Refine
Year of publication
Document Type
- Doctoral Thesis (19)
Has Fulltext
- yes (19)
Is part of the Bibliography
- no (19)
Keywords
- Schmerz (3)
- Schmerzforschung (2)
- CNGA3 (1)
- CNGB1 (1)
- Cyclo-GMP (1)
- FTY720 (1)
- G alpha q (1)
- GPCR (1)
- HIF (1)
- Hinterhorn <Rückenmark> (1)
Institute
- Pharmazie (14)
- Biochemie und Chemie (3)
- Biochemie, Chemie und Pharmazie (1)
- Extern (1)
Die Arachidonsäurekaskade spielt bei Entzündungsprozessen und der Schmerzentstehung eine wichtige Rolle. Deren primäre Produkte, die Leukotriene und die Prostaglandine, sind entzündungsfördernde Mediatoren und nehmen Einfluss auf den Entzündungs-auflösendenprozess und sind bei einer Dysregulation für diverse Erkrankungen wie z.B. Asthma bronchiale und allergische Rhinitis mitverantwortlich. Die Kaskade gliedert sich mit ihren beiden Hauptenzymen, Cyclooxygenase und 5-Lipoxygenase (5-LO), in zwei Wege auf. Beide Enzyme sind außerdem in der Lage entzündungsauflösenden Mediatoren zu bilden. Die Mediatoren wie z.B. Lipoxin können im Zellstoffwechsel einerseits über die Lipoxygenase-Route, oder andererseits wie „aspirin-triggered“-Lipoxin von der durch geeignete Wirkstoffe acetylierten Cyclooxygenase-2 (COX-2) katalysiert werden. Diese Mediatoren werden benötigt, um (chronische) Entzündungen und beschädigtes Gewebe zurück zur Homöostase zu führen.
Die Pharmakotherapie chronisch entzündlicher Erkrankungen mit guter Wirksamkeit und verträglichem Profil bei Langzeiteinnahme stellt jedoch eine Herausforderung dar. Die Therapie verzögern oft, z. B bei Einnahme von nicht-steroidalen Antirheumatika (NSAR), die Entzündungsauflösung, da die Bildung von entzündungshemmenden und entzündungs-auflösenden Lipidmediatoren gehemmt werden. Die gezielte Modulation und Einflussnahme auf die Arachidonsäurekaskade an einem der beiden Enzyme, stellt daher einen guten Ansatz für eine verbesserte Therapiemöglichkeit von (chronischen) entzündlichen Krankheiten dar. Diese Arbeit beschäftigt sich mit der Synthese von Modulatoren und Inhibitoren der Arachidonsäurekaskade. Zum einen befasst sie sich mit der Entwicklung von irreversiblen COX-2-acetylierenden Substanzen als neues anti-entzündliches und entzündungsauflösendes Prinzip. Zum anderen mit der Untersuchung der Struktur-Wirkungsbeziehung (SAR) von 2-Aminothiazolen als direkte 5-LO-Inhibitoren ausgehend von SKI-II, welches zuvor als Leitstruktur zur Entwicklung von 5-LO-Inhibitoren entdeckt wurde.
Als Leitstrukturen für die irreversiblen COX-2-acetylierenden Substanzen wurden bekannte COX-2 selektive Substanzen ausgewählt sowie vereinzelte nicht-selektive NSAR. Es wurden an der COX-2 Kristallstruktur Docking-Studien durchgeführt, um die geeignetsten Positionen für die Einführung einer (labilen) Acetylgruppe zu identifizieren. Aufgrund dieser Studien wurden drei Positionen ausgewählt zur Derivatisierung. Es wurden daraufhin zahlreiche Derivate synthetisiert von Celecoxib, Valdecoxib, Rofecoxib, Etericoxib, als Vertreter der (COX-2) selektive Inhibitoren, sowie von Acetylsalicylsäure, Diclofenac und Nimesulid-Analoga als Vertreter der nicht-selektiven NSARs. Zusätzlich wurden Derivate synthetisiert mit Michael-Akzeptoren als kovalente bindende Komponente. Alle synthetisierten Substanzen wurden sukzessiv auf ihre COX inhibitorischen Eigenschaften hin untersucht und auf COX-2 Selektivitäten überprüft. Weiterhin wurden von allen Derivaten Auswaschungs-Studien durchgeführt als Vorversuche welche Derivate eine irreversible COX-2-Inhibition hervorrufen. In den Vorversuchen zeigte die Verbindung ST-1650 am deutlichsten eine COX-2-Selektivität sowie eine starke irreversible Inhibition der COX-2. Die Verbindung ST-1650 wurde weiterhin auf indirekte Hinweise zur Entstehung von heilungsfördernden Mediatoren untersucht anhand von: M1-Macrophagen Polarisation und einem Schmerzmodell, dem Zymosan-Überempfindlichkeit Pfotenmodell. Im Makrophagen-Modell konnte ST-1650 keine Phänotypverschiebung hinzu entzündungsauflösenden M2-Makrophagen bewirken, sowie in den Schmerzmodellen leider keine schnellere Schmerzauflösung als die Kontrollgruppe. Ob diese Effekte durch mangelnde oder zu geringer Entstehung von entzündungshemmenden Mediatoren zurückzuführen ist, ist noch unklar.
Für die SAR der 2-Aminothiazole als direkte 5-LO-Inhibitoren wurden über 60 Verbindungen synthetisiert und untersucht. Zu Beginn erfolgte eine Optimierung der Grundstruktur als 5-LO-Inhibitor. Es wurden die Einflüsse der Substituenten des Thiazolsrings und des Aminolinkers auf die 5-LO-Aktivität ermittelt, um die SAR initialer Arbeiten zu vertiefen. Nach der SAR-Untersuchung im intakten Zellsystem konnten durch Kombination bevorzugter Strukturelemente die zwei Verbindungen ST-1853 und ST-1906, als neue potente 5-LO-Inhibitoren entwickelt werden, die sich als nicht-toxisch herausstellten. Diese beiden 5-LO-Inhibitoren wirken um einen Faktor 10 potenter und sind weniger toxisch verglichen mit der Leitstruktur SKI-II. ST-1853 wurde innerhalb der Arachidonsäurekaskade auch auf Off-targets getestet, deren Aktivitäten sie erst bei 100-fach höherer Konzentration beeinflusst, sowie in humanem Vollblut, wo sie sich ihre 10-fach bessere Wirksamkeit im Vergleich zu SKI-II bestätigte. Darüber hinaus erwies sich ST-1853 bei den ersten Überprüfungen seiner Stabilität unter physiologischen Bedingungen wie bei der in vitro Metabolisierung durch Rattenlebermikrosomen als ausreichend stabil und daher zur weiteren Charakterisierung gut geeignet.
Synthese und Struktur-Wirkungsbeziehungen neuer rezeptorselektiver Dopamin-D 2- und -D 3-Liganden
(2003)
Dopaminrezeptoren gehören zur Familie der G-Protein-gekoppelten Rezeptoren, der bisher größten Rezeptorklasse. Seit der Identifizierung der zuvor unbekannten Rezeptorsubtypen D3-D5 in den Jahren 1990 und 1991 hat die Erforschung des dopaminergen Systems neuen Anschub erhalten, der maßgeblich auf das spezifische Vorkommen jeweiliger Subrezeptoren in diskreten Hirnarealen zurückzuführen ist. Während dopaminerge Neuronen an neurologischen und psychiatrischen Störungen wie Morbus Parkinson, Schizophrenie und Drogenmißbrauch bzw. -abhängigkeit seit geraumer Zeit in einen ursächlichen Zusammenhang gebracht werden, begründen die unterschiedlichen Charakteristika der Rezeptorsubtypen hinsichtlich Lokalisation, Aminosäuresequenz und pharmakologischem Verhalten die Hoffnung, mit subrezeptorselektiven Wirkstoffen neue therapeutische Ansätze verwirklichen zu können, die eine Reduktion der gravierenden, mit bisherigen Therapiekonzepten korrelierten Nebenwirkungen erlauben. In der vorliegenden Arbeit wurden, ausgehend von den D2- und D3-rezeptorbevorzugenden Wirkstoffen ST 177, L-741,626, ST 314, NAN190, ST 198 und BP 897, gezielte Modifikationen an unterschiedlichen Molekülteilen unternommen, um ihre jeweils charakteristischen pharmakologischen Eigenschaften stärker zu profilieren.
In vielen Tumorzellen kommt es zu einer Überexpression des Hypoxie-induzierbaren Faktor 1alpha (HIF-1alpha), was zu einer verbesserten Anpassung des Tumors an die intratumorale Hypoxie sowie zu einer Resistenz gegen Strahlen- und Chemotherapie führt. Je nach Tumor kann HIF-1alpha auf verschiedenen Wegen induziert werden. Eine Möglichkeit ist die Hemmung des Abbaus von HIF-1alpha über das 26S-Proteasom, wie z.B. beim van Hippel-Lindau (VHL)-Syndrom aufgrund einer Mutation im VHL Gen. Patienten mit VHL-Syndrom entwickeln häufig renal clearcell carcinomas (RCCs). In diesen Karzinomen kann HIF-1alpha nicht über den klassischen Weg über das 26S-Proteasom abgebaut werden. Um das Verständnis für alternative Regulationsmechanismen von HIF-1alpha zu erweitern, wurde mit RCC4-Zellen gearbeitet. Im ersten Teil der vorliegenden Arbeit konnte gezeigt werden, dass in RCC4-Zellen das HIF-1alpha-Protein unter Hypoxie, in Kombination mit NO, durch die Ca2+-abhängige Protease Calpain abgebaut wird. Unter Hypoxie kam es zu einem Anstieg der Produktion von reaktiven Sauerstoffspezies (ROS) in den Mitochondrien, die mit NO zu Peroxynitrit und weiteren reaktiven Stickstoffintermediaten (RNI) reagierten. Die kombinierte Stimulation der Zellen mit NO und O2- unter Normoxie löste ebenfalls einen Anstieg des intrazellulären Ca2+-Gehaltes und der Calpain-Aktivität aus, was gleichzeitig zu einem reduzierten HIF-1alpha-Proteingehalt führte. Der Calpain-vermittelte HIF-1alpha-Abbau konnte auch in Zellen mit funktionellem VHL-Protein (pVHL) durch NO und O2- ausgelöst werden, wenn der proteasomale Abbau gehemmt war. Diese Ergebnisse beschreiben einen neuen Regulationsmechanismus für das HIF-1alpha-Protein, der unabhängig vom Sauerstoffgehalt und vom 26S-proteasomalen Abbau durch NO/O2- und Calpain erfolgt. Bisher war noch nicht bekannt, dass HIF-1alpha anders als über das 26S Proteasom abgebaut werden kann. In der vorliegenden Arbeit konnte gezeigt werden, dass der Calpain-vermittelte Abbau neben dem proteasomalen Abbau zur Regulierung von HIF 1 beiträgt. In Tumorgeweben stellt nicht nur HIF-1, welches in den Tumorzellen aktiviert ist, einen Selektionsvorteil für die Zellen des Tumorgewebes dar. Ebenso tragen die Zellen des Tumorstromas, darunter die Makrophagen, die in den Tumor einwandern, zur Progression des Tumors durch die Anpassung an die hypoxischen Umgebung bei. Daher wurde im zweiten Teil dieser Arbeit die Regulation von HIF-1alpha in den durch konditioniertes Medium von apoptotischen Zellen (KMAZ) aktivierten Makrophagen und der Bedeutung der daraus resultierenden HIF-1-Aktivierung untersucht. Makrophagen, die durch apoptotische Zellen (AZ) aktiviert werden, stellen einen anti-inflammatorischen, pro-angiogenetischen Phänotyp dar, der vergleichbar mit dem der Tumor-assozierten Makrophagen (TAMs) ist. TAMs infiltrieren in das Tumorgewebe und sind essentiell am Übergang von einem avaskulären zu einem invasiven, vaskularisierten und malignen Tumor beteiligt. Unsere Arbeitsgruppe konnte in Vorarbeiten zeigen, dass Makrophagen zunächst Tumorzellen abtöten, wodurch die apoptotischen Tumorzellen Mediatoren (u.a. Sphingosin-1-Phosphat (S1P)) freisetzen, die eine Polarisierung zu einem alternativen, TAM-ähnlichen-Phänotyp der Makrophagen bewirken. Die Inkubation der Makrophagen mit KMAZ führte zu einer Induktion der HIF-1alpha-mRNA und des -Proteins unter Normoxie, was unabhängig von der Proteinstabilität auf eine gesteigerte Proteinsynthese zurückgeführt werden konnte. Weiterhin führte die Induktion von HIF-1alpha zu einer gesteigerten HIF-1-Aktivität. Die Differenzierung von Stammzellen zu CD31+-Endothelzellen wurde durch die Überstände von den durch KMAZ polarisierten Makrophagen HIF-1-abhängig hervorgerufen und ist ein Indiz für die Ausbildung des HIF 1-vermittelten pro-angiogenetischen Phänotyps der Makrophagen. Als Mediatoren, die von den AZ freigesetzt wurden und an der HIF-1alpha-mRNA-Induktion beteiligt sind, konnten S1P und transforming growth factor-beta (TGF-beta) identifiziert werden. Des Weiteren kommt es zu einer Aktivierung des nuclear factor of activated T-cells (NFAT), der an den HIF-1alpha-Promotor bindet und die Transkription induziert. Aufgrund der verstärkten Synthese kommt es zur Akkumulation von HIF-1alpha und zur Aktivierung von HIF-1. Bisher ist die Aktivierung von HIF-1 in TAMs durch die Lokalisation in hypoxischen Arealen erklärt und nicht weiter untersucht worden. Die Erkenntnisse über die Regulierung von HIF-1 durch AZ beschreiben einen neuen Mechanismus, der zur HIF-1-Aktivierung auch unter Normoxie führt. Dabei vermitteln AZ statt der beschriebenen hypoxischen Stabilisierung des HIF-1α-Proteins eine Induktion der HIF-1alpha-mRNA. Weiterhin zeigen die Ergebnisse eine Möglichkeit auf, wie TAMs bereits unter Normoxie zur Angiogenese Induktion in Tumoren beitragen können und erweitern damit das Verständnis, wie die Tumor-unterstützende Wirkung der TAMs vermittelt wird.
Mit der Identifizierung des Histamin-H3-Rezeptorsubtyps im Jahr 1983 begann eine umfangreiche Erforschung seiner Bedeutung und die Suche nach spezifischen Liganden. Die genaue Sequenzaufklärung und Klonierung des humanen Histamin-H3-Rezeptors (hH3R) erst 16 Jahre später ermöglichte eine detaillierte Aufklärung molekularer Vorgänge, deren Auswirkungen auf physiologische und pathophysiologische Prozesse sowie die Entwicklung selektiver hH3R-Liganden. Es zeigte sich, dass der Rezeptor nicht nur die zentrale und periphere Histaminkonzentration im Körper reguliert, sondern auch die Ausschüttung weiterer Neurotransmitter moduliert und damit Einfluss auf zahlreiche neurologische Prozesse nimmt. Diese Erkenntnis macht ihn zu einer wichtigen Zielstruktur bei der Erforschung neuer Therapieansätze verschiedener Erkrankungen des zentralen Nervensystems wie Demenz, Schizophrenie, Narkolepsie, Epilepsie, Adipositas oder neuropatischer Schmerz. Obwohl bereits mehrere Liganden bekannt sind, die diesen Rezeptor adressieren, stellt die Entdeckung alternativer Leitstrukturen und neuer Strukturklassen ein wichtiges Ziel für die Entwicklung potentieller Wirkstoffe dar. Auch das Defizit an bildgebenden Liganden und deren stetig wachsende Nachfrage für eine effiziente Wirkstoffentwicklung und eine detaillierte Rezeptoraufklärung machen den Bedarf an neuen hochselektiven hH3R-Liganden deutlich. Ausgehend von der im eigenen Arbeitskreis etablierten antagonistisch/invers agonistisch selektiv wirkenden 1-(3-Phenoxypropyl)piperidin-hH3R-Leitstruktur wurden zunächst rechtsseitige Strukturerweiterungen in para-Position des zentralen Phenylringes durchgeführt (Abb. 4.1). Hauptbestandteile dieser Substituenten waren basische Strukturelemente oder Heterozyklen mit starker Wasserstoffbrücken-Akzeptorfunktion...
More than 70 years ago, the effects of extracellular adenosine 5'-triphosphate (ATP), a newly identified and purified biomolecule at that time (Fiske and Subbarow, 1925; Lohmann, 1929) were observed by Drury and Szent-Györgyi (1929). Since then, many pharmacological studies were carried out with extracellular adenine nucleotides in various intact organ systems, isolated tissues, and purified cell preparations. Yet it was not until 1972 that Burnstock introduced the concept of "purinergic nerves" and suggested that ATP might fulfil the criteria generally regarded as necessary for establishing a substance as a neurotransmitter, summarised by Eccles (1964):
• synthesis and storage of transmitter in nerve terminals
Strips of guinea-pig taenia coli (GPTC) were shown to take up large amounts of tritium-labelled adenosine when incubated with tritium-labelled adenosine, adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP) and ATP. The nucleoside was rapidly converted into and retained largely as [ 3 H]-ATP (Su et al., 1971).
• release of transmitter during nerve stimulation
Spontaneous relaxation of GPTC as well as relaxations induced by nerve stimulation or nicotine, respectively, in the presence of compounds which block adrenergic and cholinergic responses were accompanied by a remarkable increase in release of tritium-labelled material from taenia coli incubated in [ 3 H]-adenosine (Su et al., 1971).
• postjunctional responses to exogenous transmitters that mimic responses to nerve stimulation
Burnstock et al. (1966) characterised ATP and ADP as the most potent inhibitory purine compounds in the gut and observed that the effects of ATP mimic more closely the inhibitory response of the taenia to non-adrenergic nerve-stimulation than to adrenergic nerve stimulation (Burnstock et al., 1970).
enzymes that inactivate the transmitter and/or uptake systems for the transmitter or its breakdown products
When ATP was added to a perfusion fluid recycled through the vasculature of the stomach, very little ATP remained, but the perfusate contained substantially increased amounts of adenosine and inosine, as well as some ADP and AMP (Burnstock et al., 1970).
• drugs that can produce parallel blocking of potentiating effects on the responses of both exogenous transmitter and nerve stimulation
Tachyphylaxis to ATP produced in the rabbit ileum resulted in a consistent depression of responses to non-adrenergic inhibitory nerve stimulation, whereas responses to adrenergic nerve stimulation remained unaffected (Burnstock et al., 1970). Lower concentrations of quinidine reduced and finally abolished relaxation of GPTC induced by noradrenaline (NA) and by adrenergic nerve stimulation. Using higher concentrations of the compound, relaxant responses of GPTC to ATP as well as to non-adrenergic inhibitory nerve stimulation were abolished (Burnstock et al., 1970). ...
Bei anhaltenden Schmerzen wird im Rückenmark zyklisches Guanosinmonophosphat (cGMP) gebildet, welches zur zentralen Sensibilisierung des nozizeptiven Systems beiträgt. In dieser Arbeit wurde untersucht, ob zyklisch Nukleotid-gesteuerte Kanäle (CNG-Kanäle) im nozizeptiven System exprimiert werden und Effektoren der cGMP-vermittelten Schmerz-verarbeitung darstellen könnten. Im Rahmen der Untersuchungen wurden insbesondere die CNG-Kanal-Untereinheiten CNGA3 und CNGB1 als potentielle cGMP-‚Targets‘ in der Schmerzverarbeitung identifiziert. Die Expression von CNGA3 wird infolge einer nozizeptiven Stimulation der Hinterpfote der Maus im Rückenmark und in den Spinalganglien hochreguliert. Mittels In situ-Hybridisierung konnte eine neuronale Lokalisation von CNGA3 in inhibitorischen Interneuronen im Hinterhorn des Rückenmarks detektiert werden, wohingegen CNGA3 in den Spinalganglien nicht-neuronal exprimiert wird. Überraschenderweise wiesen Mäuse mit einem CNGA3-Knockout (CNGA3-/--Mäuse) ein gesteigertes nozizeptives Verhalten in Modellen für inflammatorische Schmerzen auf, während ihr Verhalten in Modellen für akute und neuropathische Schmerzen normal ausfiel. Zudem entwickelten CNGA3-/--Mäuse nach intrathekaler Applikation von cGMP-Analoga oder NO-Donoren eine verstärkte Allodynie. Die CNG-Kanal-Untereinheit CNGB1 wird ebenfalls in Rückenmark und Spinalganglien exprimiert. Im Rückenmark wird die CNGB1-Expression infolge eines nozizeptiven Stimulus der Hinterpfote nicht reguliert, während in den Spinalganglien eine Hochregulation stattfindet. Mit immunhistochemischen Färbungen konnte CNGB1 in Neuronen im Hinterhorn des Rückenmarks, aber auch diffus verteilt in Laminae I bis III des Hinterhorns lokalisiert werden. Auch Mäuse mit einem CNGB1-Knockout (CNGB1-/--Mäuse) zeigten ein gesteigertes nozizeptives Verhalten in einem Modell für inflammatorische Schmerzen und entwickelten außerdem eine verstärkte Allodynie nach i.t. Injektion eines cGMP-Analogons. Diese Ergebnisse lassen vermuten, dass CNGA3 und CNGB1 als ‚Targets‘ des cGMP-vermittelten Signalweges im Rückenmark in inhibitorischer Weise zur zentralen Sensibilisierung während inflammatorischer Schmerzen beitragen. Eine spezifische pharmakologische Aktivierung von CNG-Kanälen im Rückenmark könnte potentiell eine neue Möglichkeit sein, inflammatorische Schmerzen zu hemmen.
Dopamin-D2- und -D3-Rezeptorliganden als pharmakologische Werkzeuge und potenzielle Arzneistoffe
(2007)
Mit der Identifizierung der D2-ähnlichen Rezeptoren D2, D3 und D4 um das Jahr 1990 herum, begann die Erforschung deren physiologischer Bedeutung und die Suche nach selektiv bindenden Liganden. Die einzelnen Rezeptorsubtypen unterscheiden sich in ihrer Struktur, chromosomalen Lokalisation, Expressionsrate, anatomischen Verteilung und intrazellulären Signalweiterleitung. Verglichen mit D2-Rezeptoren sind D3-Rezeptoren insgesamt geringer an ihrer Zahl, weisen aber ein charakteristisches Verteilungsmuster im ZNS auf. Um eine vorwiegende Wirkung über D3-Rezeptoren hervorrufen zu können, ist eine Bindungsselektivität der Liganden gegenüber D2-Rezeptoren erforderlich, durch die die unterschiedliche Häufigkeit der beiden Rezeptorsubtypen wieder ausgeglichen wird. In einer richtungsweisenden Arbeit wurde 2003 die Rolle der D3-Rezeptoren in der Therapie des Morbus Parkinson und der Entstehung von L-DOPA-induzierten Dyskinesien aufgezeigt. Neuste Untersuchungen geben valide Hinweise auf klinisch relevante neuroprotektive und neuroregenerative Effekte bei Behandlung der neurodegenerativen Erkrankung mit D3-Rezeptoragonisten. Das Rückfallrisiko ehemals Drogenabhängiger durch mit dem Suchtstoff in Zusammenhang gebrachte Umweltstimuli ist entscheidend mit dem gleichen Rezeptorsubtyp verbunden. Die mögliche Behandlung Drogenabhängiger mit D3-Rezeptorliganden wird gegenwärtig intensiv untersucht. Mangels geeigneter Tiermodelle bisher wenig erforscht ist die therapeutische Bedeutung der D3-Rezeptorliganden bei schizophrenen Erkrankungen.Möglicherweise liegt hier ein besonderes Potential in der Behandlung von Negativsymptomen. Der im Handel befindliche Arzneistoff Pramipexol (Sifrol®) diente als Leitstruktur für die Synthese zahlreicher Liganden an D2- und D3-Rezeptoren. Weitere Leitstrukturen wurden im Rahmen der vorliegenden Arbeit identifiziert und variiert. In einem ersten Schritt wurde die Bedeutung der 2-Aminogruppe an der Thiazolstruktur des Pramipexols untersucht. Sollte diese entgegen der in der Literatur verbreiteten Ansicht für die Ligand-Rezeptorinteraktion entbehrlich sein, könnten Verbindungen mit höherer Lipophilie und damit optimierter ZNS-Gängigkeit geschaffen werden. Für das L-Etrabamin, einem 2-unsubstituierten Derivat des Pramipexols, wurde bereits 1978 in einem Patent eine dopaminerge Aktivität beschrieben. Entgegen der in der Literatur verbreiteten Auffassung konnten durch Austausch der Aminogruppe gegen verschiedene Substituenten affine Derivate des Pramipexols entwickelt werden. Darüber hinausgehende Veränderungen der Leitstruktur dienten dem Aufbau umfangreicher Struktur-Wirkungsbeziehungen. Die Entwicklung einer konvergenten Synthesestrategie ermöglichte die Darstellung einer größeren Anzahl komplexer zusammengesetzter Etrabaminderivate. Die Umsetzung von Pramipexolderivaten zu den entsprechenden Diazoniumsalzen und anschließende Reduktion mit Hypophosphoriger Säure verbesserte die Verfügbarkeit von Etrabamin und seinen Derivaten gegenüber in der Literatur beschriebenen Synthesen. Das resultierende Etrabaminderivat konnte mit Aldehyden unter Verwendung komplexer Hydride reduktiv alkyliert werden. Die Aldehyde wurden entweder durch Acetalhydrolyse oder durch SWERN-Oxidation von Alkoholen erhalten. ....
Development and characterization of histamine H3 and H4 receptor ligands as pharmacological tools
(2010)
Histamin gilt seit seiner Entdeckung vor ungefähr 100 Jahren als ein wichtiger chemischer Botenstoff im Organismus. Der Transmitter vermittelt pleiotrope Effekte über vier bisher bekannte G-Protein-gekoppelte Rezeptoren (H1R-H4R), die in die Regulation vielfältiger physiologischer Funktionen involviert und an der Entstehung von Krankheiten beteiligt sind. Antagonisten der ubiquitär im Organismus exprimierten H1R und H2R werden weitreichend zur Therapie von allergischen Erkrankungen bzw. Geschwüren im Gastrointestinaltrakt eingesetzt. H3R und H4R sind die jüngsten Vertreter der Histamin-Rezeptor-Klasse (HR). Auf molekularer Ebene zeigen diese beiden Subrezeptoren einen hohen Verwandtschaftsgrad. Sie ähneln sich u.a. bezüglich ihrer Aminosäuresequenz, ihrer Struktur und der Bindungseigenschaften von Liganden. Beide sind funktionell an inhibitorische/olfaktorische G-Proteine gekoppelt. Negative Rückkopplungsmechanismen werden durch ein hohes Maß an konstitutiver Aktivität ermöglicht. Dies unterstreicht die modulierende Funktion beider Rezeptoren, die wichtige physiologische Prozesse im Gleichgewicht hält. Als Auto- und als Heterorezeptor kommt der H3R hauptsächlich im zentralen Nervensystem vor. Er kontrolliert die Synthese und Freisetzung seines endogenen Liganden, moduliert aber auch die Konzentration anderer Neurotransmitter im synaptischen Spalt, die aus ko-lokalisierten Neuronen freigesetzt werden. Aus diesem Grund nimmt das neuronale histaminerge System eine entscheidende Rolle in der Erhaltung physiologischer Prozesse, wie z.B. Erregung, Aufmerksamkeit und Ernährungsverhalten, ein. Ein Ungleichgewicht der Neurotransmitterkonzentrationen kann die Entstehung neuronaler Erkrankungen verursachen, z.B. neurodegenerative Erkrankungen, Aufmerksamkeitsstörungen oder Übergewicht. Pitolisant ist der erste inverse H3R-Agonist, der sich in Phase III der klinischen Prüfung befindet. Sein erfolgreicher Einsatz bei verschiedenen pathophysiologischen Zuständen kann als Beweis für das H3R-antagonistische Therapieprinzip angesehen werden. Im Gegensatz zum H3R wird der H4R hauptsächlich in der Peripherie exprimiert, wo er an der Modulation des Immunsystems und an der Entstehung entzündlicher Prozesse beteiligt ist. Ergebnisse aus ersten präklinischen Studien sind teilweise widersprüchlich,weisen aber darauf hin, dass H4R-Liganden potenziell zur Therapie von allergischen und entzündlichen Erkrankungen entwickelt werden könnten. In beiden Forschungsgebieten müssen fundamentale Fragen noch geklärt werden, z.B. die Bedeutung von Rezeptor-Isoformen, die Rolle von Rezeptor-Heterodimeren oder die Aufklärung therapeutischer Prinzipien. Zudem müssen Liganden-Bindundgsmodi charakterisiert werden, um in der Zukunft weitere Bindungsareale in den jeweiligen Bindetaschen optimal zu nutzen. Hierdurch können Affinität, Aktivität und Selektivität von Liganden gesteuert werden. Diese Fragestellungen verdeutlichen den Bedarf an neuen Leitstrukturen und pharmakologischen Werkzeugen, die im Rahmen dieser Arbeit synthetisiert wurden. Im Vordergrund des H3R-Projektes standen Prinzipien des bioisosteren Austauschs, um dadurch die Entwicklung verschiedener Vorstufen für Liganden zum Einsatz in bildgebenden Verfahren zu ermöglichen. Ziel des H4R-Projektes war die Etablierung einer neuen Leitstruktur sowie deren Modifikation und Optimierung, um eine für die Aufstellung von Struktur-Wirkungsbeziehungen geeignete Substanzbibliothek zu erhalten. Mit Hilfe verschiedener In-vitro- und In-silico-Experimente wurde diese Bibliothek zur Charakterisierung der H4R-Bindetasche herangezogen und kann zukünftig auch in-vivo verwendet werden. Zu Beginn der Arbeit wurde von wenigen bekannten H4R-Liganden ein Pharmakophormodell abgeleitet. In seinen Grundbausteinen zeigte es große Ähnlichkeit zu einem schon etablierten H3R-Antagonist-Modell, was den hohen Verwandtschaftsgrad der Zielstrukturen widerspiegelte und auf überlappende Struktur-Wirkungsbeziehungen hinwies. Für die Synthese der Liganden bedeutete dies, dass präparative Methoden von einem auf das andere Gebiet übertragen werden konnten. Aufgrund des unterschiedlichen Forschungsstandes werden beide Projekte im Folgenden getrennt behandelt. Die Synthese der nötigen Vorstufen zur Darstellung von H3R-Antagonisten/inversen Agonisten wurde mittels im Arbeitskreis evaluierter Methoden durchgeführt. Standardmethoden wie reduktive Aminierungs- oder Amidierungsreaktionen wurden herangezogen, um das 1-(3-Phenoxypropyl)piperidin-H3R-Pharmakophor (1) zu erweitern. Zusätzlich wurden Triazole als alternative verknüpfende Elemente erprobt, um ein zweites basisches Zentrum, das potenziell Nebenwirkungen hervorruft, zu vermeiden. Die Triazole wurden in einem Klick-Chemie-Ansatz mittels 1,3-dipolarer Zykloaddition nach HUISGEN dargestellt. Sowohl die Zyklisierung als auch die Synthese entsprechender Azid-Vorstufen wurden erfolgreich etabliert und für die Synthese von Liganden aminerger Rezeptoren optimiert. Phenyl- und Benzylgruppen wurden mit dem H3R-Pharmakophor 1 verknüpft, um eine strukturelle Basis zu erhalten, die den Vergleich mit weiteren Liganden ermöglicht. Im Folgenden wurden der zentrale Phenylether sowie die Arylreste im rechten Teil des Pharmakophors durch derartige Gruppen ersetzt, die komplexierende Eigenschaften besitzen und damit zur Darstellung von entsprechenden SPECT (dt. Einzelphotonen- Emissions-Tomografie)-Liganden geeignet sind. Der elektronenziehende und sterisch anspruchsvolle Charakter der Trifluormethylgruppen in Verbindungen 8–10 spiegelt sich sowohl in der reduzierten chemischen Aktivität der jeweiligen Edukte als auch in der nur moderaten H3R-Affinität wider. Daher wurden diese Elemente nicht weiter verfolgt. Mit den Ferrocen-Derivaten 11–15 wurden zum ersten Mal metallhaltige H3R-Liganden entworfen. Die pharmakologische Charakterisierung dieser Verbindungen zeigte, dass die Sandwichkomplexe sich hervorragend zum bioisosteren Ersatz der Phenylreste eignen. Die Affinitäten der analogen Verbindungen sind vergleichbar und liegen im niedrigen nanomolaren Konzentrationsbereich. Der invers-agonistische Charakter des H3RPharmakophors wurde anhand der Verbindungen 11 und 15 bestätigt. Eine vorläufige invivo-Testung der hochaffinen Diamine 11 und 12 zeigte keine zufriedenstellenden Ergebnisse und muss durch weiterführende Untersuchungen ergänzt werden. Verbindung 15 wurde zur Weiterentwicklung zu einem potenziellen SPECT-Liganden ausgewählt. Die elektronenziehenden Eigenschaften des verknüpfenden Triazols erleichterten die Umkomplexierung des Ferrocens zu einem (Tricarbonyl)rhenium-Derivat, jedoch konnten Probleme bei der Aufreinigung einer nicht-radioaktiv markierten Analogverbindung mit den zur Verfügung stehenden chromatographischen Methoden nicht bewältigt werden. Gleichwohl wurden mit den Ferrocen-Verbindungen wertvolle bioisostere Analoga entsprechender SPECT-Liganden synthetisiert. Die Einführung von polaren Kojisäure-Derivaten stellte einen weiteren Ansatz zur Entwicklung von Liganden mit komplexierenden Eigenschaften dar. Außerdem sollten die Molekülgröße reduziert werden, um die Blut-Hirn-Gängigkeit zu erleichtern, und neue Leitstrukturen mit potenziell neuroprotektiven Eigenschaften entwickelt werden. In einem Nebenprojekt wurden Rac1-Inhibitoren dargestellt, die Kojisäure als zentrales Element aufwiesen. Die hier etablierten Synthesewege wurden zur Darstellung der H3RLiganden genutzt. Trotz erheblicher, für g-Pyranone typischer Nebenreaktionen konnte eine Reihe von H3R-Liganden synthetisiert werden (18–24). Die Affinitäten dieser Verbindungen zeigten eine auf den rechten Teil des H3R-Pharmakophors beschränkte bioisostere Potenz von Kojisäure-Derivaten. Besonders die Diamine aus dieser Serie sind als Leitstrukturen für die Entwicklung neuroprotektiver Liganden geeignet. Die neuen H3R-Liganden enthalten außergewöhnliche strukturelle Elemente, die in dieser Art zum ersten Mal am H3R getestet wurden. Die Ergebnisse aus den Bindungsstudien zeigten Grenzen und Möglichkeiten des bioisosteren Ersatzes im zentralen und im rechten Teil des Pharmakophors. Die Verbindungen sind wertvolle Modellsubstanzen, die zur Charakterisierung von lipophilen und hydrophilen Arealen in der H3R-Bindetasche verwendet werden können, und eignen sich als Leitstrukturen, um neue H3R-Liganden mit verschiedenen pharmakologischen Schwerpunkten zu entwickeln. Basierend auf einem von wenigen Referenzliganden abgeleiteten Pharmakophormodell wurde das H4R-Projekt mit verschiedenen Screening-Verfahren initiiert. In-silico wurde nach Fragmenten und neuen Pharmakophoren gesucht, um diese im Folgenden mit Hilfe von klassischen Verfahren der medizinischen Chemie zu modifizieren und zu optimieren. Innerhalb einer Strukturklasse wurden zunächst nur wenige Verbindungen synthetisiert. Zeigten diese ein unzureichendes Bindungsverhalten, wurde die Entwicklung eingestellt. In einem virtuellen Screening wurden zwei heterozyklische Strukturen mit Affinitäten im niedrigen mikromolekularen Konzentrationsbereich identifiziert, die zur Entwicklung einer Reihe von Aminopyrimidinen führten. Ähnliche Verbindungen wurden zeitgleich zu unserem Projekt von der pharmazeutischen Industrie untersucht und durch weitreichende Patente geschützt. Die neue Leitstruktur, N4-Benzyl-6-(4-methylpiperazin-1-yl)pyrimidin-2,4-diamin (46), wurde umfangreich derivatisiert. Prinzipien wie Heteroatom-Austausch, Rigidisierung und Modifikation des Substitutionsmusters am Benzylring nach TOPLISS wurden angewendet, um das Pharmakophor hinsichtlich Affinität, Funktionalität und Selektivität zu diversifizieren und zu optimieren. Die Synthese der Verbindungen 44–71 erfolgte hauptsächlich unter Mikrowelleneinstrahlung. Da konventionelle präparative Methoden keine Produktbildung ermöglichten, wurde eine sequentielle Mikrowellensynthese etabliert, mit Hilfe derer die gewünschte Umsetzung schnell und in hohen Ausbeuten erzielt wurde. Initialschritte zur Darstellung von Fluoreszenzliganden, die auf dem Aminopyrimidin-Pharmakophor basieren, wurden mit Verbindungen 72–75 erfolgreich realisiert. Bezüglich ihrer H4R-Affinität sollten diese Liganden in Zukunft weiter optimiert werden. Struktur-Wirkungsbeziehungen der Verbindung 46 und entsprechender Derivate zeigten, dass Affinitäten im niedrigen nanomolaren Konzentrationsbereich durch die Einführung kleiner, lipophiler benzylischer Substituenten in ortho-Position erreicht werden (z.B. durch 2-Cl- und 2-CH3-Reste in Verbindungen 58 und 59). In Verdrängungsstudien wurde das Bindungsverhalten ausgewählter Verbindungen an anderen HR-Subtypen untersucht. Die Liganden zeigten Selektivität in Bezug auf H1R und H2R und eine Präferenz für den H4R gegenüber H3R. Das 2,6-Dichlor-Derivat 62 stellte eine der potentesten und selektivsten Verbindungen dieser Serie dar. Das Substitutionsmuster des Benzylrestes beeinflusste die Effektivität der Liganden in großem Maße: Ortho- und para-substituierte Verbindungen zeigten in [35S]GTPgS-Bindungsstudien Partialagonismus. Mit steigendem Radius der para-Substituenten wurde eine Verschiebung zum neutralen Antagonismus und zum schwachen inversen Agonismus beobachtet, während meta-Substituenten ausgeprägten inversen Agonismus verursachten. Dieser wurde durch die Rigidisierung der Benzylamin-Gruppierung weiter verstärkt. Verbindung 69 zeigte sogar eine höhere invers agonistische Potenz als der Referenzligand Thioperamid. Um Hinweise auf die strukturellen Voraussetzungen für Agonismus und Antagonismus zu erhalten, wurde eine Moleküldynamiksimulation durchgeführt. Nach der virtuellen Ligandenbindung nahmen der Partialagonist 49 und der inverse Agonist 69 gegensätzliche Bindemodi in der H4R-Bindetasche ein. Die Bindung des inversen Agonisten wurde durch einen scheinbaren „ionic lock“, der hier zum ersten Mal postuliert wurde, stabilisiert. Da in-silico-Experimente von anderen Forschergruppen teilweise gegensätzliche Ergebnisse zeigten, sollten zusätzliche Untersuchungen durchgeführt werden, um zu klären, ob unterschiedliche Bindemodi durch gegensätzlicher Effektivitäten oder verschiedene Pharmakophore hervorgerufen werden. Die Aminopyrimidine stellen exzellente pharmakologische Werkzeuge dar. Die große Diversität bezüglich der Effektivität, die innerhalb einer Strukturklasse vom Partialagonismus bis zum inversen Agonismus reicht, bietet eine geeignete Grundlage, um potenzielle therapeutische Anwendungsbereiche von H4R-Liganden zu untersuchen und zu klären, welche Effekte aus der Aktivierung, Blockade oder Hemmung des H4R resultieren. Klassische Methoden der medizinischen Chemie wurden zur Entwicklung von Liganden zweier eng verwandter Zielstrukturen, H3R und H4R, verwendet. Im H4R-Projekt wurden zusätzlich Computer-gestützte Methoden herangezogen. Die Modifizierung und Optimierung verschiedener Leitstrukturen führte zu der Synthese von 75 Endverbindungen. Das H3R-Projekt, aus dem 22 dieser Verbindungen resultierten, fokussierte auf Prinzipien des Bioisosterismus. Triazole, Ferrocene und Kojisäure-Derivate wurden zum ersten Mal in ein H3R-Pharmakophor integriert. Die Eignung dieser Elemente als bioisosterer Ersatz des zentralen Phenylethers oder der Arylreste im rechten Molekülteil wurde untersucht. Mit dem hieraus gewonnenen Wissen wurden SPECT-Ligand-Vorstufen optimiert. Neue Leitstrukturen mit außergewöhnlichen Elementen stellen zudem Modellsubstanzen dar, die zur anhaltenden Charakterisierung der H3R-Bindetasche dienen. Auf dem H4R-Gebiet gehören die Aminopyrimidine zu einer der am weitesten entwickelten Substanzklassen. Die Derivatisierung der 31 synthetisierten Verbindungen verspricht neue Kenntnisse über diese Stoffklasse. Vor allem inverse Agonisten sollten auf ihre therapeutische Anwendbarkeit als Immunmodulatoren untersucht werden. Eine solche Effektivität könnte strukturell durch die Modifikation der meta-substituierten Aminopyrimidine oder durch die Verzweigung der benzylischen Methylengruppe erreicht werden. Eine ausführliche Charakterisierung der in Bezug auf Affinität und Effektivität vielversprechendsten Derivate, z.B. des 2,6-Dichlor-Derivates 62 oder der inversen Agonisten 68-70, sollte in naher Zukunft durchgeführt werden. Um in-vitro-Daten auf präklinische Tierstudien übertragen zu können, sollten die Liganden zusätzlich an H4Rs unterschiedlicher Arten getestet werden, da Spezies-Unterschiede eine solche Extrapolation derzeit nicht zulassen. Anschließend können die Aminopyrimidine als pharmakologische Werkzeuge in grundlegenden pharmakologischen Experimenten eingesetzt werden, um die Untersuchung der (patho)physiologischen Bedeutung des H4R fortzuführen.
Der G-Protein-gekoppelte Histamin-H3-Rezeptor (H3R) ist einer von vier bekannten Histamin-Rezeptorsubtypen. Die Verbreitung erstreckt sich hauptsächlich auf das ZNS, wo der Rezeptor maßgeblich an der Regulation des Schlaf-Wach-Rhythmus, der Kognition, der Aufmerksamkeit und dem Ernährungsverhalten beteiligt ist. Als Autorezeptor reguliert er die Darstellung und Freisetzung von Histamin im Gehirn und moduliert darüberhinaus als Heterorezeptor auch die Konzentration anderer wichtiger Neurotransmitter. Ein Ansatz für die Entwicklung neuer Arzneistoffe bei multifaktoriellen Erkrankungen entspringt der Hybridtheorie. In dieser Arbeit wurde der Hybridansatz durch verschiedene Varianten realisiert, bei denen die jeweiligen Pharmakophore durch Überlappung oder Aneinanderkopplung verknüpft wurden. Als Grundstruktur für das H3-Pharmakophor diente das 4-(3-Piperidin-1-ylpropoxy)-phenyl-Element, als andersartige Pharmakophore dienten neben Arzneistoffen aus der Gruppe der Neuroleptika, Antidepressiva und SSRI auch solche Pharmakophore, die das Wirkprofil von H3R-Liganden durch spezifische Eigenschaften (z. B. neuroprotektiv) ergänzen können. Bei der Kopplung der Pharmakophore lag der Fokus auf der Untersuchung von Aminvariationen. Mit Hilfe des Hybridansatzes wurden in dieser Arbeit zahlreiche neue und potente Histamin-H3-Hybridliganden entwickelt. Es wurden hohe Bindungsaffinitäten im nano- bis subnanomolare Bereich erzielt und wichtige Struktur-Wirkungsbeziehungen abgeleitet. In-vitro zeigte sich eine hohe Toleranz des H3R bezüglich der heterogenen Liganden, darunter solche mit sterisch anspruchsvollen, stark basischen und sauren Gruppen.