Refine
Document Type
- Doctoral Thesis (8)
Language
- English (8)
Has Fulltext
- yes (8)
Is part of the Bibliography
- no (8)
Institute
Diese Arbeit etabliert eine nicht-invasive, volloptische Methode zur in-vivo Beobachtung des Membranpotentials in erregbaren Zellen des Fadenwurms C. elegans, die als Ersatz oder komplementär zu invasiven, elektrophysiologischen Methoden verwendet werden kann.
Bacteria are true artists of survival, which rapidly adapt to environmental changes like pH shifts, temperature changes and different salinities. Upon osmotic shock, bacteria are able to counteract the loss of water by the uptake of potassium ions. In many bacteria, this is accomplished by the major K+ uptake system KtrAB. The system consists of the K+-translocating channel subunit KtrB, which forms a dimer in the membrane, and the cytoplasmic regulatory RCK subunit KtrA, which binds non-covalently to KtrB as an octameric ring. This unique architecture differs strongly from other RCK-gated K+ channels like MthK or GsuK, in which covalently tethered cytoplasmic RCK domains regulate a single tetrameric pore. As a consequence, an adapted gating mechanism is required: The activation of KtrAB depends on the binding of ATP and Mg2+ to KtrA, while ADP binding at the same site results in inactivation, mediated by conformational rearrangements. However, it is still poorly understood how the nucleotides are exchanged and how the resulting conformational changes in KtrA control gating in KtrB is still poorly understood.
Here,I present a 2.5-Å cryo-EM structure of ADP-bound, inactive KtrAB, which for the first time resolves the N termini of both KtrBs. They are located at the interface of KtrA and KtrB, forming a strong interaction network with both subunits. In combination with functional and EPR data we show that the N termini, surrounded by a lipidic environment, play a crucial role in the activation of the KtrAB system. We are proposing an allosteric network, in which an interaction of the N termini with the membrane facilitates MgATP-triggered conformational changes, leading to the active, conductive state.
As central component of the peptide loading complex, the ABC transporter TAP is a key player in the adaptive immune response. By recognizing and translocating antigenic peptides derived from proteasomal degradation into the ER lumen it connects the processing of harmful intruders and the marking of an infected cell for elimination. This work focused mainly on the interaction between TAP and one of its viral inhibitors. Of the five known TAP inhibitors, ICP47 is the only one that is not anchored in the ER membrane and has a nonomolar affinity to TAP. These properties and its specific architecture make it an interesting protein engineering tool that can be used in a variety of ways to generate functionally arrested TAP complexes. Different lengths of ICP47 were chosen to map the optimal distance between the binding pocket and the N-terminal elbow helix of either TAP1 or TAP2. I demonstrated that the interaction of fused ICP47 with coreTAP inhibits antigen presentation via MHC I. Interestingly, the loss of MHC I surface expression only depended on the presence of the active domain and not on the length of the fused ICP47 fragments. Summarizing it can be said that TAP complexes containing an intact active domain of ICP47 successfully suppressed MHC I surface expression. Considering the MHC I surface expression in the use of free ICP47 fragments it was revealed that the active domain may not be sufficient. All free constructs, except the one that contains exclusively the active domain (1-35), were able to fully arrest peptide translocation, while the fragment 1-35 partially restored MHC I surface expression. This was the first evidence suggesting that more residues might be present in the ICP47 sequence that contribute to the interaction with TAP.
Further characterization of the ICP47-coreTAP fusion complexes comprised the determination of their thermostability and melting temperatures. The ICP47-coreTAP fusion complexes revealed a preferred orientation for ICP47. The ICP47(1-65) fragment led to a stable complex only if fused to TAP2, highlighting an interesting asymmetry at the TAP1/TAP2 interface, which suggests a shorter distance of the C-terminus of the stabilizing region to the elbow helix of TAP2 than of TAP1. The shorter fragments 1-35 and 1-50, and the ICP47 linker fragments, which inhibited, but did not trigger any thermostabilizing effects on TAP, revealed a second hint for the presence of other residues important for the ICP47/TAP interaction. To define the thermostability in more detail, the melting temperature of complexes with fused or freely bound ICP47 fragments was determined. Short fused fragments of ICP47 (residues 1-35 or 1-50) did not fully stabilize the TAP complex. Only ICP47 fragments longer than residues 1-50 raised the melting temperature to the full extent and led to a completely stabilized complex, suggesting that the critical melting temperature, which determines whether a complex is fully stabilized or not, is about 44-45°C. By comparing different ICP47 proteins from the herpesviral clade, I further noticed that the 21 residues following the active domain are highly conserved. The residues in this region were exchanged by glycines and alanines to study their impact on the thermostabilization of TAP. I demonstrated that several charged residues, an alanine rich, and a proline rich sequence were mainly responsible for the preservation of high melting temperatures. In summary, these findings reveal a dual inhibition mechanism of ICP47. While the active domain of ICP47 is wedged at the TAP1/2 interface and arrests the complex in an open-inward facing conformation, the highly conserved C-terminal region stabilizes the ICP47/TAP interaction and generates a thermostabilized TAP complex.
The second part of this thesis deals with two alternative expression and stabilization strategies for coreTAP, designed to provide a 1:1 ratio of TAP subunits during protein biosynthesis. Different glycine-serine (GS) linkers and a self cleaving 2A site were im- plemented into the TAP sequence and used for comparison with the classical coreTAP. Despite their functionality in antigen translocation, the utilization of GS linkers proved to be unsuitable due to low expression and scarce purification efficiency caused by the unfeasible orthogonal purification. In contrast, the use of a 2A site allowed orthogonal His10- and SBP-tag purification and yielded comparable amounts to the classical coreTAP. However, the ICP47/coreTAP interaction appeared to be hampered by the modified N-terminus of ICP47, due to the cleavage process.
The third and last part of this work deals with the Thermus thermophilus ABC trans- porter TmrAB, which was identified to be part of the same ABC subfamily as TAP. The structure of TmrAB is similar to that of coreTAP and includes a TMD and an NBD for each subunit. In comparison to TAP, TmrAB has a broader substrate range, but it can transport peptides, which are also transported by TAP. Since the natural substrate, and thus the actual function, of TmrAB has not yet been identified, it is counted among the multidrug resistance ABC transporters, from where it also takes its name. In this work, the question was investigated whether TmrAB can be utilized as a TAP substitute. To compare the function of TmrAB and TAP in a natural cell environment, the N-terminal domains of the TAP subunits called TMD0s were fused to the TmrAB subunits and subsequently expressed as different combinations. I found that especially the hybrid complexes containing a TMD0 of TAP2 were functional in terms of MHC I surface expression. Furthermore, TmrAB with TMD0 co-localized prevalently with the ER marker PDI while complexes without TMD0 did not co-localize. Interestingly, the analysis of the interaction with components of the PLC revealed that interaction with tapasin could only occur when a TMD0 was present. In turn, calreticulin, MHC I, and ERp57 were bound, regardless of the presence of a TMD0. It is remarkable that a bacterial protein, sharing only 27-30% sequence identity with human TAP is able to take over a key function of our adaptive immune system. Yet, TmrAB originates from a hyperthermophilic bacterium and may have assembly and folding difficulties that the human cell seeks to overcome by recruiting chaperones like calreticulin and ERp57. Although further experiments will be necessary to analyze the interaction of TmrAB with the PLC components in more detail, TmrAB appears to be homologous to coreTAP, not only in terms of sequence and structure, but also in terms of function.
Over the last decade, cryo-EM has developed exponentially due to improvements in both hardware (“machine”-based) and software (“algorithm”-based). These improvements have pushed the best achievable resolutions closer to atomic level, bridging “gaps” not covered by other biophysical techniques, and allowing more difficult biological questions to be addressed. Thus, this PhD project was designed and constructed to apply cryo-EM to answer biological questions, while allowing simultaneous cryo-EM method development.
The biological focus of this research is pentameric ligand-gated ion channels (pLGICs), specifically the serotonin receptor type-3 receptor (5HT3R), which also belongs to the Cys-loop receptor family. 5HT3R plays an important role in fast synaptic signal transduction in response to agonist and antagonist binding. Binding to its native ligand results in opening of the channel at the transmembrane domain, allowing cations to pass through, resulting in membrane depolarization and conversion of the chemical signal into an electrical one.
This work consisted mainly of two specific aims. One was focused on conformational investigation of 5HT3R in its ligand-bound open conformation, using cryo-electron microscopy (cryo-SPA), in order to understand the gating mechanism upon ligand activation. The other one was to combine SPA with cryo-ET and STA to push the resolution limitation of conventional cryo-ET and STA workflows.
In the end, three different cryo-EM conformations of membrane-embedded 5HT3R were resolved using cryo-SPA, two structures in resting closed forms, one C5-symmetric and one C1-asymmetric, and one serotonin-bound open form. These three structures presented a number of novel features related to the transition of the receptor to its ion-conductive state. Specifically, the serotonin-bound receptor shows asymmetric opening, which was speculated to occur via an intermediate asymmetric Apo state. In addition to the cryo-SPA work, application of cryo-ET and STA to the study of 5HT3R in native vesicles is described in this thesis. Additional work on methods development, focused on combining SPA and STA techniques, along with preliminary results on tobacco mosaic virus are also detailed and discussed.
Moreover, previously unreported asymmetric arrangements of the subunits of the homopentameric 5HT3R around the pore axis were revealed. The asymmetric open state is stabilized by phospholipids inserted at the interface between subunits, at a site well-documented for the binding of allosteric pLGIC modulators. These results not only give structural support to a large body of functional data on the effects of lipids on the function of this receptor family, but also provide structural guidance for future studies in this field. Meanwhile, the SPA-STA combined methods developed during the course of this work have the potential to help resolve higher resolution tomography-based structures, which would benefit researchers seeking to do in-situ-based structural studies.
Bacteria constantly attempt to hold up ion gradients across their membranes to maintain their resting potential for routine cell function, while coping with sudden environmental changes. Under abrupt hyperosmotic conditions, as faced when invading a host, most bacteria restore their turgor pressure by taking up potassium ions to prevent death by plasmolysis. Here, the potassium transporter AB, or KtrAB for short, is a key player. KtrAB consists of the membrane-embedded KtrB dimer, which includes two pores organized in tandem, and a cytoplasmic, octameric KtrA ring, which regulates these two pores. The KtrB subunits alone were suggested to function as rather non-selective ion channels translocating potassium and sodium ions. The KtrA subunits confer transport velocity, K+ selectivity as well as Na+ and nucleotide dependency to the Ktr system. The nucleotide regulation by binding to KtrA is rather well characterized. In contrast, the regulatory role of Na+ remains elusive. Controversially discussed is how selective the ion translocation by KtrB is and how KtrA affects it. Although there are several functional and structural data available of KtrAB and its homolog TrkAH, the selectivity of the ion translocation was never thoroughly addressed. The functional characterization of whether KtrAB is a selective ion channel and how selectivity is achieved is in the focus of this thesis. Since selectivity is usually defined by the ion channels’ selectivity filter contained in the pore-forming domain, a particular attention was laid on the ion-translocating subunits KtrB.
KtrB belongs to the superfamily of K+ transporters (SKT). Each KtrB monomer consists of four covalently attached M1-P-M2 motifs, each motif is made of two transmembrane (TM or M) helices that are connected by a pore (P) helix. The four motifs, referred to as domains D1 to D4, are arranged in a pseudo-fourfold symmetry and together form the pore for potassium ion translocation. Each pore contains two structural features thought to be involved in ion selectivity and ion gating. These are the non-canonical selectivity filter and the intramembrane loop. The selectivity filter is localized at the extracellular side of the pore and mostly shaped by the backbone carbonyl groups of the loops connecting the P and M2 helices in each domain. In KtrB, each P-loop contains only one highly conserved glycine residue instead of the classical -TVGYG- signature sequence of a K+ channel. This simple constructed selectivity filter led to the hypothesis that KtrAB would only have low ion selectivity. The intramembrane loop is formed by broken helix D3M2 and is located directly under the selectivity filter. It consists mostly of polar residues and acts as a molecular gate restricting ion fluxes. The intramembrane loop has been shown to be regulated by nucleotide binding to KtrA. Additionally, it could directly or indirectly be affected by Na+ binding. Further, the loop might even be involved in ion selectivity because it presents a physical barrier inside the pore.
To address the ion selectivity of the Ktr system, first, the ion binding specificity of KtrB was investigated. Binding affinities of different cations to KtrB were determined using isothermal titration calorimetry (ITC). For this, KtrB from Vibrio alginolyticus was heterologously produced in and purified from Escherichia coli. 12 L of culture roughly yielded 4 to 8 mg of the functional KtrB dimer in detergent solution. ITC measurements were performed in two different buffers, one choline-Cl-based and one LiCl-based buffer. No differences in the affinity between Na+ (KD = 1.8 mM), K+ (KD = 2.9 mM), Rb+ (KD = 1.9 mM) or Cs+ (KD = 1.6 mM) were detected in the choline-Cl-based buffer; only Li+ did not bind. In contrast, ITC measurements in LiCl-based buffer revealed a significant preference for K+ (KD = 91 µM) over Rb+ (KD = 2.4 mM), Cs+ (KD = 1.7 mM) and particularly Na+ (for which no binding was observed). Similarly, the presence of low millimolar NaCl concentrations in the choline-Cl-based buffer led to a decreased KD value of 260 µM. Hence, small cations, which usually are present in the natural environment, seem to modulate the selectivity filter for a better binding of K+ ions providing K+ selectivity. In fact, the low binding affinities of the other ions could indicate that they do not even bind to the selectivity filter but to the cavity. However, ITC competition experiments showed that all four ions compete for the same or overlapping binding sites, with Rb+ and Cs+ even blocking K+ binding at concentrations 10-fold above their binding affinities. Importantly, at physiological NaCl concentrations of 200 mM, the apparent binding affinity for K+ to KtrB was still 3.5 mM. This suggested that Na+ can also bind to KtrB’s selectivity filter but with a comparably low binding affinity providing an unexpectedly high preference for K+ ions.
...
Transport mechanism of a multidrug resistance protein investigated by pulsed EPR spectroscopy
(2019)
In human several diseases result from malfunctions of ATP-binding cassette (ABC) systems, which form one of the largest transport system superfamily. Many ABC exporters contain asymmetric nucleotide-binding sites (NBSs) and some of them are inhibited by the transported substrate.1 For the active transport of diverse chemically substrates across biological membranes, ABC transport complexes use the energy of ATP binding and subsequent hydrolysis. In this thesis, the heterodimeric ABC exporter TmrAB2,3 from Thermus thermophilus, a functional homolog of the human antigen translocation complex TAP, was investigated by using pulsed electron-electron double resonance (PELDOR/DEER) spectroscopy. In the presence of ATP, TmrAB exists in an equilibrium between inward- and outward-facing conformations. This equilibrium can be modulated by changing the ATP concentration, showing asymmetric behaviour in the open-to-close equilibrium between the consensus and the degenerate NBSs. At the degenerate NBS the closed conformation is more preferred and closure of one of the NBSs is sufficient to open the periplasmic gate at the transmembrane domain (TMD).3 By determining the temperature dependence of this conformational equilibrium, the thermodynamics of the energy coupling during ATP-induced conformational changes in TmrAB were investigated. The results demonstrate that ATP-binding alone drives the global conformational switching to the outward-facing state and allows the determination of the entropy and enthalpy changes for this step. With this knowledge, the Gibbs free energy of this ATP induced transition was calculated. Furthermore, an excess of substrate, meaning trans-inhibition of the transporter is resulting mechanistically in a reverse transition from the outward-facing state to an occluded conformation predominantly.3 This work unravels the central role of the reversible conformational equilibrium in the function and regulation of an ABC exporter. For the first time it is shown that the conformational thermodynamics of a large membrane protein complex can be investigated. The presented experiments give new possibilities to investigate other related medically important transporters with asymmetric NBSs or other similar protein complexes.
The peptide loading complex (PLC) is a central machinery in adaptive immunity ensuring antigen presentation by major histocompatibility complex class I (MHC I) molecules to immune cells. If nucleated cells present foreign antigenic peptides from various origins (e.g., viral infected or cancer cells) on their cell surface they are targeted and eliminated by effector cells of the immune system to protect the organism against the hazard. The antigen presentation process starts with proteasomal degradation. Peptide loading and quality control of most, if not all, MHC I is performed by the PLC. Despite the main components, architecture, and general functions of this labile and multi-subunit assembly have been described, knowledge about the inner mechanics of MHC I loading and quality control in the PLC is limited. Detailed structural insights into the interactions and functions of key elements are lacking. In this PhD thesis, structural and functional aspects of the PLC in peptide loading and quality control of MHC I are unraveled, and the PLC was analyzed from an evolutionary perspective.
First, composition and architecture of native PLC isolated from different mammalian species was analyzed. Comparison of detergent-solubilized PLC from cow and sheep spleens with PLC isolated from human source showed a compositional conservation in mammals, with the central components TAP, ERp57, tapasin, calreticulin, and the MHC I heterodimer were conserved in these species. Negative-stain electron microscopy (EM) analyses revealed an identical overall architecture of PLCs from human, sheep, and cow with two major densities at opposing sides of the plane of the detergent micelle corresponding to endoplasmic reticulum (ER) luminal and cytosolic domains. Interestingly, the glucose-regulated protein 78 (GRP78) was associated only with the PLC from sheep and cow as revealed by mass spectrometry. This ER chaperone is involved in initial folding steps of MHC I but was not co-purified with human PLC, rendering it an interesting target for future functional and in-depth structural studies.
The human PLC was stabilized by reconstitution in membrane mimicking systems that replace the detergent, which is necessary to solubilize the complex. This stabilization allowed detailed structural analysis by single-particle cryogenic electron microscopy (cryo-EM). The structure of the MHC I editing module in the PLC, composed of tapasin, ERp57, calreticulin, MHC I, and β-2-microglobulin (β2m), was solved at an overall resolution of 3.7 Å. Within the structure, two important features were visualized: (i) the editing loop of tapasin, which is directly involved in peptide proofreading of MHC I; (ii) the A-branch of the Asn86 tethered N-linked glycan on MHC I. Both features are crucial elements in the quality control and peptide editing process on MHC I. The editing loop interacts with the peptide binding groove in MHC I. It disturbs the interaction between a cargo peptide C terminus and the F-pocket in the binding groove by displacing Tyr84 and the helices α1 and α2. The helix displacement widens the F-pocket which allows a faster peptide exchange on MHC I. The glycan is bound in its monoglucosylated form (Glc1Man9GlcNAc2) by the lectin domain of calreticulin. The A-branch of this glycan is stretched between MHC I Asn86 and the lectin domain, leading to the hypothesis that the glycan will be released from calreticulin once MHC I is loaded with a favored peptide (pMHC I).
For investigation of the glycan status of MHC I, intact protein liquid chromatography coupled mass spectrometry (LC-MS) was performed under denaturating conditions. An allosteric coupling between peptide loading and removal of the terminal glucose by α-Glucosidase II (GluII) was discovered. In addition, the PLC remained fully intact after peptide loading, which demonstrated GluII action on the PLC once MHC I is loaded.
With establishing GluII as transient interaction partner, this work deepens the knowledge of the molecular sociology of the PLC and how the PLC is involved in the endoplasmic reticulum quality control (ERQC). Further investigation of the ER aminopeptidases ERAP1 and ERAP2 showed that these enzymes neither alone nor together stably interact with the PLC. In contrast, both work independent from the PLC on free peptides in the ER.
LC-MS analysis of the PLC components revealed a very unusual glycosylation pattern of tapasin. Tapasin was observed with N-linked glycans ranging from the full glycan (Man9GlcNAc2) to heavily trimmed glycans, where only a single GlcNAc remained attached to Asn233. In the PLC, tapasin is probably shielded from degradation by ERQC and can remain functional and intact without a full N-linked glycan.