein, da eines der zwei neuen Proteine früher schon mit Diabetes in Zusammenhang gebracht worden ist (dapit, diabetesassociated protein in insulin-sensitive tissue). Für ein bakterielles Multihäm c-Typ Cytochrom konnte massenspektrometrisch gezeigt werden, dass es auf eine unkonventionelle Weise Häm bindet. Durch massenspektrometrische Charakterisierung des Proteins konnte erstmals nachgewiesen werden, dass es nicht nur die Häm c-Bindemotive CX2-4CH und CXXCK, sondern auch Häm c-Bindemotive der Form CXnCH in Bakterien gibt. Diese Erkenntnis führt in der Molekularbiologie zu neuen Fragen, z. B. welche speziellen Lyasen (cytochrome c haem lyases) letztendlich für das Einfügen der Häm-Gruppe an solche neuen Motive verantwortlich sind. Auch die computerbasierte Vorhersage von c-Typ Cytochromen wird dieses Wissen wohl zukünftig in Suchstrategien umsetzen, um die neuen Häm c-Bindemotive bei der Genomanalyse von Organismen nicht zu übersehen. In dem Feld der Identifizierung und Charakterisierung von Membranproteinen im Allgemeinen konnten grundlegende Erkenntnisse zum Umgang mit alternativen Enzymen und deren Potential für einen zukünftigen Einsatz erarbeitet werden. Schwerpunktmäßig wurden die Enzyme Chymotrypsin, Elastase und Pepsin untersucht. Es konnte für alle drei Kandidaten gezeigt werden, dass sie bevorzugt an einer begrenzten Anzahl von Aminosäuren spalten. Besonders für Elastase ist diese Erkenntnis neu, da sie in der Literatur bisher als unspezifisches Enzym wie Proteinase K geführt wurde. Auch wenn die Spezifität der drei Enzyme nicht zu 100% wie bei Trypsin festgelegt werden kann, sondern es sich nur um eine Bevorzugung gewisser Aminosäuren handelt, sind die enzymatischen Spaltungen reproduzierbar. Selbst eine Auswertung der MS-Spektren mittels Peptide Mass Fingerprint (PMF) ist deshalb auch bei diesen weniger spezifischen Enzymen möglich. Die Intensität der MS-Signale muss aber berücksichtigt werden, was bei bisherigen PMF-Suchen jedoch nicht in der Art und Weise geschieht, wie es für diese Enzyme nötig wäre. An einigen Membranproteinen konnte letztendlich bereits beispielhaft gezeigt werden, dass der Einsatz von weniger spezifischen Enzymen für die Identifizierung des Proteins und der nachfolgenden Charakterisierung (z. B. Identifizierung von posttranslationale Modifikationen) vorteilhaft ist. Für Elastase konnte in diesem Zusammenhang auch demonstriert werden, dass sie problemlos in Lösungsmittelsystemen mit einem hohen organischen Anteil (Acetonitril, Isopropanol, Methanol) einsetzbar ist. 100% Sequenzabdeckung lassen sich aber auch bei weniger spezifischen Enzymen trotz der größeren Anzahl an Schnittmöglichkeiten nur erahnen. Zwei Hauptursachen hierfür sind wahrscheinlich die schlechte Zugänglichkeit des Enzyms zum Membranprotein bzw. die Bevorzugung bestimmter enzymatischer Fragmente in MALDI und ESI. Polyacrylamidgele mit alternativen Quervernetzern, bei denen sich die Geldichte vor dem Verdau verringern lässt, könnten die Zugänglichkeit zum Membranprotein zukünftig vielleicht positiv beeinflussen. Der Einsatz von organischen Lösungsmitteln und bestimmter Detergenzien beim Verdau verbessert ebenfalls die Zugänglichkeit zum Membranprotein. Die Zahl der Tenside, die mit der Massenspektrometrie sehr gut kompatibel sind, ist aber sehr gering, wie Untersuchungen in dieser Arbeit ebenfalls ergeben haben. Außerdem beschränkt sich die Anwendung von diesen Detergenzien ausschließlich auf MALDI. Die zu erwartenden Fortschritte bei der Identifizierung und Charakterisierung von Membranproteinen umschreibt daher besonders gut ein Aphorismus von Christian Morgenstern (deutscher Schriftsteller; 1871 – 1914): „Es gibt nur ein Neues: Die Nuance.“ Einige Nuancen sind in dieser Arbeit enthalten. In der Zukunft werden aber viele weitere solcher Nuancen das Überwinden der Hürde „Membran Proteomics“ immer realistischer werden lassen.
In the first part of this work, the development of a novel two-dimensional native gel electrophoretic system (2-D BN/hrCNE) is described. This new system simplifies proteomics and biochemical analysis of mega protein complexes that are dissociated into the constituent complexes during 2-D electrophoresis, thereby reducing the complexity of the system considerably. This technique is exceptionally well suited for the in-gel detection of fluorescence-labeled proteins and the identification of individual enzymes and protein complexes by specific in-gel assays on native gels.
In the second part, a new technique for the native immunoblotting of blue native gels (NIBN) was developed. This new technique allows for the identification of conformation-specific antibodies and the discrimination of antibodies recognizing linear epitopes of denatured proteins. Identification of conformation-specific antibodies is becoming increasingly important not only for the electron microscopic identification of native proteins but also for structural investigations in general. For this purpose, a commonly used protocol for Western blotting of blue native gels was modified in such a way that the native state of proteins and protein complexes was retained throughout the complete protocol. Instead of using the denaturing methanol in Western blotting protocols, mild detergents such as Tween 20, digitonin and Brij 35 were used for the obligatory removal of protein bound Coomassie-dye.
The detection of respiratory complex I by activity staining on the blot membrane demonstrated that all three non-ionic detergents preserved the native state of complex I. The native state of the enzyme on the blot membrane was also monitored and confirmed with the help of a set of conformation-specific antibodies. NIBN can be used as a simple alternative method to the demanding native ELISA to screen for conformation-specific antibodies for structural studies. Unlike the time consuming native ELISA, NIBN does not require introduction of appropriate affinity tags and purification of the target protein by chromatography. Thus, the NIBN technique is especially useful for microscale projects and for proteins not easily accessible to genetic manipulation.
The third part aimed at identification of the immediate protein interaction partners of Cox26, a hydrophobic protein that has been identified by our group as a novel component of yeast respiratory supercomplex. Multi-dimensional electrophoretic techniques were applied to identify non-covalent and covalent protein-protein interactions of Cox26. Three-dimensional electrophoresis (BNE/BNE/SDS-PAGE) gave both qualitative and quantitative information on covalent and non-covalent interactions of Cox26 and subunits of cytochrome c oxidase (complex IV), and showed that most of the Cox26 protein was non-covalently bound to the complex IV moiety of the respirasomes. Four-dimensional electrophoresis (BNE/BNE/SDS/SDS-PAGE) applying reducing and non-reducing conditions revealed that a minor fraction of Cox26 used a single cysteine residue in the center of a predicted transmembrane helix to form a disulfide bond with the Cox2 subunit of complex IV. A structural role of Cox26 protein in the assembly/stability of respiratory strings or patches has been suggested.
The last part of this work focused on the isolation and characterization of native and morphologically intact nucleoids from bovine heart mitochondria, since only a few studies on nucleoid organization and composition have been carried out on mammalian tissues. The nucleoids appeared as distinct bands (apparent mass around 30-36 MDa) in blue native-PAGE on large pore gels. The moderate variation in particle size seems to reflect variations in the binding of loosely nucleoid-associated components like respiratory chain complexes. The estimated 30-36 MDa mass of nucleoids on native gels suggested that each nucleoid contains one mtDNA molecule provided that nucleoids contains equal amounts of DNA, protein and RNA (Miyakawa et al., 1987).
Electron microscopic analysis of native nucleoids, which was performed by Dr. Karen Davies from the Max-Planck-Institute of Biophysics, Department of Structural Biology, Frankfurt, showed homogenous pool of particles with dimensions in 85x100 nm (in negative stain) and 100x150 nm (in cryo-tomography). Some of the nucleoids showed dumbbell-shape indicating dimerization of nucleoids. Recent EM and high-resolution light microscopy analysis of mammalian nucleoids have reported that nucleoids have a size of 70 nm in average. We also observed the same size of 70 nm in cryo-tomogramms when we applied harsher treatment of the native nucleoid particles with dimensions 100x150 nm. This observation is in agreement with published nucleoid sizes from both EM and high-resolution light microscopy, if we assume that native nucleoids have been dissociated under harsher treatment.
The protein composition of bovine heart mt-nucleoids was analyzed by a number of complementary approaches to identify low and highly abundant, easily dissociating and tightly bound proteins, and to rank the 90 most abundant mt-nucleoid proteins. Native and denaturing gel electrophoresis techniques were coupled to LC-MS/MS to achieve a comprehensive protein component analysis. Qualitative MS analysis of highly purified nucleoids identified more than 400 proteins, including well known nucleoid proteins such as mitochondrial transcription factor and mtDNA-binding protein (TFAM), mitochondrial single-stranded DNA-binding protein (mtSSB), mitochondrial DNA polymerase subunit gamma-2 (POLG2) and mitochondrial helicase C26H10ORF2 protein (Twinkle). These proteins were ranked according to Mascot scores, and sorted according to presumed functional properties. A large group of proteins involved in protein synthesis comprised an almost complete set of subunits of mitochondrial ribosomes suggesting that the nucleoids contained significant amounts of mitochondrial ribosomes. Identification of sixty six proteins from the oxidative phosphorylation (OXPHOS) system comprising around 100 proteins in total suggested that OXPHOS proteins are also associated with mt-nucleoids.
Interestingly, TFAM, described as a main mtDNA packaging factor in human and other mammalian cells, was not confirmed here as a major nucleoid component from bovine heart mitochondria. Fluorescence staining of protein spots on 2-D IEF/SDS gels clearly identified TFAM, but according to the stain intensity, this protein did not rank in the list of the 90 most abundant nucleoid proteins. Western blot analysis of sucrose gradient fractions revealed an enrichment of putative TFAM isoform in nucleoid fractions. Unexpectedly, the uncharacterized mitochondrial protein Es1 was identified as the most abundant nucleoid protein in bovine heart nucleoids instead. This implicates that nucleoid organization may differ between species and tissues. A functional characterization of Es1 is required to clarify its role in mammalian nucleoids.
Isolierung und Charakterisierung der Atmungsketten-Superkomplexe aus Paracoccus denitrificans
(2004)
Isolierung von Atmungsketten-Superkomplexen aus Paracoccus denitrificans: Im Rahmen der vorliegenden Arbeit wurde ein Reinigungsprotokoll zur Präparation der Atmungskettenkomplexe I, III und IV des Gram-negativen, fakultativ anaeroben Bodenbakteriums Paracoccus denitrificans in Form eines NADH Oxidase Komplexes erstellt. Bisher konnten stabile Superkomplexe bakterielle Atmungskettenkomplexe nur in Gestalt einer Chinol Oxidase, bestehend aus den Komplexen III (Ubichinol:Cytochrom c Oxidoreduktase) und IV (Cytochrom c Oxidase), isoliert werden (Berry, et al., 1985). Jedoch enthielten diese Assemblierungen keinen Komplex I (NADH: Ubichinon Oxidoreduktase). Dies ist die erste chromatographische Isolierung eines kompletten "Respirasoms" aus Paracoccus denitrificans. Unter der Verwendung des milden Detergenz Digitonin zur Solubilisierung von Paracoccus denitrificans Membranen gefolgt von zwei chromatographischen Reinigungsschritten, der Hydroxylapatit-Chromatographie und der Gelfiltration, konnte eine NADH Oxidase, bestehend aus den Komplexen I, III und IV in einer 1:4:4 Stöchiometrie isoliert werden. Neben der Isolierung der NADH Oxidase konnten weitere kleine Superkomplexe identifiziert werden, die aus vier Komplex III und vier Komplex IV (III4IV4) sowie vier Komplex III und zwei Komplex IV (III4IV2) assoziiert waren. Charakterisierung der Superkomplexe aus Paracoccus denitrificans: Die isolierten Atmungskettenkomplexe wurden zur Charakterisierung bezüglich ihrer Funktion, enzymatischen Aktivität, Stöchiometrie und Untereinheiten-Zusammensetzung aus Paracoccus denitrificans Wildtyp-Membranen analysiert. Proben aller Präparationsstufen wurden parallel zur BN-Gelelektrophorese und für enzymatische Einzel- und kombinierte Aktivitäten der Komplexe I-IV eingesetzt. Mittels BN-Gelelektrophorese konnten die apparenten Massen der Komplexe bestimmt werden. Im folgenden denaturierenden SDS-Gel wurde die Untereinheiten-Zusammensetzung der Superkomplexe durch Immunodetektion mit Antikörpern gegen die Komplexe I, III, IV und Cytochrom c552 analysiert. Abschließend konnte nach der Gelfiltration festgestellt werden, das Komplex II eindeutig nicht Teil des Superkomplexes (I1III4IV4) war. Die Stöchiometrie des Superkomplexes a wurde mit Hilfe der fluorimetrischen Bestimmung von FMN (Flavin) als Marker für Komplex I und mittels Pyridin Hämochromogen Spektren für Häm a, b und c bestimmt. Da Komplex III physiologisch als Dimer vorliegt (Mayer et al. 2002), müsste die Stöchiometrie der funktionellen Einheit des Superkomplex a folgendermaßen lauten: I1 (III2)2 IV4. In diesem Fall diente der Vergleich der Wechselzahl einzelner Präparationsstufen als Maß der Verunreinigung der ergab, dass Fremdkomplexe mit Flavin und Cytochrom b im Ausgangsmaterial der Präparation vorhanden waren. Nur die Wechselzahl des Komplexes IV blieb während der Präparation konstant. Um den Gehalt an Komplex I und die Qualität der Präparation abzuschätzen, wurde das Verhältnis der HAR zu dNADH:DBQ Oxidoreduktase Aktivität in Membranen und isoliertem Superkomplex a bestimmt. Es war während der Präparation konstant. Die Bestimmung des Phospholipidgehalts aus isoliertem Superkomplex a im Vergleich zu P. denitrificans Membranen ergab eine Abnahme von 980 ± 80 nmol PL / mg Protein in Membranen auf 290 ± 10 nmol / mg Protein in isoliertem Superkomplex a, wohingegen der Ubichinongehalt von 2,7 ± 0,3 nmol / mg auf 6,7 ± 0,8 nmol / mg in isolierter Oxidase anstieg. Katalytische Aktivitäten von P. denitrificans Membranen des Parentalstamms und verschiedener Mutantenstämme zeigten, dass die Inaktivierung des Gens für fest gebundenes Cytochrom c552 die Bildung eines Superkomplexes nicht verhindern konnte, was ein Hinweis dafür ist, dass dieses Elektronen Carrier Protein nicht essentiell für die strukturelle Verbindung zwischen den Komplexen III und KIV ist. Komplex I Aktivität wurde ebenfalls in Membranen von Mutanten-Stämmen, denen Komplex III oder Komplex IV fehlte, gefunden. Jedoch enthielten diese Stämme keinen assemblierten Komplex I, sondern nur dissoziierte Untereinheiten des Komplexes. Trotz der Verwendung der selben Protokolle für die elektrophoretische Trennung und chromatographische Isolierung wie für Superkomplexe aus dem Wildtyp-Stamm, führte die Isolierung aus Mutantenstämmen, denen Komplex III oder IV fehlte, zum vollständigen Verlust der NADH:DBQ Oxidoreduktaseaktivität. Dies weist darauf hin, dass Paracoccus denitrificans Komplex I durch die Assemblierung in Form eines NADH Oxidase Superkomplex stabilisiert wird. Zusätzlich zum Substrat Channeling scheint die strukturelle Stabilisierung von Membran Protein Komplexen die Hauptaufgabe von respiratorischen Superkomplexen zu sein.