Refine
Document Type
- Doctoral Thesis (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Agent (1)
- Agent <Künstliche Intelligenz> (1)
- Agenten (1)
- Agents (1)
- Auswahlprozess (1)
- Coordination (1)
- Koordination (1)
- Mehragentensystem (1)
- Planning systems (1)
- Planungssystem (1)
Institute
- Informatik (1)
- Informatik und Mathematik (1)
Planning problems, like real-world planning and scheduling problems, are complex tasks. As an efficient strategy for handing such problems is the ‘divide and conquer’ strategy has been identified. Each sub problem is then solved independently. Typically the sub problems are solved in a linear way. This approach enables the generation of sub-optimal plans for a number of real world problems. Today, this approach is widely accepted and has been established e.g. in the organizational structure of companies. But existing interdependencies between the sub problems are not sufficiently regarded, as each problem are solved sequentially and no feedback information is given. The field of coordination has been covered by a number of academic fields, like the distributed artificial intelligence, economics or game theory. An important result is, that there exist no method that leads to optimal results in any given coordination problem. Consequently, a suitable coordination mechanism has to be identified for each single coordination problem. Up to now, there exists no process for the selection of a coordination mechanism, neither in the engineering of distributed systems nor in agent oriented software engineering. Within the scope of this work the ECo process is presented, that address exactly this selection problem. The Eco process contains the following five steps. • Modeling of the coordination problem • Defining the coordination requirements • Selection / Design of the coordination mechanism • Implementation • Evaluation Each of these steps is detailed in the thesis. The modeling has to be done to enable a systemic analysis of the coordination problem. Coordination mechanisms have to respect the given situation and the context in which the coordination has to be done. The requirements imposed by the context of the coordination problem are formalized in the coordination requirements. The selection process is driven by these coordination requirements. Using the requirements as a distinction for the selection of a coordination mechanism is a central aspect of this thesis. Additionally these requirements can be used for documentation of design decisions. Therefore, it is reasonable to annotate the coordination mechanisms with the coordination requirements they fulfill and fail to ease the selection process, for a given situation. For that reason we present a new classification scheme for coordination methods within this thesis that classifies existing coordination methods according to a set of criteria that has been identified as important for the distinction between different coordination methods. The implementation phase of the ECo process is supported by the CoPS process and CoPS framework that has been developed within this thesis, as well. The CoPS process structures the design making that has to be done during the implementation phase. The CoPS framework provides a set of basic features software agents need for realizing the selected coordination method. Within the CoPS process techniques are presented for the design and implementation of conversations between agents that can be applied not only within the context of the coordination of planning systems, but for multiagent systems in general. The ECo-CoPS approach has been successfully validated in two case studies from the logistic domain.
Die vorliegende Dissertation behandelt die Entwicklung eines Verkehrssimulationssystems, welches vollautomatisch aus Landkarten Simulationsgraphen erstellen kann. Der Fokus liegt bei urbanen Simulationsstudien in beliebigen Gemeinden und Städten. Das zweite fundamentale Standbein dieser Arbeit ist daher die Konstruktion von Verkehrsmodellen, die die wichtigsten Verkehrsteilnehmertypen im urbanen Bereich abbilden. Es wurden Modelle für Autos, Fahrräder und Fußgänger entwickelt.
Die Betrachtung des Stands der Forschung in diesem Bereich hat ergeben, dass die Verknüpfung von automatischer Grapherstellung und Modellen, die die Wechselwirkungen der verschiedenen Verkehrsteilnehmertypen abbilden, von keinem vorhandenen System geleistet wird. Es gibt grundlegend zwei Gruppen von Verkehrssimulationssystemen. Zum Einen existieren Systeme, die hohe Genauigkeiten an Simulationsergebnissen erzielen und dafür exakte (teil-)manuelle Modellierung der Gegebenheiten im zu simulierenden Bereich benötigen. Es werden in diesem Bereich meist Verkehrsmodelle simuliert, die die Verhaltensweisen der Verkehrsteilnehmer sehr gut abbilden und hierfür einen hohen Berechnungsaufwand benötigen. Auf der anderen Seiten existieren Simulationssysteme, die Straßengraphen automatisch erstellen können, darauf jedoch sehr vereinfachte Verkehrsmodelle simulieren. Es werden meist nur Autobewegungen simuliert. Der Nutzen dieser Herangehensweise ist die Möglichkeit, sehr große Szenarien simulieren zu können.
Im Rahmen dieser Arbeit wird ein System mit Eigenschaften beider grundlegenden Ansätze entwickelt, um multimodalen innerstädtischen Verkehr auf Basis automatisch erstellter Straßengraphen simulieren zu können. Die Entwicklung eines neuen Verkehrssimulationssystems erschien notwendig, da sich zum Zeitpunkt der Literaturbetrachtung kein anderes vorhandenes System für die Nutzung zur Erfüllung der genannten Zielstellung eignete. Das im Rahmen dieser Arbeit entwickelte System heißt MAINSIM (MultimodAle INnerstädtische VerkehrsSIMulation).
Die Simulationsgraphen werden aus Kartenmaterial von OpenStreetMap extrahiert. Kartenmaterial wird zuerst in verschiedene logische Layer separiert und anschließend zur Bestimmung eines Graphen des Straßennetzes genutzt. Eine Gruppe von Analyseschritten behebt Ungenauigkeiten im Kartenmaterial und ergänzt Informationen, die während der Simulation benötigt werden (z.B. die Verbindungsrichtung zwischen zwei Straßen). Das System verwendet Geoinformationssystemkomponenten zur Verarbeitung der Geodaten. Dies birgt den Vorteil der einfachen Erweiterbarkeit um weitere Datenquellen.
Die Verkehrssimulation verwendet mikroskopische Verhaltensmodelle. Jeder einzelne Verkehrsteilnehmer wird somit simuliert. Das Modell für Autos basiert auf dem in der Verkehrsforschung weit genutzten Nagel-Schreckenberg-Modell. Es verfügt jedoch über zahlreiche Modifikationen und Erweiterungen, um das Modell auch abseits von Autobahnen nutzen zu können und weitere Verhaltensweisen zu modellieren. Das Fahrradmodell entsteht durch geeignete Parametrisierung aus dem Automodell. Zur Entwicklung des Fußgängermodells wurde Literatur über das Verhalten von Fußgängern diskutiert, um daraus geeignete Eigenschaften (z.B. Geschwindigkeiten und Straßenüberquerungsverhaltensmuster) abzuleiten. MAINSIM ermöglicht folglich die Betrachtung des Verkehrsgeschehens auch aus der Sicht der Gruppe der Fußgänger oder Fahrradfahrer und kann deren Auswirkungen auf den Straßenverkehr einer ganzen Stadt bestimmen.
Das Automodell wurde auf Autobahnszenarien und innerstädtischen Straßengraphen evaluiert. Es konnte die gut verstandenen Zusammenhänge zwischen Verkehrsdichte, -fluss und -geschwindigkeit reproduzieren. Zur Evaluierung von Fahrradmodellen liegen nach dem besten Wissen des Autors keine Studien vor. Daher wurden an dieser Stelle der Einfluss der Fahrradfahrer auf den Straßenverkehr und die von Fahrrädern gefahrenen Geschwindigkeiten untersucht. Das Fußgängermodell konnte die aus der Literaturbetrachtung ermittelten Verhaltensweisen abbilden.
Nachdem die wichtigsten Komponenten von MAINSIM untersucht wurden, begannen Fallstudien, die verschiedene Gebiete abdecken. Die wichtigsten Ergebnisse aus diesem Teil der Arbeit sind:
- Es ist möglich, mit Hilfe maschineller Lernverfahren Staus innerhalb Frankfurts vorherzusagen.
- Nonkonformismus bezüglich der Verkehrsregeln kann je nach Verhalten den Verkehrsfluss empfindlich beeinflussen, kann aber auch ohne Effekt bleiben.
- Mit Hilfe von Kommunikationstechniken könnte in der Zukunft die Routenplanung von Autos verbessert werden. Ein Verfahren auf Basis von Pheromonspuren wurde im Rahmen dieser Arbeit untersucht.
- MAINSIM eignet sich zur Simulation großer Szenarien. In der letzten Fallstudie dieser Arbeit wurde der Autoverkehr eines Simulationsgebietes um Frankfurt am Main herum mit ca. 1,6 Mio. Trips pro Tag simuliert. Da MAINSIM über ein Kraftstoffverbrauchs- und CO2-Emissionsmodell verfügt, konnten die CO2-Emissionen innerhalb von Frankfurt ermittelt werden. Eine angekoppelte Simulation des Wetters mit Hilfe einer atmosphärischen Simulation zeigte, wie sich die Gase innerhalb Frankfurts verteilen.
Für den professionellen Einsatz in der Verkehrsforschung muss das entwickelte Simulationssystem um eine Methode zur Kalibrierung auf Sensordaten im Simulationsgebiet erweitert werden. Die vorhandenen Ampelschaltungen bilden nicht reale Ampeln ab. Eine Erweiterung des Systems um die automatische Integrierung maschinell lesbarer Schaltpläne von Ampeln im Bereich des Simulationsgebietes würde die Ergebnisgüte weiter erhöhen.
MAINSIM hat mehrere Anwendungsgebiete. Es können sehr schnell Simulationsgebiete modelliert werden. Daher bietet sich die Nutzung für Vorabstudien an. Wenn große Szenarien simuliert werden müssen, um z.B. die Verteilung der CO2-Emissionen innerhalb einer Stadt zu ermitteln, kann MAINSIM genutzt werden. Es hat sich im Rahmen dieser Arbeit gezeigt, dass Fahrräder und Fußgänger einen Effekt auf die Mengen des Kraftstoffverbrauchs von Autos haben können. Es sollte bei derartigen Szenarien folglich ein Simulationssysytem genutzt werden, welches die relevanten Verkehrsteilnehmertypen abbilden kann. Zur Untersuchung weiterer wissenschaftlicher Fragestellungen kann MAINSIM beliebig erweitert werden.