Refine
Year of publication
Document Type
- Doctoral Thesis (16)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- Amphisphaeriales (1)
- Chlorophyll Fluorescence (1)
- Climate Change (1)
- Functional Ecology (1)
- Pestalotia (1)
- Pestalotiopsis (1)
- Plant regeneration (1)
- Plant regeneration; community assembly; diversity (1)
- Plant stress (1)
- Quercus (1)
Institute
The transition from the marine to the terrestrial realm is one of the most fascinating issues in evolutionary biology for it required the appearance, in different organisms, of several novel adaptations to deal with the demands of the new realm. Adaptations include, for instance, modifications in different metabolic pathways, development of body structures to facilitate movement and respiration, or tolerance to new conditions of stress. The transition to the land also gives an extraordinary opportunity to study whether evolution used similar changes at the genomic level to produce parallel adaptations in different taxa. Mollusks are among taxa that were successful in the conquest of the land. For instance, several lineages of the molluscan clade Panpulmonata (Gastropoda, Heterobranchia) invaded the intertidal, freshwater and land zones from the marine realm. In my dissertation, using tools from bioinformatics, phylogenetics, and molecular evolution, I used panpulmonates as a suitable model group to study the independent invasions into the terrestrial realm and the adaptive signatures in genes that may have favored the realm transitions. My work includes two peer-reviewed published papers and one manuscript under review. In Publication 1 (Romero et al., 2016a), I used mitochondrial and nuclear molecular markers to resolve the phylogeny of the Ellobiidae, a family that possesses intertidal and terrestrial species. The phylogeny provided an improved resolution of the relationships within inner clades and a framework to study the tempo and mode of the land transitions. I showed that the terrestrialization events occurred independently, in different lineages (Carychiinae, Pythiinae) and in different geological periods (Mesozoic, Cenozoic). In addition, the diversification in this group may not have been affected by past geological or climate changes as the Cretaceous-Paleogene (K-Pg) event or the sea-level decrease during the Oligocene. In Publication 2 (Romero et al., 2016b), I generated new mitochondrial genomes from terrestrial species and compared them with other panpulmonates. I used the branch-site test of positive selection and detected significant nonsynonymous changes in the terrestrial lineages from Ellobioidea and Stylommatophora. Two genes appeared under positive selection: cob (Cytochrome b) and nad5 (NADH dehydrogenase 5). Surprisingly, I found that the same amino acid positions in the proteins encoded by these genes were also under positive selection in several vertebrate lineages that transitioned between different habitats (whales, bats and subterranean rodents). This result suggested an adaptation pattern that required parallel genetic modifications to cope with novel metabolic demands in the new realms. In Manuscript 1 (Romero et al., under review), I de novo assembled transcriptomes from several panpulmonate specimens resulting in thousands of genes that were clustered in 702 orthologous groups. Again, I applied the branch-site test of positive selection in the terrestrial lineages from Ellobioidea and Stylommatophora and in the freshwater lineages from Hygrophila and Acochlidia. Different sets of genes appeared under positive selection in land and freshwater snails, supporting independent adaptation events. I identified adaptive signatures in genes involved in gas-exchange surface development and energy metabolism in land snails, and genes involved in the response to abiotic stress factors (radiation, desiccation, xenobiotics) in freshwater snails. My work provided evidence that supported multiple land invasions within Panpulmonata and provided new insights towards understanding the genomic basis of the adaptation during sea-to-land transitions. The results of my work are the first reports on the adaptive signatures at the codon level in genes that may have facilitated metabolic and developmental changes during the terrestrialization in the phylum Mollusca. Moreover, they contribute to the current debate on the conquest of land from the marine habitat, a discussion that has been only based in vertebrate taxa. Future comparative genome-wide analyses would increase the number of genes that may have played a key role during the realm transitions.
The fungal genus Pestalotiopsis s.l. contains approximately 300 described species and is globally distributed. The monotypic genus Pestalotia is considered the closest relative of Pestalotiopsis s.l. This study aims to investigate the diversity and systematics within Pestalotiopsis s.l. and its relation to Pestalotia. Therefore, an integrative approach is used considering molecular phylogeny methods as well as examination of morphological characters.
Recently, Pestalotiopsis s.l. was split into three genera with the addition of the newly erected Neopestalotiopsis and Pseudopestalotiopsis. The species of these genera are usually saprotrophic, phytoparasitic, or endophytic, and have been isolated from soil, air, and many kinds of anorganic material. The asexual fruiting bodies appear on infected plant material as black acervuli that release conidia. The conidia are important to examine for morphological taxon recognition. The number of conidial cells is the feature that distinguishes Pestalotiopsis s.l. spp. with five celled conidia, from Pestalotia pezizoides with six celled conidia. However, the significance of morphological characters is controversially discussed among mycologists. In recent years, 55 new species were described based on minor genetic distances and marginal or no morphological differences. Thus, the value of certain morphological characters and genetic markers need to be reconsidered.
In this study, 102 herbarium specimens of 26 described species, with an emphasis on plant pathogenic species from North America, have been morphologically examined and documented through drawings and photographs. Morphological examination was complemented with a comprehensive molecular dataset obtained from 191 cultures representing the genera Neopestalotiopsis, Pestalotia, Pestalotiopsis, Pseudopestalotiopsis, and Truncatella. One novelty of this work is that, besides the well-established markers ITS, TEF1, and ß-tubulin, the protein-coding genes MCM7 and TSR1 were successfully sequenced and included in the analyses. Phylogenies using Maximum Likelihood and Bayesian inference methods of single loci and the combined dataset were calculated. By comparison of these phylogenies, MCM7 was identified as the most powerful one in terms of phylogenetic resolution and statistical support of nodes and is proposed as an additional barcoding marker in Pestalotiopsis s.l.
In Pestalotiopsis, species delimitation was tested using the Baysian Phylogenetics and Phylogeography (BP&P) program that tests an existing species scenario against Bayesian inference methods under a multispecies coalescent model. The program supported only ten species out of the predetermined 19 species scenario. Measurements of conidia for species detected by BP&P were explored using a TukeyHSD-Test in the program R to find means that are significantly different from each other. This test revealed that combinations of morphological characters are required to distinguish between the ten species found by BP&P.
Another purpose of this work was to clarify the status of Pestalotia with regard to Pestalotiopsis s.l. Therefore, fresh epitypic material of Pestalotia pezizoides, was collected, isolated, and cultivated. The molecular analysis of a combined dataset of the gene regions ITS and LSU for species of Amphisphaeriales nested P. pezizoides in the genus Seiridium. Thus, synonymy of Pestalotia with Seiridium is proposed here. This is supported by morphology of the conidia. Further, an epitype is proposed for the type species of Pestalotiopsis, P. maculans. On the other hand, the recently proposed epitype of P. adusta is rejected here as it conflicts with the taxonomic hypothesis obtained in this study and its introduction is inconsistent with the formal requirements for epitypification. A new topotypic specimen is proposed instead. Additionally, several nomenclatural changes become necessary in many species examined. These include three new combinations and six synonyms of species of Pestalotiopsis s.l.
The conclusion of this work is that morphological data have potential as a valuable, inexpensive and easy way to recognize species. However, it is not the best method for species discovery and delimitation bearing in mind that in microfungi and many other organisms, individual plasticity and analogous structures are inadequately investigated. By phylogenetic analyses of molecular sequence data, it is possible to compare a great amount of equivalent characters and to delimit species that are morphologically cryptic. This is especially important since species of Pestalotiopsis s.l. mostly lack sexual structures that are helpful for morphological species delimitation in other groups of fungi. Thus, the Genealogical Concordance Species Concept (GCSC) finds its application in many fungal taxa. Conflicts in the genealogy between phylogenetic trees of different markers are interpreted as recombination of the genetic material within a linage. Accordingly, the change from conflict to congruence in a set of different phylogenetic trees can be seen as the species limit. It can be expected that increased application of the GCSC will lead to further approximation of described species numbers to the real number of species, especially in complicated groups like asexual microfungi.
Soil fungal communities are an essential element in the terrestrial ecosystem, however their response to ongoing anthropogenic climate change is currently poorly understood. Fungi are one of the most abundant groups of microbes in soil, they are mainly responsible for the decomposition of organic matter (Baldrian et al., 2012; Buée et al., 2009). By binding carbon in soil, fungi thus maintain an important role in the global carbon cycle (Bardgett et al., 2008). Future climates are likely to influence the communities of belowground microbial organisms (Castro et al., 2010; Deacon et al., 2006). However, how these communities are affected in their diversity, composition, and function after environmental perturbation is insufficiently known.
Molecular techniques using high-throughput sequencing are presently revolutionizing the analysis of complex communities, such as soil fungi. High-throughput metabarcoding enables the recovery of DNA sequence data directly from environmental samples, and DNA sequences from entire communities present in these samples can be simultaneously recovered through massively parallel sequencing reactions (Bik et al., 2012; Taberlet et al., 2012b). This results in more accurate estimation of diversity and community composition and thus provides unprecedented insight into cryptic communities (Lindahl and Kuske, 2014). Yet, challenges associated with these novel techniques include the bioinformatic processing, and the ecological analyses of the large amount of sequence data generated. Most biologists without explicit training in bioinformatics spend a fair amount of time learning how to filter raw sequence data, and customize bioinformatics pipelines specific to their project. To improve the quality of data treatment, and decrease the time needed for the analyses, it is desirable to have bioinformatics pipelines that are easy to use, well explained to researchers not trained in bioinformatics, and adaptable to individual research needs...
The existence of all living organisms depends on their multidimensional adjustment to the conditions of the environment in which they live. Organisms must constantly deal with not only abiotic stress factors (such as water availability or extreme temperatures), but also with various biotic interactions (the competition between different organisms, both intraspecific and interspecies). When there is a consensus between an organism and the environment it means that this organism is well adjusted and increases its probability of survival.
Symbiotic organisms possess the ability to establish an intimate interaction with another species (symbiont) that provides benefits for survival. Organisms that are involved in obligate symbiosis may adapt to a new environment by switching to another symbiotic partner that is locally better adapted; or by reshuffling symbiont communities present in the holobiont. This ability potentially gives them the opportunity to flexibly react to changing environmental conditions.
In this thesis I studied the genetic diversity and geographic distribution of symbiont lineages in a lichen symbiosis to better understand environmental adaptation in symbiotic systems. Lichens are symbiotic associations of photobionts (one or several green-algal species or cyanobacteria), filamentous mycobionts (lichen-forming fungi) and co-inhabiting symbiotic microorganisms (lichen-associated bacteria, endolichenic fungi, and basidiomycete yeast). The coccoid green algae of the genus Trebouxia are the most common and the most studied lichen photobionts. However, the lack of formal Trebouxia taxonomy impedes our understanding of this photobiont diversity.
Different species of mycobionts may share the same photobionts and a single species of mycobiont may associate with multiple, genetically different photobionts. Interactions among symbionts are not random and are constrained by evolutionary and environmental processes. The ability to associate with specific symbiotic partner is considered as a lichen strategy to facilitate adaptation to the constantly changing environments.
The objectives of this thesis were to 1. Elucidate the intraspecific diversity of fungal and algal symbionts in the lichen Umbilicaria pustulata, given a range-wide (Europe-wide) sampling; 2. Evaluate species delimitation in trebouxioid photobionts based on molecular data, and 3. Quantify the climatic niches of photobiont lineages within U. pustulata, to establish whether the association with particular photobionts may modify the range and ecological niche of this lichen.
The main findings of this thesis are:
1. The genetic diversity within trebouxoid photobiont of U. pustulata is higher than within the mycobiont. The most variable photobiont loci are nrITS rDNA, psbJ-L, and COX2. RbcL is the least variable photobiont locus. The most variable mycobiont loci are MCM7 and TSR1. This study shows a lack of genetic variability in the mycobiont loci EF1, nrITS rDNA, RPB1, and RPB2.
2. U. pustulata shows a low level of selectivity and is associated with numerous (most likely six) putative algal species. All photobiont haplotypes found in U. pustulata are shared between other lichen-forming fungi species, showing different patterns of species-to-species and species-to-community interactions.
3. The geographic distribution of U. pustulata symbionts associations is strongly connected to changes in the climatic niches. The mycobiont-photobiont interactions change along latitudinal temperature gradients (cold-adapted hotspot) and in Mediterranean climate zones (warm-adapted hotspot). U. pustulata broadens its distribution range by switching between photobionts that posses specific environmental preferences.
Overall, this thesis contributes to the understanding of the symbiont diversity, fungal-algal association patterns and local adaptation linked to symbiont-mediated niche expansion in lichens. While identifying intraspecific diversity of both lichen symbionts is a key predisposition to understand symbiont interactions, population dynamics or co-evolution, my comparative study of the sequence-based molecular markers is relevant to reveal cryptic diversity in other lichen-forming fungi and their photobionts.
The determination of species boundaries in lichen symbionts is essential for the study of selectivity and specificity, co-distribution, and co-evolution. Whereas the phylogenetic relationships of Trebouxiophyceae are poorly understood, the application of a novel multifaceted approach based on phylogenetic relationships, coalescence methods and morphological traits presented in this thesis is a promising tool to address species boundaries within this heterogeneous genus.
This thesis provides evidence for symbiont-mediated niche expansion in lichens and highlights the preferential photobiont association from a niche-modeling perspective. My results shed light on symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation in the lichen symbiosis. The spatial genetic pattern found in U. pustulata symbionts supports the concept of ecological fitting and is consistent with patterns found in other lichen studies. Results presented here relate also to findings in different symbiotic systems, like reef-building corals, where different latitudinal patterns and symbiont switching has been reported as an adaptive response to severe bleaching events. Furthermore, this study is timely in light of global warming, because the identification of interaction hotspots among symbionts helps to understand how lichens or other symbiotic organisms adjust to the ongoing climate change. This knowledge will, in turn, facilitate the proper conservation of the most vulnerable lichen populations. My doctoral thesis provides a conceptual framework for analyzing symbiont diversity, interaction patterns, and symbiont-mediated niche expansion that could be applied to other types of lichen species as well as other organisms involved in facultative or obligate symbiosis.
Introduction:
The evolutionary patterns of symbiotic organisms are inferred using cophylogenetic methods. Congruent phylogenies indicate cospeciation or host-switches to closely-related hosts, whereas incongruent topologies indicate independent speciation. Recent studies suggest that coordinated speciation is a rare event, and may not occur even in the highly specialized associations. The cospeciation hypothesis was mainly tested for free-living mutualistic associations, such as plant-pollinator interactions, and host-parasitic systems but was rarely tested on obligate, mutualistic associations involving intimate physiological interactions. Symbionts with lower partner selectivity may not experience coordinated speciation due to frequent switching of partners. On the other hand, symbionts with high partner selectivity may influence each other’s evolution owing to the highly interdependent lifestyles. Symbiont association patterns are also influenced by habitat and it has been proposed that symbiotic interactions are stronger in warm regions as compared to cooler regions (also referred as latitudinal gradient of biotic specialization). This hypothesis however, has recently been challenged and it has been suggested that a gradient of biotic specialization may not exist at all. Reliable species concepts are a prerequisite for understanding the association and evolutionary patterns of symbiotic organisms. The species concepts of many groups traditionally relied on the morphological species concept, which may not be adequate for distinguishing species due to the: i) homoplasious nature of morphological characters, an due to the inability to distinguish cryptic species. Thus phylogenetic species concept along with coalescent-based species delimitation approaches, which utilize molecular data for inferring species boundaries have been used widely for resolving taxonomic relationships. Lichens are obligatory symbiotic associations consisting of a fungal partner (mycobiont) and one or more photosynthetic partners, algae, and/or cyanobacteria (photobionts). I used the lichen forming fungal genus Protoparmelia as my study system, which consists of ~25-30 previously described species inhabiting different habitats, from the arctic to the tropics. This makes Protoparmelia an ideal system to explore the association and evolutionary patterns across different macrohabitats.
Objectives:
The objectives of this thesis were to 1. Elucidate the phylogenetic position of Protoparmelia within Lecanorales, and infer the monophyly of Protoparmelia; 2. Understand species diversity within Protoparmelia s.str. using coalescent-based species delimitation approaches; and 3. To identify the Trebouxia species associated with Protoparmelia using phylogenetic and species delimitation approaches and to infer the association and cophylogenetic patterns Protoparmelia and Trebouxia in different macrohabitats.
Results and discussion:
Chapter 1: Taxonomic position of Protoparmelia
In the first part of this study I explored the taxonomic position of Protoparmelia within the order Lecanorales. Overall this study included 54 taxa from four families, sequenced at five loci (178 sequences). I found Protoparmelia to be polyphyletic and sister to Parmeliaceae.
Chapter 2: Multilocus phylogeny and species delimitation of Protoparmelia spp.
In this part of the study, I identified and delimited the Protoparmelia species forming a monophyletic clade sister to Parmeliaceae i.e., Protoparmelia sensu stricto group, based on the multilocus phylogeny and coalescent-based species delimitation approaches. I included 18 previously described and three unidentified Protoparmelia species, which represents ~70% of the total described species, and 73 other taxa, sequenced at six loci. I found that the sensu stricto group comprised of 25 supported clades instead of 12 previously described Protoparmelia species. I tested the speciation probabilities of these 25 clades using species delimitation softwares BP&P and spedeSTEM. I found nine previously unrecognized lineages in Protoparmelia and I propose the presence of at least 23 species for Protoparmelia s.str., in contrast to the 12 described species included in the study.
Chapter 3: Association and cophylogenetic patterns of Protoparmelia and its symbiotic partner Trebouxia
...
In the light of emerging resistances against common drugs, new drug leads are required. In the past natural sources have been more yielding in this respect than synthetic strategies. Fungi synthesize many natural products with biological activities and pharmacological relevance. However, only a fraction of the estimated fungal diversity has been evaluated for biological activity, and much of the Fungi’s natural chemical diversity awaits discovery. Especially promising in this context are lichenized fungi. Lichens are well known for their particularly rich and characteristic secondary chemistry which allows them to withstand intense UV radiation, protects them against herbivory, and prevents them from being overgrown. The slow growth rates of lichens and difficulties and infeasibility of large scale cultivations in the laboratory render lichens inaccessible for applied purposes. These experimental challenges have led to a poor understanding of the molecular mechanisms underlying the biosynthesis of characteristic lichen secondary metabolites. The recent development of improved sequencing techniques has enabled new strategies to address multi-species assemblages directly through metagenome sequencing and survey their biosynthetic potential through genome mining. However, whole genome sequencing of entire lichen thalli to metagenomically assess the lichen-forming fungus without the need of cultivation has not been evaluated for lichens before. This approach will enable the reconstruction of fungal genomes from mixed DNA from lichen thalli and allow the exploration of biosynthetic gene content.
My thesis was conducted in two parts: a methodological evaluation of a metagenomic strategy to reconstruct genomes and gene sets of lichen-forming fungi, and the exploration of biosynthetic gene content with the help of comparative genomics and phylogenetics. For the first part, I evaluated the quality of metagenome-derived genome assemblies and gene sets by direct comparison to culture-derived reference assemblies and gene sets of the same species. I showed that metagenome-derived fungal assemblies are comparable to culture-derived references genomes and have a similar total genome size and fungal genome completeness. The quality of assemblies was affected strongly by the choice of assembler, but not by the method of taxonomic assignment or inference of non-mycobiont DNA sequences. The fungal gene space is well covered in metagenome-derived and culture-derived fungal gene sets and overlaps to 88-90 %. Finally, the metagenome-derived assemblies reliably recover gene families of secondary metabolism. This shows the suitability of metagenomically derived genomes for mining biosynthetic genes, and potentially also other gene families. Overall, the method validation showed a high similarity between metagenome- and culture-derived genome assemblies.
For the second part of my thesis, I explored the biosynthetic gene content in two different systems: Between two sister-species with different ecological requirements but similar chemical profile, and between two species which are metabolite-rich and economically relevant in the perfume industry. I compared the diversity of biosynthetic gene clusters between the species and in the broader context of other lichenized and non-lichenized fungi. Overall, the whole genome mining revealed a large number of uncharacterised secondary metabolite gene clusters in fifteen genomes of lichen-forming fungi compared to other fungal classes. Their number highly outweighs the number of known synthesized metabolites and highlights the hidden biosynthetic potential in lichen-forming fungi. Many biosynthetic gene clusters in the ecological distinct sister-species showed a high homology in accordance with the high synteny in gene content and order in both genomes. These clusters represent ideal candidates for secondary metabolites synthesized by both species, while the remaining clusters may encode for metabolites relevant for the different ecological requirements of both species. The metabolite-rich species used in the perfume industry showed a particularly high number of biosynthetic gene clusters. An in-depth characterization of architecture and gene content of homologous gene clusters together with hints from phylogenetic relatedness to functional characterized metabolites provides promising insights into the biosynthetic gene content of these lichen-forming fungi.
In conclusion, I showed that metagenome sequencing of natural lichen thalli is a feasible approach to reconstruct the fungal mycobiont genome of lichens and circumvent time-consuming and in some cases impossible cultivation of individuals. The genome mining for secondary metabolite gene clusters in lichen-forming fungi revealed a high biosynthetic potential for the discovery of new natural products. One of the focal species, Evernia prunastri, contained the highest ever reported number (80) of biosynthetic clusters in lichenized fungi. The comprehensive cluster characterizations through annotation, comparative mapping and phylogenetics provide first valuable hints for linking metabolites to genes in these lichen-forming fungi. My results pave the way for biotechnological strategies to unlock the vast richness of natural products from lichens for applied purposes.
Genetic and genomic tools have provided researchers with the opportunity to address fundamental questions regarding the reintroduction of species into their historical range with greater precision than ever before. Reintroduction has been employed as a conservation method to return locally extinct species to their native range for decades. However, it remains unknown how genetic factors may impact population establishment and persistence at the population and metapopulation level in the short- and long-term. Genetic methods are capable of producing datasets from many individuals, even when only low quality DNA can be collected. These methods offer an avenue to investigate unanswered questions in reintroduction biology, which is vital to provide evidence based management strategies for future projects. The Eurasian lynx (Lynx lynx) and European wildcat (Felis silvestris) are elusive carnivores native to Eurasia and have been the subject of multiple reintroduction attempts into their native range. During the 19th and 20th century, the Eurasian lynx was extirpated from West and Central Europe due to increasing habitat fragmentation and persecution. Similarly, the European wildcat was the subject of human persecution, residing in a few refugia in West and Central Europe. After legal protection in the 1950s, subsequent reintroduction projects of both species began in the 1970s and 1980s and continue to the present. Despite this large focus on species conservation, little attention has been given to the consequences these reintroductions have on the genetic composition of the reintroduced populations and if the populations have a chance of persisting in the long term. These species have not yet benefited from the large range of genetic and genomic techniques currently available to non-model organisms, leaving many fundamental aspects of their reintroduction poorly understood. In my dissertation, I investigate demography, population structure, genetic diversity and inbreeding at the population and metapopulation level in both species. In the introduction, which lays the foundation for the subsequent chapters of this PHD, I provide background on reintroduction, its role in conservation and the genetic consequences on populations, especially populations of apex and mesocarnivores. In Publication I, I investigated the reemergence of the European wildcat in a low mountain region in Germany using fine-scale spatial analysis. I found that the reintroduced population has persisted and merged with an expanding natural population. The reintroduced population showed no genetic differentiation from the natural population suggesting there is a good chance this population has retained sufficient genetic diversity despite reintroduction. In Publication II, I tracked population development and genetic diversity over 15 years in a reintroduced lynx population to determine the genetic ramifications on a temporal scale. I found slow genetic erosion after a period of outbreeding, which fits in line with other reintroduced taxa sharing similar demographic histories. I also found the number of genetic founders to be a fraction of the total released individuals, indicating that reintroduced populations of elusive carnivores may have fewer founder individuals than previously thought. In Publication III, I sampled all surviving lynx reintroductions in West and Central Europe as well as 11 natural populations to compare levels of genetic diversity and inbreeding across the species distribution. I found that all reintroduced populations have lower genetic variability and higher inbreeding than natural populations, which urgently requires further translocations to mitigate possible negative consequences. These translocations could stem from other reintroduced populations or from surrounding natural populations. The results contribute to a growing body of evidence indicating that inbreeding is likely to be more prevalent in wild populations than previously understood. Finally, in the discussion I explore how genetic methods can be applied to post-reintroduction monitoring of felid species to illuminate questions relating to genetic composition after release. The methods employed in these studies and in future work will be highly dependent on the research questions posed. Additionally, I investigate the drivers of the observed genetic patterns including founder size, source population, environmental factors, and population growth. I found that genetic diversity loss patterns across these two felid species are not clearly defined, however, management actions can be taken to mitigate the negative effects of reintroductions. These management actions include further translocation, introducing a sufficient number of released individuals and situating reintroductions adjacent to natural populations. All of these actions can minimize genetic drift and inbreeding, two factors which negatively impact small populations. This thesis further supports mounting evidence that genetic considerations should be assessed before releasing individuals, which allows for incorporation of scientific evidence into the planning process thereby increasing the overall success of reintroduction projects. Ultimately, the resources developed during this dissertation provide a solid baseline and foundation for future work regarding the consequences of reintroductions. This is especially important as an increasing number of species are at risk of extinction and reintroductions of both the European wildcat and Eurasian lynx, as well as many others, are planned in the coming years.
Seit mehr als 200 Jahren gibt es durch die Wissenschaftler der Wetterstation auf dem Hohenpeißenberg systematische Wetterbeobachtungen, doch erst seit wenigen Jahren gibt es unter den Klimaforschern einen Konsens, dass sich das Klima durch anthropogene Einflüsse schon verändert hat – und weiter verändern wird. Die bisherigen Auswirkungen, wie zum Beispiel ein globaler Temperaturanstieg von 0,85°C seit Beginn der Industrialisierung, sind heute gut belegbar. Mögliche zukünftige Entwicklungen des Klimas werden heute ebenso erforscht wie die Auswirkungen des Klimawandels auf Mensch und Umwelt. Zu diesen Auswirkungen gehören unter anderem Folgen für die Landwirtschaft. Durch veränderte Niederschläge und den Temperaturanstieg werden sich die Lebensbedingungen von Bodenorganismen und Anbaubedingungen für Pflanzen ändern. Letztendlich ist aufgrund dieser Veränderungen auch ein verstärkter Einsatz von Pestiziden zu erwarten. Allerdings wurde bisher kaum untersucht, ob der Einsatz von Pestiziden in der Landwirtschaft unter den Bedingungen des Klimawandels (konkret durch die Interaktion von klimatischen und chemischen Faktoren) ein erhöhtes Umweltrisiko für Bodenorganismen darstellt. Bisher werden klimatische Faktoren bei den Tests für die Zulassung von Pestiziden nicht berücksichtigt.
Daher wurde diese Fragestellung in der hier vorliegenden Dissertation am Beispiel der Effekte von zwei zugelassenen Pestiziden auf Bodenorganismen unter verschiedenen klimatischen Bedingungen untersucht. Konkret wurden dazu mit Labor- und Halbfreilandversuchen die Wirkung eines Insektizids und eines Fungizids in Interaktion von Temperatur und Bodenfeuchte auf Vertreter zweier Invertebratengruppen (Collembola: zwei Arten; Enchytraeidae: eine Art) untersucht.
In einem modifizierten Standardtest mit Collembolen erhöhte sich die Toxizität des Insektizids Lambda-Cyhalothrin, wenn die Exposition der beiden Arten bei einer erhöhten Bodenfeuchte stattfindet. Die kühl adaptierte Art Folsomia candida reagierte bei erhöhter Testtemperatur am empfindlichsten auf diese Testsubstanz: Die EC50 aus diesem Experiment lag bei 2,84 mg (a.s.)/kg Boden Trockengewicht (dw). Unter Standardbedingungen, wie sie in Tests für die Zulassung von Pestiziden angewandt werden, lag die EC50 von F. candida dagegen bei 8,65 mg a.s./kg dw.
Unter den gleichen Versuchsbedingungen wurde auch das Fungizid Pyrimethanil an Collembolen getestet. Hier erwies sich die Testsubstanz für beide Arten bei
gleichzeitigem Trockenstress und / oder erhöhter Temperatur als toxischer im Vergleich zu den Standard-Testbedingungen. Dabei zeigte F. candida mit einer EC50 von 28,3 mg a.s./kg dw die höchste Empfindlichkeit. Ohne die veränderten klimatischen Faktoren, betrug die EC50 von F. candida 52,3 mg a.s./kg dw.
In Reproduktionstests mit der Enchytraeen-Art Enchytraeus bigeminus wurde die Bodenfeuchte als klimatischer Faktor in Kombination mit jeweils einer Testsubstanz untersucht. Bei beiden Chemikalien reagierte E. bigeminus in trockenem Boden empfindlicher. Die ermittelten EC50 betrugen 1,34 mg a.s./kg dw für Lambda-Cyhalothrin und 437 mg a.s./kg dw für Pyrimethanil. Getestet unter Standardbedingungen lagen die EC50-Werte bei 3,79 bzw. 499 mg a.s./kg dw.
Neben den Laborexperimenten wurden Tests in „Terrestrischen Modellökosystemen“ (TME) mit den gleichen Chemikalien in Kombination mit variierender Bodenfeuchte als klimatischer Faktor vorgenommen. Diese Experimente wurden in Deutschland und in Portugal durchgeführt, um die Reaktion einer zentraleuropäischen und einer mediterranen Artengemeinschaft zu untersuchen. Aus der terrestrischen Lebensgemeinschaft wurden verschiedene Organismengruppen untersucht. Die Effekte auf Enchytraeen aus dem Experiment mit Pyrimethanil waren als Veröffentlichung Teil dieser Dissertation. In der portugiesischen Halbfreilandstudie wurden keine Effekte auf die Enchytraeen durch Pyrimethanil bei umweltrelevanten Konzentrationen festgestellt, jedoch beeinflusste die Bodenfeuchte die Zusammensetzung der Artengemeinschaft. Im deutschen TME-Experiment wurde eine verstärkte Wirkung des Fungizids in trockenem Boden festgestellt, d.h. die jeweiligen Effektkonzentrationen (niedrigste EC50 3,48 mg a.s./kg dw für Fridericia connata in trockenem Boden) lagen deutlich unterhalb der aus den Labortests mit Enchytraeus bigeminus bekannten Werten (499 mg a.s./kg dw).
Zusammenfassend lässt sich feststellen, dass klimatische Faktoren die Effekte von Pflanzenschutzmittel auf Bodenorganismen beeinflussen können. Für Laborversuche ist eine generelle Berücksichtigung von klimatischen Faktoren im Zulassungsverfahren aus heutiger Sicht zu weit gegriffen. Die TME-Versuche zeigten sich als geeignetes Testverfahren, interaktive Effekte von Pestiziden und Klima bzw. multiplen Stressoren generell auf Artengemeinschaften zu untersuchen. Für TME-Experimente wäre unter Beachtung der Vielzahl möglicher Fragestellungen, Endpunkte und moderner statistischer Auswerteverfahren eine internationale Richtlinie wünschenswert.
Die vorliegende Dissertation mit dem Titel: Ecophysiological monitoring of Oaks in Central Europe, introduced in the framework of proactive climate change mitigation beschäftigt sich mit der Anwendung zerstörungsfreier, radiometrischer Methoden zur Bestimmung von Pigment- und Stickstoffkonzentrationen und der photosynthetischen Funktionalität in Blättern von heimischen und gebietsfremden Eichen und ihre Beeinflussung durch Trocken-, Hitze- und Kältestress.
Die Eichenarten Quercus robur L. (Stieleiche), Q. pubescens Willd. (Flaumeiche), Q. frainetto Ten. (Ungarische Eiche), Q. ilex L. (immergrüne Steineiche) und Q. rubra L. (amerikanische Roteiche) wurden im Frühjahr 2011 auf einer Versuchsfläche im Frankfurter Stadtwald gepflanzt, um ihre Nutzung als potentielle Waldbäume in einem sich ändernden Klima zu untersuchen. Über eine Dauer von zwei Jahren wurden diese Arten mit einem hohen Maß an blattspezifischer Merkmalsvariabilität beobachtet und beprobt. Ziel war es, die interspezifischen Unterschiede und die jahreszeitliche Dynamik von morphologischen und chemischen Blattmerkmalen sowie die Beeinflussung der radiometrischen Bestimmung des Chlorophyllgehaltes (und damit assoziierten Komponenten wie z.B. Blattstickstoffgehalt und Karotinoiden) und der photosynthetischen Funktionalität durch klimatische Umweltbelastungen in Eichen zu untersuchen. Die Analyse der Blattproben zielte neben der Bestimmung der Beziehung zwischen absoluten und optisch ermittelten Pigmentgehalten auf die Ermittlung des Einflusses der Blattstruktur auf die Lichttransmission im roten und infrarotem Bereich des Elektromagnetischen Spektrums ab, sowie auf die artspezifische Korrelation von Blattstickstoff zu Blattchlorophyll zu dessen indirekte Quantifizierung. Des Weiteren wurden Versuche zur Trocken- und Hitzestressanpassung durchgeführt, um eine potentiell artspezifische Stressantwort, sowie eine mögliche Beeinflussung der aufgenommenen radiometrischen Messwerte zu ermitteln. Ein zusätzliches Monitoringprogramm im Winter 2012/2013 mit einer Dauer von sechs Monaten ermöglichte die Überprüfung der Anpassungsfähigkeit der immergrünen Steineiche (Q. ilex) an mitteleuropäische Winterbedingungen und die Veränderung der photosynthetischen Funktionalität unter Kältestress. Messungen im Zusammenhang mit der praktischen Anwendbarkeit der zerstörungsfreien, optischen Methode und zur Bereitstellung von Referenzdaten für zukünftige Evaluierungen komplementieren die Untersuchungen.
Signifikante, artspezifische Unterschiede wurden in den blattmorphologischen Schlüsselmerkmalen in den Quercus-Arten ermittelt. Die artspezifischen Unterschiede in den morphologischen Blattmerkmalen beeinflussten auf signifikante Weise die Beziehung zwischen absoluten, massebasierten Pigment- und Stickstoffgehalten und deren radiometrischen Bestimmung. Wurden die Pigmentgehalte hingegen auf die Blattfläche bezogen und die Stickstoffgehalte mittels des Verhältnisses von Blattfläche zu Trockenmasse korrigiert, zeichnete sich eine Beziehung zwischen absoluten und optisch ermittelten Werten ab, der jegliche jahreszeitliche oder artspezifisch morphologische Variabilität fehlte und die somit für alle Quercus-taxa anwendbar ist. Koeffizienten für die Berechnung von flächenbezogenen Gehalten von Gesamtchlorophyll, Chl a, Chl b und Carotinoiden für die jeweiligen Quercus-taxa, wie auch für ein artübergreifendes Modell wurden ermittelt, um die Bestimmung dieser Gehalte während aller Entwicklungsstufen zu ermöglich. Aus der jahreszeitlichen Entwicklung der Pigmentgehalte konnten drei deutliche Phasen abgeleitet werden: Die Phase der Blattentwicklung im Frühling, einer Plateauphase mit geringen Veränderungen (“core vegetation time”) und die Phase des Pigmentabbaus während der Herbstlaubfärbung. Die Übergänge zwischen diesen Phasen variierten zum Teil erheblich zwischen einzelnen Individuen einer Art sowie zwischen den Arten, was Unterschiede in der potentiellen, jährlichen Kohlenstoffaufnahme nach sich zieht. Stressbedingungen, wie Hitze- Kälte- oder Trockenstress, können zu Veränderung von Fluoreszenzparametern ohne gleichzeitige Änderung des Pigmentgehaltes führen, wie auch die indirekte Bestimmung von mit Chl assoziierten Komponenten (Carotinoide, Chl a, Chl b) mittels optischer Bestimmung (durch die Veränderungen von Pigmentverhältnissen) beeinflussen.
Im Rahmen des Forschungsprojektes konnten, Modelle zur Berechnung von Blattpigmenten und Blattstickstoff aus optischem Messdaten, Veränderungen der photosynthetischen Funktionalität, sowie Referenzdaten für die zukünftig nutzbaren Eichenarten hinsichtlich artspezifischer und jahreszeitlicher Variabilität unter mitteleuropäischen Umweltbedingungen ermittelt werden, die eine Nutzung und Einordnung von zerstörungsfreien, optischen Messwerten zur Ermittlung von Vitalitätsunterschieden in Eichen ermöglichen.
Droughts impair plant growth, limit global net primary production and are predicted to increase in the course of climate change. Knowledge of the plant drought response on a molecular level can facilitate the selection of drought resistant genotypes and genetic engineering and thereby can help to implement strategies, such as assisted migration projects or crop improvement, in order to preserve natural and agricultural vegetation against droughts.
Studies on gene expression under drought stress were conducted in three species each of the genera Quercus and Panicum, to shed light on the molecular drought response in these species and identify drought responsive genes as a basis for technical applications.
In the genus Quercus, gene expression studies were conducted in the three major European forest trees Q. ilex, Q. pubescens and Q. robur, for which a distributional shift caused by climate change is predicted for the 21st century. RNA-Seq experiments were conducted in the three Quercus species for the first time, ortholog groups were assigned and unregulated genes, as well as drought responsive genes, were identified (Madritsch et al. 2019). For a set of the unregulated genes, a stable expression over the course of long-term drought periods was evaluated in order to enable an application as reference genes for normalizing qRT-PCR experiments (Kotrade 2019a). The reference genes were used in subsequent experiments to generate gene expression profiles over the course of a two-year drought experiment with consecutive drought periods for a set of twelve drought responsive genes and revealed a highly variable gene regulation under long-term drought stress in the Quercus species (Kotrade et al. 2019b).
In the genus Panicum, the gene expression in response to drought was examined in the two wild crop species, P. laetum and P. turgidum, and in the less drought tolerant species P. bisulcatum via RNA-Seq experiments (Kotrade et al. 2020 (in revision). The transcriptomes of the species were sequenced for the first time, ortholog groups were assigned and the gene regulation was compared across the species. The common grounds of the drought response in Panicum were determined by identifying similarities across the species, while the identification of differences between the species led to genes that might contribute to the higher drought tolerance of P. laetum and P. turgidum
A comparison across the two genera showed large differences in the gene regulation upon drought. This might be largely explained by different experimental setups that resulted in different drought conditions in the genera, such as drought intensity, drought duration and velocity of drought development.
The sequence information and the drought responsive genes identified in the Quercus and Panicum species can be used to develop marker assays for marker-assisted selection. The genes that putatively contribute to the higher drought tolerance of the two wild crop Panicum species should be considered as candidate targets in genetic engineering studies. Marker-assisted selection and genetic engineering can be applied, for example, in assisted migration projects to support natural vegetation in the course of climate change or to breed more drought tolerant crop strains to mitigate crop failure rates caused by droughts.