Refine
Year of publication
Document Type
- Doctoral Thesis (32)
- diplomthesis (1)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Saccharomyces cerevisiae (2)
- ADAM15 (1)
- Apoptosis (1)
- Archaea (1)
- CHIP (1)
- Calmodulin (1)
- Cyclo-AMP (1)
- Gal2 (1)
- Galakturonsäure (1)
- Halobacterium salinarium (1)
Institute
- Biowissenschaften (32)
- Biochemie und Chemie (1)
Die anaerobe Atmung mit Nitrat und Nitrit als terminalen Elektronenakzeptoren bildet einen wichtigen Teil des biologischen Stickstoff-Zyklus. Beispiele sind Denitrifikation und respiratorische Nitrat-Ammonifikation, wobei in beiden Fällen in einem ersten Schritt Nitrat zu Nitrit reduziert wird. In der Denitrifikation entstehen dann verschiedene gasförmige Produkte (NO, N2O, N2), wogegen Nitrit in der Ammonifikation ohne die Freisetzung weiterer Zwischenprodukte direkt zu Ammonium reduziert wird. Während die terminalen Reduktasen dieser Atmungsketten gut untersucht sind, ist das Wissen über die Zusammensetzung kompletter Elektronentransportketten sowie die Interaktion einzelner Proteine als auch zwischen den Proteinen und Chinonen in der Membran begrenzt. Ziel dieser Arbeit war die Charakterisierung der membranständigen Chinol-Dehydrogenasen NapGH und NrfH in der respiratorischen Nitrat-Ammonifikation von Wolinella succinogenes. Dieses Epsilonproteobakterium ist ein etablierter Modellorganismus der anaeroben Atmung und wächst durch respiratorische Nitrat-Ammonifikation mit Formiat oder H2 als Elektronendonoren. Als terminale Reduktasen werden dabei die periplasmatische Nitratreduktase NapA und die Cytochom c-Nitritreduktase NrfA benötigt. Die Genomsequenz weist keine weiteren typischen Nitrat- und Nitritreduktasen auf, und napA- und nrfA-defiziente Mutanten sind nicht in der Lage durch Nitrat- bzw. Nitritatmung wachsen. Das Operon des Nap-Systems (napAGHBFLD) von W. succinogenes kodiert Proteine, die an der Nitrat-Reduktion durch Menachinol beteiligt sind (NapA, -B, -G und -H) und Proteine, die für die Reifung und Prozessierung von NapA benötigt werden (NapF, -L und –D). Im Gegensatz zu vielen anderen Bakterien läuft die Nitrat-Atmung unabhängig von einem NapC-ähnlichen Protein ab, das als membrangebundenes Tetrahäm-Cytochrom c für die Chinol-Oxidation zuständig ist und Elektronen über den Elektronenüberträger NapB an die terminale Reduktase NapA liefert. Zwar sind im Genom zwei NapC-Homologe kodiert (FccC und NrfH), doch die Deletion beider Gene hatte keinen Einfluss auf die Nitrat-Atmung. Es wurde vermutet, dass die Funktion von NapC in W. succinogenes stattdessen durch die beiden Fe/S-Cluster Proteine NapG und NapH übernommen wird. Die Reduktion von Nitrit zu Ammonium wird durch den NrfHA-Komplex katalysiert. Das Pentahäm-Cytochrom c NrfA bildet dabei die katalytische Untereinheit, die über das membranständige Tetrahäm-Cytochrom c auf der periplasmatischen Seite der Membran gebunden ist. NrfH gehört zur NapC/NirT-Familie und überträgt Elektronen von Menachinol auf NrfA. Mittels gerichteter Mutagenese von nrfH wurden in früheren Arbeiten bereits Aminosäure-Reste identifiziert, die essentiell für die Elektronentransportaktivität von Formiat zu Nitrit sind.
Das Genom des Archaeons Halobacterium salinarum kodiert vier Proteine der SMC Protein Superfamilie. Zwei Proteine bilden dabei eine neue Gruppe und werden "SMC-artige Proteine von H. salinarum" (Sph1 und Sph2) genannt. Eine Transkriptanalyse ergab, dass sph1 und das 114 bp stromabwärts gelegene hp24 Gen ausschließlich in exponentiell wachsenden Zellen transkribiert werden. In Zellen der stationären Wachstumsphase ist keines der beiden Transkripte nachweisbar. Die Funktion von Sph1 wurde durch Versuche mit Überproduktions- und Depletionsstämmen von H. salinarum untersucht. Die konditionale Überproduktion von Sph1 inhibiert die weitere Zellteilung und führt zu einer Längenzunahme der Zellen. Erstmals wurde durch ein antisense-mRNA-System in einem Archaeon ein Protein, Sph1, depletiert. Die Depletion führt ebenfalls zur Inhibition der weiteren Zellteilungsereignisse. Beide Phänotypen zeigen, dass Sph1 eine essentielle Rolle im Verlauf des Zellzyklusses einnimmt. Um Zellzyklus spezifische Ereignisse zu analysieren wurde eine Synchronisationsprozedur für H. salinarum entwickelt. Dazu wurde der Effekt von sechs eukaryalen Zellzyklusinhibitoren auf den Zellzyklus von H. salinarum untersucht. Bei geeigneter Konzentration verursacht der effizienten DNA Polymerase Inhibitor Aphidicolin eine schnelle und reversible Zellzyklusblockade, während andere zelluläre Prozesse nicht beeinflusst werden. Durch Ermittlung der Zelldichte, der mittleren Zelllänge und des Anteils an Septum bildenden Zellen wurde festgestellt, dass nach Entfernen des Inhibitors ca. 70 % der in der Kultur vorhandenen Zellen den Zellzyklus synchron durchlaufen. Diese Prozedur erlaubt erstmals die Untersuchung der Zellzyklus abhängigen Regulation der Transkription, Proteinakkumulation sowie der intrazellulären DNA-Lokalisation in einem Archaeon. Transkriptionsstudien mit synchron wachsenden H. salinarum-Kulturen ergaben, dass das sph1 Transkript eindeutig Zellzyklus abhängig reguliert ist. Die maximale Transkriptmenge ist dabei zum Zeitpunkt der Septumbildung nachweisbar. Die Expression des hp24 Gens beginnt etwa eine Stunde vor der Expression des sph1 Gens. Bevor die sph1 Transkriptmenge ihr Maximum erreicht, nimmt die hp24 Expression wieder ab. Das cdcH Gen, das für ein Protein der Cdc48 Familie kodiert, ist wie das sph1 Gen um den Zeitpunkt der Septumbildung stark induziert, während ein ftsZ Allel nicht in Zellzyklus abhängiger Weise reguliert ist. Die Transkriptionsmuster zeigen, dass die Transkription verschiedener Gene im Verlauf des haloarchaealen Zellzyklusses präzise reguliert wird. Die Sph1 Proteinmenge ist ebenfalls während des Zellzyklusses reguliert; sie ist erhöht, wenn die Segregation der neuen Chromosomen nahezu abgeschlossen ist. Folglich hat Sph1 vermutlich eine Funktion in der späten Phase der Replikation, z.B. in der DNA-Reparatur wie auch die eukaryalen Rad18 Proteine. Im Gegensatz zum sph1 Transkript ist das Protein während des gesamten Zellzyklusses in H. salinarum nachweisbar. Es ist daher nicht auszuschließen, dass Sph1 eine weitere Funktion ausübt, die eine Präsenz während des gesamten Zellzyklusses benötigt. Ein Färbeprotokoll mit einem DNA spezifischen Fluoreszenzfarbstoff wurde entwickelt, um die intrazelluläre Lokalisation des Nukleoids in H. salinarum zu bestimmen und seine differenzierte Positionierung im Verlauf des Zellzyklusses in synchronisierten Zellen zu verfolgen. Synchronisierte Kulturen wurden mit Fluoreszenzmikroskopie untersucht. Es zeigte sich, dass das haloarchaeale Nukleoid nach einer anfänglichen Verteilung auf die gesamte Zelle in der Zellteilungsebene kondensiert. Im weiteren Verlauf wird die DNA zügig an die 1/4 und 3/4 Positionen transportiert. Alle DNA-Strukturen wurden auch in unbehandelten Zellen beobachtet, so dass Synchronisationsartefakte ausgeschlossen werden können. Diese Daten beweisen, dass die DNA in Haloarchaea aktiv zu spezifischen intrazellulären Regionen transportiert wird und legen nahe, dass die Replikation in der Zellteilungsebene erfolgt, wie es in den letzten Jahren für einige bakterielle Arten nachgewiesen wurde. Die Untersuchungen bilden die Grundlage für weitere Untersuchungen molekularer Details des archaealen Zellzyklusses.
Im Rahmen dieser Arbeit wurden ausgewählte 5’- und 3’-untranslatierte Regionen (UTRs) von mRNAs aus H. volcanii bestimmt. Dieses Datenset wurde verwendet um (1) haloarchaeale UTRs zu charakterisieren, (2) Konsensuselemente für die Transkrikptionsinitiation und -termination zu verifizieren und (3) den Einfluss haloarchaealer UTRs auf die Initiation und Regulation der Translation zu untersuchen. Es konnte gezeigt werden, dass alle untersuchten Transkripte nichtprozessierte 3’-UTRs mit einer durchschnittlichen Länge von 45 Nukleotiden besitzen. Darüber hinaus konnte ein putatives Transkriptionsterminationssignal bestehend aus einem pentaU-Motiv mit vorausgehender Haarnadelstruktur identifiziert werden. Die Analysen der Regionen stromaufwärts der experimentell bestimmten Transkriptionsstarts führten zur Identifizierung dreier konservierter Promotor Elemente: Der TATA-Box, dem BRE-Element und einem neuen Element an Position -10/-11. Überraschenderweise bestand die TATA-Box nur aus vier konservierten Nukleotiden. Die Untersuchung der UTRs ergab, dass die größte Anteil der haloarchaealen Transkripte keine 5’-UTR besitzt. Falls eine 5’-UTR vorhanden ist, besitzen unerwarteterweise nur 15% der 5’-UTRs aus H. volcanii eine Shine-Dalgarno-Sequenz (SD-Sequenz). Es konnte jedoch gezeigt werden, dass verschiedene native und artifizielle 5’-UTRs ohne SD-Sequenz sehr effizient in vivo translatiert werden. Außerdem hat die Sekundärstruktur der 5’-UTR und die Position struktureller Elemente offenbar einen entscheidenden Einfluss auf die Translatierbarkeit von Transkripten. Die Insertion von Strukturelementen nahe des Startkodons führte zu einer vollkommenen Repression der Translation, während die proximale Insertion des Motivs an das 5’-Ende der 5’-UTR keinen Einfluss auf die Translationsseffizienz hatte. Zusammenfassend kann sowohl der eukaryotische Scanning-Mechanismus als auch die bakterielle Initiation der Translation über die SD-Sequenz für haloarchaeale Transkripte mit 5’-UTR ohne SD-Sequenz ausgeschlossen werden. Die im Rahmen dieser Arbeit durchgeführten Untersuchungen bilden die Grundlage für weitere Untersuchungen zur Identifizierung eines entsprechenden dritten Mechanismus zur Initiation der Translation in H. volcanii. Eine aktuelle Studie zur globalen Analyse der Translationsregulation zeigte, dass der Anteil translational regulierter Gene in H. volcanii genauso hoch ist wie bei Eukaryoten (Lange et al., 2007). Um die Rolle haloarchaealer UTRs bei der Regulation der Translation zu charakterisieren, wurden die UTRs zweier ausgewählter translationsregulierter Gene untersucht. Es stellte sich heraus, dass nur die Anwesenheit beider UTRs, 5’- und 3’-UTR, zu einer Wachstumsphasen-abhängigen Regulation der Translation führt. Dabei hat die 3’-UTR allein keinen Einfluss auf die Translationseffizienz, während die 5’-UTR die Translationseffizienz in beiden Wachstumsphasen reduziert. Es zeigte sich außerdem, dass die 3’-UTR für die „Richtung“ der Regulation auf Translationsebene verantwortlich ist und putative Strukturelemente möglicherweise in den Regulationsmechanismus involviert sind. Zusammengefasst ergibt sich folgendes Modell der Translationsregulation in H. volcanii: Strukturierte 5’-UTRs führen zu einer Herabsetzung der konstitutiven Translationseffizienz. Dies kann differentiell durch regulatorische Faktoren kompensiert werden, welche spezifische Elemente der 3’-UTR binden. Sowohl natürliche als auch artifizielle Aptamere und allosterische Ribozyme stellen effektive Werkzeuge zur exogen kontrollierten Genexpression dar. Daher wurde die Anwendbarkeit eines Tetracyclin-induzierbaren Aptamers und eines konstitutiven Hammerhead-Ribozyms in H. volcanii untersucht. Es stellte sich allerdings heraus, dass das Aptamer bereits ohne Tetracyclin starke inhibitorische Sekundärstrukturen ausbildet. Als Alternative wurden Reportergenfusionen mit einem selbstspaltenden Hammerhead-Ribozym konstruiert. Die selbstspaltende Aktivität des Hammerhead-Ribozyms in H. volcanii konnte erfolgreich in vivo demonstriert werden, was die Grundlage zur Entwicklung konditionaler Expressionssysteme basierend auf dem Hammerhead-Ribozym in H. volcanii bildet.
H. salinarum ist einer von zwei archaealen Organismen, die synchronisiert werden können. Die Synchronisations-Methode konnte in dieser Arbeit optimiert werden. Nahezu 100 % aller Zellen teilen sich in einer Zeitspanne von einem Viertel der Generationszeit. Die Analyse zweier aufeinanderfolgender Zellzyklen zeigte, dass die Zellen sich auch im zweiten Zyklus synchron teilen. Die Zellsynchronisation wurde angewendet, um zellzyklusabhängige Vorgänge in H. salinarum auf unterschiedlichen Ebenen zu charakterisieren. Mittels DNA-Mikroarrays wurden Transkriptomänderungen untersucht. Nur 87 Gene zeigten zellzyklusspezifische Regulationen. Dies entspricht 3 % aller vorhergesagten offenen Leserahmen und ist somit im Vergleich zu allen anderen Organismen, deren Transkriptome untersucht wurden, deutlich geringer. Die Transkriptmengen von 15 ausgewählten Genen wurden mit Northern Blot Analysen verifiziert. Die regulierten Gene konnten in sieben Gruppen mit unterschiedlichen Transkriptprofilen eingeordnet werden. Gruppenspezifische DNA-Sequenzmotive wurden gefunden, von denen angenommen wird, dass sie in die zellzyklusspezifische Transkriptionsregulation involviert sind. Überraschenderweise wurden die meisten als Zellzyklusgene annotierten Gene konstitutiv transkribiert. Die Analyse zellzyklusabhängiger Proteomänderungen erfolgte mittels 2D-Gelelektrophorese. 1200 Proteine konnten reproduzierbar detektiert werden. Die meisten Proteine wurden konstitutiv exprimiert. Nur 30 Proteine zeigten eine zellzyklusabhängige Regulation. Dies entspricht 2,5 % der reproduzierbar detektierten Proteine. Es konnten unterschiedliche Expressionsprofile gefunden werden. Aus den Transkriptom- und Proteomanalysen folgt, dass auf Ebene der Genexpression nur wenige zellzyklusabhängige Regulationen existieren. Sekundäre Botenstoffe spielen eine wesentliche Rolle bei Signaltransduktionen und sind an Regulationen von Zellzyklen beteiligt. Eine Methode zur Messung intrazellulärer cAMP-Konzentration in H. salinarum konnte etabliert werden. Die basale cAMP-Konzentration von 200 µM in haloarchaealen Zellen ist bedeutend höher als die von Hefe. Synchrone Kulturen wurden auf die Oszillation des sekundären Botenstoffes hin untersucht. Es konnte gezeigt werden, dass die Konzentration zellzyklusabhängig zweimal kurzfristig signifikant erhöht wird. Die cAMP-Konzentration steigt einmal vor und einmal direkt nach der Zellteilung an. cAMP könnte daher ein wichtiges Signal für das Fortschreiten des Zellzyklusses sein. Es konnte eine Methode zur Analyse der Replikation in H. salinarum entwickelt werden. Hierfür wurde das Basenanalogon BrdU und ein spezifischer Antikörper gegen dieses verwendet. Die Analyse synchroner Kulturen zeigte das überraschende Ergebnis, dass die Zellen ihre DNA während des gesamten Zellzyklusses zu replizieren scheinen. Vor allem die DNA-Synthese in synchronen Kulturen während der Teilungsphase der Zellen stellt einen völlig neuartigen Zellzyklusablauf dar. Für in vivo Analyse von Zellzyklusproteinen können diese mit GFP markiert und fluoreszenzmikroskopisch analysiert werden. Mit dieser Methode konnten wichtige zellzyklusabhängige Aspekte in anderen Arten aufgeklärt werden. Für einen GFP-Modellversuch wurde in dieser Arbeit ein Fusionsgen bestehend aus den offenen Leserahmen von bop (bacterio-opsin) und gfp (green fluorescent protein) erstellt. Die Expression des chromosomalen bop Gens und des plasmidkodierten bop-gfp Fusionsgens wurde mit Northern Blot Analysen nachgewiesen. Die Purpurmembranbiogenese wurde fluoreszenzmikroskopisch in lebenden H. salinarum Zellen untersucht. Es stellte sich heraus, dass die Bildung der Purpurmembran ca. 15 Stunden nach Eintritt der Zellen in die stationäre Wachstumsphase beginnt. Innerhalb der folgenden sieben Stunden stieg sowohl die Anzahl an Zellen mit fluoreszierenden Signalen als auch die durchschnittliche Anzahl an Signalen pro Zelle gleichmäßig an. Die Ergebnisse zeigen, dass GFP-Fusionsproteine in H. salinarum z. B. zur Charakterisierung von differentieller Genexpression verwendet werden können. Des Weiteren könnten sie für die Untersuchung zellzyklusabhängiger Proteinlokalisation und für die Analyse der intrazellulären Verteilung putativer Cytoskelettproteine eingesetzt werden.
NADPH-Oxidasen der Nox-Familie sind eine wichtige Quelle für reaktive Sauerstoffspezies (ROS, reactive oxygen species) in verschiedenen Geweben und Zellen. Die Isoformen der NADPH-Oxidase unterscheiden sich dabei in ihrer physiologischen Funktion: Während Nox1 und Nox2 eher akute, Agonisten-induzierte ROS-Signaltransduktion vermitteln, sind Nox4-abhängig produzierte ROS an chronischen Prozessen wie Differenzierung beteiligt. Die Isoformen der NADPH-Oxidase unterscheiden sich darüber hinaus in ihrer intrazellulären Lokalisation, der Art der Aktivierung und der Spezies der abgegebenen ROS. Nox1 muss durch die Interaktion mit zytosolischen Untereinheiten (NoxA1 und NoxO1) aktiviert werden und produziert dann hauptsächlich Superoxidanionradikale (O2-). Nox4 dagegen ist unabhängig von zytosolischen Untereinheiten und somit konstitutiv aktiv und setzt eher Wasserstoffperoxid (H2O2) in den Extrazellulärraum frei. Zwischen diesen Unterschieden, deren strukturelle Ursachen weitgehend unbekannt sind, und den unterschiedlichen Funktionen von Nox1 und Nox4 besteht wahrscheinlich ein Zusammenhang. In transfizierten HEK293-Zellen konnte zunächst durch Immunofluoreszenz-Mikroskopie und subzelluläre Fraktionierung gezeigt werden, dass Nox1 in der Plasmamembran lokalisiert ist und Nox4 in der Membran des endoplasmatischen Retikulums (ER) verbleibt. Um die strukturellen Unterschiede zwischen Nox1 und Nox4, die eine Rolle bei der intrazellulären Lokalisation, den Aktivierungsmechanismen und der Art der abgegebenen ROS spielen könnten, zu identifizieren, wurden chimäre Proteine aus Nox1 und Nox4 konstruiert und analysiert. Zunächst konnte gezeigt werden, dass die konstitutive Aktivität von Nox4 durch den zytosolischen Bereich vermittelt wird. Dafür ist allerdings der komplette zytosolische Bereich ab der 6. Transmembrandomäne nötig, chimäre Konstrukte mit einem kürzeren Anteil des zytosolischen Bereichs von Nox4 waren nicht aktiv. Für die Aktivierung von Nox1 dagegen ist der zytosolische Bereich nicht ausreichend, vermutlich spielen weitere Interaktionen mit Bereichen im transmembranen Teil des Proteins ebenfalls eine Rolle. Für die korrekte intrazelluläre Lokalisation benötigen Membranproteine ein N-terminales Signalpeptid. Wenn das vorhergesagte Signalpeptid von Nox1 durch das von Nox4 ausgetauscht wurde, zeigte dieses chimäre Protein keine Plasmamembran-Lokalisation mehr, es war stattdessen in vesikelähnlichen Strukturen unterhalb der Plasmamembran lokalisiert. Das Signalpeptid von Nox1 war nicht dazu in der Lage, Nox4 zur Plasmamembran zu transportieren, das Protein war weiterhin im ER lokalisiert, was darauf hindeutet, dass Nox4 noch weitere Mechanismen besitzt, die seine ER-Lokalisation bedingen. Der Austausch des Signalpeptids von Nox4 gegen das von Nox1 führte dazu, dass das chimäre Protein statt H2O2 O2- produzierte. Dieses Ergebnis spricht dafür, dass der N-Terminus von Nox4 bei der H2O2-Produktion eine Rolle spielt. Experimente mit Nox1 und Nox4 mit N-terminalem Myc-Tag deuteten darauf hin, dass nur der N-Terminus von Nox1 prozessiert wird, also dass das Signalpeptid während der co-translationalen Translokation abgespalten wird. Ohne Signalpeptid waren sowohl Nox1 als auch Nox4 inaktiv. Die dritte extrazytoplasmatische Schleife von Nox4 enthält 28 zusätzliche Aminosäuren verglichen mit Nox1, die sich auf zwei Bereiche aufteilen. Eine Deletion der Aminosäuren, die nur in Nox4 vorhanden sind, führte dazu, dass das Protein O2- anstelle von H2O2 produzierte, ohne dass die intrazelluläre Lokalisation verändert wurde. Zwei konservierte Cysteine innerhalb der deletierten Bereiche scheinen bei diesem Prozess eine Rolle zu spielen, vermitteln den Effekt aber nicht alleine, da nach Mutation dieser Cysteine die Umkehr der ROS-Produktion nicht ganz so stark war wie bei der Deletion der kompletten Bereiche. In Nox1 sind die Cysteine wahrscheinlich in die Aktivierung des Proteins involviert, da deren Mutation die Aktivität von Nox1 reduzierte. Der N-Terminus und die dritte extrazytoplasmatische Schleife von Nox4 sind somit an einem Prozess beteiligt, der die H2O2-Produktion von Nox4 vermittelt. Die entsprechenden Abschnitte in Nox1 scheinen andere Funktionen zu erfüllen. Das Signalpeptid von Nox1 ist für die korrekte intrazelluläre Lokalisation in der Plasmamembran verantwortlich; die dritte extrazytoplasmatische Schleife ist wahrscheinlich an der Aktivierung des Proteins beteiligt. In dieser Arbeit konnten also strukturelle Unterschiede zwischen Nox1 und Nox4 in verschiedenen Bereichen der Proteine identifiziert werden, die für die unterschiedliche intrazelluläre Lokalisation und die Art der produzierten ROS verantwortlich sind.
(1) Die genomweite Expressionsanalyse von salzadaptierten Zellen von M. mazei Gö1 identifizierte eine Reihe von salzregulierten Genen. Neben den beiden Operone ota und abl, die für die Akkumulierung von Glycin-Betain und Ne-Azetyl-b-Lysin verantwortlich sind, konnte ein ABC-Transporter (MM0953), der in seiner Genumgebung weitere Transporter sowie Proteine mit konservierten S-Layer-Domänen aufweist, als salzreguliert erkannt werden. Dies deutet auf ein S-Layer-Exportsystem hin, das eine Rolle in salzadaptierten Zellen spielen könnte. (2) Eine genomweite Expressionsanalyse von Zellen von M. mazei Gö1 zu unterschiedlichen Zeitpunkten nach einem hyperosmotischen Schock auf 400 mM NaCl ermöglichte Einblicke in den Verlauf der Genexpression. Die Erhöhung der externen Osmolarität resultierte in der erhöhten Expression von Genen, die für die Aufnahme und Biosynthese von kompatiblen Soluten verantwortlich sind sowie von Genen deren Produkte regulatorische Funktion haben könnten. (3) Genomweite Expressionsanalysen von Zellen von M. mazei Gö1 nach einem hypoosmotischen Schock zeigten erhöhte Expression von Genen, die an der Regulation und an der generellen Stressantwort beteiligt sind. Gene, deren Produkte im Stoffwechsel wichtig sind – besonders Gene, die für Methylamin-Corrinoid-Methyltransferasen kodieren – erscheinen stark reprimiert. (4) Die Bestimmung der intrazellulären Ionenkonzentrationen zeigte ein unspezifisches Einströmen von den Ionen, die den osmotischen Schock auslösen sofort nach dem Schock, sowie den Ausstrom derselben Ionen im Verlauf von 5 Minuten. Die Ionenkonzentrationen der Ionen, die den Schock auslösten, blieben intrazellulär erhöht. Das Ein- und Ausströmen der Ionen nach einem hyperosmotischen Stress ist nicht energieabhängig. (5) M. mazei akkumulierte nach einem hyperosmotischen Schock kein K+, zeigte aber eine erhöhte intrazelluläre Konzentration dieses Ions, wenn die Zellen in Medium mit erhöhter Osmolarität angezogen wurden. (6) Durch hyperosmotische Schocks mit verschiedenen Salzen und Zuckern konnte gezeigt werden, dass die kurzzeitige Akkumulation von Ionen keine gerichtete Antwort auf den osmotischen Stress ist. (7) Es konnte weiters gezeigt werden, dass Zellen von M. mazei Gö1, die mit dem kompatiblen Solut Betain inkubiert wurden, nach einem hyperosmotischen Schock K+ akkumulieren. Dies bedeutet möglicherweise eine K+-abhängige Regulation des Glycin-Betain-Transporters. (8) Die Funktion der drei im Genom kodierten Na+/H+-Antiporter konnte auf transkriptioneller Ebene nicht geklärt werden. Trotzdem zeigt ein Hydrophobizitätsplot des Proteins eine mögliche Beteiligung von Nha1 (MM0294) an der Osmoregulation durch eine hydrophile C-terminale Domäne. (9) Nach einem hyperosmotischen Schock von 38,5 auf 400 mM NaCl erhöhte sich die intrazelluläre Konzentration an Glutamat, das in M. mazei als kompatibles Solut fungiert, bereits nach drei Stunden. Zellen, die bereits an die erhöhte Salzkonzentration adaptiert waren, enthielten 1,4 μmol Glutamat/mg Protein. (10) Die Glutamin-Synthetase zeigte eine erhöhte Transkription nach einem hyperosmotischen Schock. Das Protein wird aber nicht salzabhängig produziert und zeigt keine Enzymaktivität. Die Biosynthese des Solutes über eine Glutamat-Dehydrogenase ist die wahrscheinliche Alternative. (11) Aufgrund der generierten Expressionsprofile und der physiologischen Daten konnte ein Modell der Osmoadaptation in Methanosarcina mazei Gö1 erstellt werden.
Wolinella succinogenes reduziert Fumarat mit H2 oder Formiat als Elektronendonor. Der Elektronentransport wird von der membranständigen Hydrogenase oder Formiat-Dehydrogenase und der Fumarat-Reduktase katalysiert. Redoxmediator zwischen beiden Enzymen ist Menachinon. Der Elektronentransport ist mit der Erzeugung eines elektro-chemischen Protonenpotentials (Dp) gekoppelt. Ziel dieser Arbeit war, den Mechanismus der Dp-Entstehung durch Rekonstitution der gekoppelten Fumarat-Atmung in Liposomen aufzuklären. Aus Wolinella succinogenes isolierte Hydrogenase und Fumarat-Reduktase wurden in Liposomen eingebaut, die Menachinon enthielten. Die resultierenden Proteoliposomen kataly-sierten die Reduktion von Fumarat mit H2. Die Wechselzahl der Enzyme im Elektronentrans-port von H2 zu Fumarat war etwa 10 % von der in Bakterien. In den Proteoliposomen waren sowohl Hydrogenase als auch Fumarat-Reduktase ausschließlich nach außen orientiert. Elektronenmikroskopische Aufnahmen zeigten, dass die Proteoliposomen sphärische Vesikel mit einem mittleren Außendurchmesser von 88 nm waren. Die Proteoliposomen enthielten statistisch 8,4 Hydrogenasemoleküle und 72 Fumarat-Reduktasemoleküle. Alle aktiven Enzymmoleküle waren in der Proteoliposomenmembran zufällig verteilt eingebaut und nahmen am Elektronentransport von H2 zu Fumarat teil. Der aus dem Protonenpermeabilitätskoeffizienten (PH = 8,1·10-3 cm·s-1) berechnete unspezifische Protonenfluß über die Proteoliposomenmembran war etwa 20mal langsamer als der durch den Elektronentransport von H2 zu Fumarat katalysierte Protonenfluß. Während der Fumarat-Reduktion mit H2 entstand ein elektrisches Protonenpotential über der Proteoliposomenmembran (Dø = -0,19 V; innen negativ), das die gleiche Richtung und Größe hatte wie das Dø während der Fumarat-Atmung in Zellen von W. succinogenes. Der H /e--Quotient für die Fumarat-Reduktion mit H2 war in Proteoliposomen in Gegenwart von Valinomycin und externem K etwa 1. Das gleiche Dø und der gleiche H /e--Quotient waren mit der Reduktion von 2,3-Dimethyl-1,4-naphthochinon (DMN) durch H2 verbunden, wenn die Proteoliposomen Menachinon und Hydrogenase mit oder ohne Fumarat-Reduktase enthielten. Proteoliposomen, die Menachinon und Fumarat-Reduktase mit oder ohne Hydrogenase enthielten, katalysierten die Reduktion von Fumarat durch DMNH2, die aber nicht mit der Entstehung von Dp gekoppelt war. Proteoliposomen, die Formiat-Dehydrogenase, Menachinon und Fumarat-Reduktase enthielten, katalysierten die Reduktion von Fumarat oder DMN durch Formiat. Beide Reaktionen erzeugten über der Proteoliposomenmembran ein Dø von -0,13 V (innen negativ). Der H /e--Quotient der Formiat-Oxidation durch Menachinon oder DMN war nahezu 1. Die Entstehung von Dø war von der Art des in die Proteoliposomen eingebauten Chinons abhängig. Während der Reduktion von DMN durch H2 entstand ein Dø, wenn die Proteoliposomenmembran Menachinon, Vitamin K2 oder das aus W. succinogenes isolierte Methylmenachinon enthielt. Proteoliposomen ohne Chinon oder mit Vitamin K1 erzeugten kein Dø während der DMN-Reduktion mit H2. Die Fumarat-Atmung mit H2 war nur in Gegenwart von Menachinon oder Vitamin K2 mit der Entstehung von Dø gekoppelt. In dieser Arbeit wurde erstmals die gekoppelte Fumarat-Atmung mit aus W. succinongenes isolierten Elektronentransportenzymen in Lipsomen rekonstituiert. Die Ergebnisse bestätigen die Hypothese, dass das durch die Fumarat-Atmung erzeugt Dp ausschließlich durch die Menachinon-Reduktion mit H2 oder Formiat entsteht, während die Menachinol-Oxidation mit Fumarat ein elektroneutraler Prozeß ist.
Operons wurden zuerst im Jahre 1961 beschrieben. Bis heute ist bekannt, dass die prokaryotischen Domänen Bacteria und Archaea Gene sowohl in monocistronischen als auch in bi- oder polycistronischen Transkripten exprimieren können. Häufig überlappen Gene sogar in ihren Sequenzen. Diese überlappenden Genpaare stehen nicht in Korrelation mit der Kompaktheit ihres Genoms. Das führt zu der Annahme, dass eine Art der Regulation vorliegt, welche weitere Proteine oder Gene nicht benötigt. Diese könnte eine gekoppelte Translation sein. Das bedeutet die Translation des stromabwärts-liegenden Gens ist abhängig von der Translation eines stromaufwärts-liegenden Gens. Diese Abhängigkeit kann zum Beispiel durch lang reichende Sekundärstrukturen entstehen, bei welchen Ribosomenbindestellen (RBS) des stromabwärts-liegenden Gens blockiert sind. Die de novo-Initiation am stromabwärts-liegenden Gen kann nur stattfinden, wenn das erste Gen translatiert wird und dabei die Sekundärstruktur an der RBS aufgeschmolzen wird. Für Genpaare in E. coli ist dieser Mechanismus gut untersucht. Ein anderes Beispiel für die Translationskopplung ist die Termination-Reinitiation, bei welcher ein Ribosom das erste Gen translatiert bis zum Stop-Codon, dort terminiert und direkt am stromabwärts-liegenden Start-Codon reinitiiert. Der Mechanismus via Termination-Reinitiation ist bis jetzt nur für eukaryontische Viren beschrieben worden. Im Gegensatz zu einer Kopplung über Sekundärstrukturen kommt es bei der Termination-Reinitiation am stromabwärts-liegenden Gen nicht zu einer de novo-Initiation sondern eine Reinitiation des Ribosoms findet statt. Diese Arbeit analysiert jene Art der Translationskopplung an Genen polycistronischer mRNAs in jeweils einem Modellorganismus als Vertreter der Archaea (Haloferax volcanii) und Bacteria (Escherichia coli). Hierfür wurden Reportergenvektoren erstellt, welche die überlappenden Genpaare an Reportergene fusionierten. Für diese Reportergene ist es möglich die Transkriptmenge zu quantifizieren sowie für die exprimierten Proteine Enzymassays durchgeführt werden können. Aus beiden Werten können Translationseffizienzen berechnet werden indem jeweils die Enzymaktivität pro Transkriptmenge ermittelt wird. Durch ein prämatures Stop-Codon in diesen Konstrukten ist es möglich zu unterscheiden ob es für die Translation des zweiten Gens essentiell ist, dass das Ribosom den Überlapp erreicht. Hiermit konnte für neun Genpaare in H. volcanii und vier Genpaare in E. coli gezeigt werden, dass eine Art der Kopplung stattfindet bei der es sich um eine Termination-Reinitiation handelt. Des Weiteren wurde analysiert, welche Auswirkungen intragene Shine-Dalgarno Sequenzen bei dem Event der Translationskopplung besitzen. Durch die Mutation solcher Motive und dem Vergleich der Translationseffizienzen der Konstrukte, mit und ohne einer SD Sequenz, wird für alle analysierten Genpaare beider Modellorganismen gezeigt, dass die SD Sequenz einen Einfluss auf diese Art der Kopplung hat. Zwischen den Genpaaren ist dieser Einfluss jedoch stark variabel. Weiterhin wurde der maximale Abstand zwischen zwei bicistronischen Genen untersucht, für welchen Translationskopplung via Termination-Reinitiation noch stattfinden kann. Hierfür wird durch site-directed mutagenesis jeweils ein prämatures Stop-Codon im stromaufwärts-liegenden Gen eingebracht, welches den intergenen Abstand zwischen den Genen in den jeweiligen Konstrukten vergrößert. Der Vergleich aller Konstrukte eines Genpaars zeigt in beiden Modellorganismen, dass die Termination-Reinitiation vom intergenen Abstand abhängig ist und die Translationseffizienz des stromabwärts-liegenden Reporters bereits ab 15 Nukleotiden Abstand abnimmt.
Eine weitere Fragestellung dieser Arbeit war es, den genauen Mechanismus der Termination-Reinitiation zu analysieren. Für Ribosomen gibt es an der mRNA nach der Termination der Translation zwei Möglichkeiten: Entweder als 70S Ribosom bestehen zu bleiben und ein weiteres Start-Codon auf der mRNA zu suchen oder in seine beiden Untereinheiten zu dissoziieren, während die 50S Untereinheit die mRNA verlässt und die 30S Untereinheit über Wechselwirkungen an der mRNA verbleiben kann. Um diesen Mechanismus auf molekularer Ebene zu untersuchen, wird ein Versuchsablauf vorgestellt. Dieser ermöglicht das Event bei der Termination-Reinitiation in vitro zu analysieren. Eine Unterscheidung von 30S oder 70S Ribosomen bei der Reinitiation der Translation des stromabwärts-liegenden Gens wird ermöglicht. Die Idee dabei basiert auf einem ribosome display, bei welchem Translationskomplexe am Ende der Translation nicht in ihre Bestandteile zerfallen können, da die eingesetzte mRNA kein Stop-Codon enthält Der genaue Versuchsablauf, die benötigten Bestandteile sowie proof-of-principal Versuche sind in der Arbeit dargestellt und mögliche Optimierungen werden diskutiert.
Genetic engineering of Saccharomyces cerevisiae for improved cytosolic isobutanol biosynthesis
(2021)
The finite nature of fossil resources and the environmental problems caused by their excessive usage requires alternative approaches. The transformation from a fossil based economy to one based on renewable biomass is called a “bioeconomy”. To substitute fossil resources, various microorganisms have already been modified for the biosynthesis of valuable chemicals from biomass. However, the development of such efficient microorganisms at an industrial scale, remains a major challenge. The most prominent and robust microorganism for industrial production is the yeast Saccharomyces cerevisiae, which is known to produce ethanol that is used as renewable biofuel. However, S. cerevisiae is also naturally able to produce isobutanol in small amounts. Isobutanol is favoured as a biofuel compared to ethanol due to its higher octane number and lower hygroscopicity, which makes it more suitable for application in conventional combustion engines. In S. cerevisiae, the biosynthesis of isobutanol is permitted by the combination of mitochondrial valine synthesis (catalysed by Ilv2, Ilv5 and Ilv3) and its cytosolic degradation (catalysed by Aro10 and Adh2). The different compartmentalisation of the two pathways limit isobutanol biosynthesis. Thus, Brat et al. (2012) were able to increase the isobutanol yield up to 15 mg/gGlc by cytosolic re localisation of the enzymes Ilv2Δ54, Ilv5Δ48 and Ilv3Δ19 (cyt-ILV), with simultaneous deletion of ilv2. This corresponds to approximately 3.7% of the theoretical yield of 410 mg/gGlc, implying existing limitations in isobutanol biosynthesis, which have been investigated in this work.
For yet unknown reasons, isobutanol was only produced by S. cerevisiae in a valine free medium, according to Brat et al. (2012). This work shows that this can be attributed to the catalytic activity of Ilv2Δ54, which acted as growth inhibitor to S. cerevisiae. By this logic, a negative selection on the ILV2∆54 gene was exerted, which made the ilv2 deletion and simultaneous valine exclusion necessary to maintain the functional expression of toxic ILV2∆54. Furthermore, it was shown that valine exclusion is not mandatory due to the feedback regulation of Ilv2, permitted by Ilv6. Rather, increased isobutanol yield was observed when cytosolic Ilv6∆61 was expressed in the valine free medium, which is explained by the enhanced regulation of Ilv2Δ54 by Ilv6∆61 when BCAA are absent. Isobutanol biosynthesis is neither redox nor NAD(P)H co factor balanced. It was seen that co factor imbalance could be mitigated by the expression of an NADH oxidase (NOX), but not by expression of the NADH dependent ilvC6E6, since the latter showed low in vivo activity. Furthermore, it was seen that NAD(H) imbalance did already limit isobutanol biosynthesis, but the NADP(H) imbalance did not. Another limitation of cytosolic isobutanol biosynthesis is the secretion of the intermediate 2‑dihydroxyisovalerate, which then no longer is taken up by S. cerevisiae, causing a reduced isobutanol yield. This is attributed to insufficient Ilv3∆19 activity, due to poor iron sulphur cluster apo protein maturation. Therefore, it was aimed to replace Ilv3∆19 by heterologous dihydroxyacid dehydratases. Even though some of the enzymes were functionally expressed, none showed better in vivo activity than Ilv3∆19. Therefore, the Ilv3∆19 apo protein maturation was improved. This was achieved by the genomic deletion of fra2 or pim1 as well as by the cytosolic expression of Grx5∆29.
In addition to the isobutanol pathway, S. cerevisiae was optimised for isobutanol biosynthesis by rational and evolutionary engineering. For this purpose, the genes which are necessary for isobutanol production were integrated into the ilv2 locus, and the resulting strain was evolved in a medium containing the toxic amino acid analogue norvaline. Evolved single colonies were isolated, which presented improved growth and increased isobutanol yields (0.59 mg/gGlc) in a valine free medium, as compared to the initial strain. This is explained by a gene dosage effect which occurred during the evolutionary engineering experiment. In collaboration with Dr. Wess, the genes ilv2, bdh1/2, leu4/9, ecm31, ilv1, adh1, gpd1/2 and ald6 were cumulatively deleted in CEN.PK113 7D to block competing metabolic pathways. The resulting strain JWY23 achieved isobutanol yields up to 67.3 mg/gGlc, when expressing the cyt ILV enzymes from a multi copy vector. The most promising approaches of this work, namely the deletion of fra2 and the expression of Grx5∆29, Ilv6∆61, and NOX, were confirmed in this JWY23 strain. The highest isobutanol yield from this work was observed at 72 mg/gGlc for Ilv6∆61 and cyt ILV enzymes expressing JWY23, which corresponds to 17.6% of the theoretical isobutanol yield.
Isobutyric acid (IBA) is a by product of isobutanol biosynthesis, but it is also considered a valuable platform chemical. Therefore, the approaches that improved isobutanol biosynthesis were applied to the biosynthesis of IBA in S. cerevisiae. The highest IBA yield of 9.8 mg/gGlc was observed in a valine free medium by expression of cyt ILV enzymes, NOX and Ald6 in JWY04 (CEN.PK113 7D Δilv2; Δbdh1; Δbdh2; Δleu4; Δleu9; Δecm31; Δilv1). This corresponded to an 8.9 fold increase compared with the control and is, to our best knowledge, the highest IBA yield reported to date for S. cerevisiae.
Parvulustat ist ein kleines Protein (8,2 kDA), das aus dem Bodenbakterium Streptomyces
parvulus sekretiert wird. Es ist ein saures Polypeptid mit einem isoelektrischen Punkt von 4,49
und inhibiert spezifisch α-Amylasen (Ki = 9 x 10-12).
In der vorliegenden Arbeit sollen neben der Isotopenmarkierung des Parvulustats PL-Mutanten
mittels PCR-Mutagenese und DNA Rekombinationstechnick hergestellt werden.
Zur Charakterisierung und Strukturbestimmung der Mutanten werden größere Mengen des
jeweiligen Proteins benötigt, wofür wiederum ein effektives Expressionssystem bereitstehen
muß. Ein Expressionssystem besteht aus einem Wirtsorganismus der seinen Protein-Biosynthese-
Apparat zur Verfügung stellt und einem Vektor (Plasmid) der das Zielgen trägt. Im Falle des
Parvulustats und seiner Mutanten bietet sich der gut charakterisierte Stamm Streptomyces
lividans TK 24 (Hopwood et al, 1985) als Wirtsorganismus an. Der Inhibitor wird in ihm als
Vorläuferprotein mit Signalpeptid als Transportsignal (Leader) gebildet. Da dieses Bakterium
keine äußere Membran besitzt, wird der Inhibitor direkt ins Kulturmedium ausgeschleust. Dabei
wird das Signalpeptid durch die Signalpeptidase abgespalten.
Das Strukturgen wird zuerst im Klonierungsplasmid pSH09 in E. coli vervielfältigt, bevor es mit
den Enzymen EcoRI und SpeI geschnitten wird, um in den Expressionsvektor pSH017 integriert
zu werden. Dieser Shuttlevektor trägt genauso die gewünschten Restriktionsschnittstellen, SpeI
und EcoRI, die die paßgenaue Ligation des rekombinanten Strukturgens mit den funktionellen
Elementen erlauben.
Nach erfolgtem Einbau des Zielgens in das neue Vektorkonstrukt kann dieser Expressionsvektor
leicht in den Wirtsorganismus eingebracht werden und sich dort vermehren. Nach Klonierung der
mutierten Parvulustatsgene in den Expressionsvektor werden die damit transformierten Zellen auf
R2YE-Platten aufgebracht und bei einer Temperatur zwischen 20 und 28°C je nach PL-Mutanten
inkubiert. Zur Selektion wird Thiostrepton verwendet. Nach Transformation und Vermehrung
geeigneter Wirtszellen wird das klonierte Gen transkribiert. Durch anschließende Translation der
gebildeten mRNA in der Wirtszelle entsteht das gewünschte Protein in großen Mengen. Zur
Überprüfung der Aktivität der einzelnen Mutanten steht der qualitative α-Amylase-Plattentest zur
Verfügung, wobei die aktiven Mutanten einen blauen Hemmhof bilden (siehe Abbildung 24). Der
blaue Jod-Stärke-Komplex weist, bei gleichzeitigem Vorhandensein von α-Amylase, auf nicht
abgebaute Stärke und damit indirekt auf die Produktion des α-Amylase-Inhibitors hin.
Da das Parvulustat von den Bakterien ins Medium abgegeben wird, besteht die Abtrennung der
Zellen durch Zentrifugation des Kulturmediums. Es folgen Ammoniumsulfatfällung des
Überstandes, Auftragung auf PAGE und präparative HPLC, nach der reines, einheitliches Protein
isoliert werden konnte.