Refine
Document Type
- Doctoral Thesis (5)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Institute
- Medizin (4)
- Biowissenschaften (1)
Background and Aim: Genome-wide association studies revealed a strong association between cardiovascular diseases (CVD) and clonal hematopoiesis of indeterminate potential (CHIP), highlighting one of its most common CHIP-driving mutations-TET2 (ten-eleven translocation 2), as a target for CHIP related CVD research. Our lab has established the generation of self-organizing cardiac organoids (SCO), which demonstrate the cellular composition and organization of the native human heart, and mimics human myocardial responses to stress stimulation. This project aims to examine whether SCOs would be an appropriate CHIP model and decipher promising drugs for cardiovascular CHIP treatment.
Methods: To study TET2-mutant cardiovascular CHIP, we set up the TET2 cardiac-CHIP model through a knockdown (KD) of TET2 in myeloid cells that infiltrated our lab-made SCO. Immunofluorescence and qPCR were performed to ascertain TET2-KD myeloid cell infiltration, SCO fibrosis, and apoptosis assessments. SCO fibrosis was further analyzed by immunofluorescence staining, and cardiac contractile frequency and amplitude were determined by calcium flux analysis. Finally, RNAseq was performed to analyze transcriptomic changes in drug/vehicle-treated TET2-KD myeloid cells and the TET2 cardiac-CHIP model.
Results: The TET2 cardiac-CHIP model resulted in significantly increased inflammation in SCO, accompanied by fibrosis and more cleaved Caspase-3, causing cardiomyocytes apoptosis and promoting the release of cTNT. The shortlisted drugs revealed a reduction of proliferation in TET2-KD myeloid cells, decreased pro-inflammatory cytokines, and a higher apoptosis level. Furthermore, the TET2 cardiac-CHIP model treated with selected drugs showed a remarkable decline in TET2-KD myeloid cell infiltration and pro-inflammation cytokines, cardiomyocyte apoptosis, fibrosis, and lowered cTNT levels, while drug control groups were not affected. Moreover, the drug treatment groups improved the heartbeat frequency and amplitude accessed by the calcium transient assay. RNAseq data also validated the above findings.
Conclusions & Discussion: Our results indicate that SCOs are an efficient pre-clinical model for studying and validating CHIP genes and drug interactions. Our data revealed that TET2-KD myeloid cells invade SCO and secrete pro-inflammatory cytokines, which promote apoptosis of cardiomyocytes and the release of cTNT. In this regard, our TET2 cardiac-CHIP model matches the inflammatory phenotype previously characterized in CHIP patients. Nevertheless, this phenotype could be rescued using positive drug candidates (Clopidogrel, R406, and Lanatoside C) selected by this project, emphasizing the significant value of our TET2 cardiac-CHIP model for drug screens and pre-clinical validation studies. Furthermore, among these three drug candidates, we found Lancatoside C, as proved by FDA/EMA, showed an unmet possibility for clinical therapeutic demand, insinuating potential benefit in repurposing Lanatoside C for the treatment of TET2-mutant cardiovascular CHIP.
G-protein-coupled receptors (GPCRs) comprise the largest transmembrane receptor family encoded in the human genome. GPCRs mediate the effect of a wide diversity of stimuli including light, odorants, ions, lipids, small peptides, and hormones. GPR182 is a GPCR for which no endogenous ligand has been identified yet. In the absence of an identified ligand, GPR182 remained poorly understood, and its biological functions had remained elusive. The presented work shows that GPR182 is highly and specifically expressed in microvascular endothelial cells. Phylogenetically, GPR182 is closely related to the atypical chemokine receptor 3 (ACKR3). Here, I show that GPR182 binds the chemokines CXCL10, -12 and -13. Similarly to other so-called atypical chemokine receptors, GPR182 is not coupled to G-proteins but is rather constitutively internalized following β-arrestin 2 recruitment. Consistent with potential scavenger functions, we detected increased concentration of the chemokines which bind the receptor in the plasma of Gpr182 deficient mice. Finally, we show that GPR182 plays an essential role in maintaining hematopoietic stem cells within the bone marrow niche. In summary, the data indicate that GPR182 is a novel member of the group of atypical chemokine receptors, which plays an important role in the chemokine/chemokine receptor network.
Background: During ECMO therapy ischemia of the limbs or internal organs are potential lethal complications. This study analyzed incidence and type of ischemic complications during ECMO therapy, divided in limb, mesenteric, cardiac and neurological ischemia.
Methods: In this single-center retrospective observational study data from 348 patients treated with veno-venous, veno-arterial or veno-venous-arterial ECMO at the Asklepios Klinik Langen between April 1st 2011 and March 31st 2020 was screened. 321 patients with diagnosis of acute respiratory distress syndrome, cardiogenic or septic shock were included.
Primary outcome variable was type of ischemic complication. Further variables were serum lactate levels 24h before and immediately after diagnosis of the ischemic complication, duration of ICU and hospital stay, ECMO therapy and duration of invasive ventilation and arterial blood gas analysis on day of admission to the ICU. Age, sex, ECMO mode, diagnosis, SAPS II, SOFA score, hospital mortality, the use of renal replacement therapy and tracheotomy, the occurrence of infections during the ICU stay and the need of CPR before ECMO implantation were recorded as well.
Results: 62/321 patients (19.3%) were diagnosed with an ischemic complication. Most common areas were limbs (n=32) and mesenteric ischemia (n=21). Patients who were diagnosed with a septic shock had the highest rate of ischemic complications (36.2%). In VV mode there was a difference in survival between patients with and without ischemic complication (p=0.025). Using multivariate logistic regression, age ≥50 years (p=0.029; OR=2.793; CI 1.109 – 7.033), use of hemodialysis (p=0.003; OR=3.283; CI=1.513 – 7.124) and initial diagnosis of a septic shock (p=0.049; OR=2.144; CI=1.003 – 4.583) could be identified as predictors for ischemic complications.
Conclusions: Ischemic complications are frequent during ECMO therapy. An age of at least 50 years, the use of hemodialysis and diagnosis of a septic shock were predictors of ischemic complications. No correlation between ECMO mode and ischemic complications was found. An influence of ischemic complications on survival could be found only in patients treated with VV mode.
Precise regulation of gene expression networks is required to develop and maintain a healthy organism before and after birth and throughout adulthood. Such networks are mostly comprised of regulatory proteins, but meanwhile many long non-coding transcripts (lncRNAs) are shown to participate in these regulatory processes. The functions and mechanisms of these lncRNAs vary greatly, however they are often associated with transcriptional regulation. Three lncRNAs, namely Sweetheart RNA (Swhtr), Fetal-lethal noncoding developmental regulatory RNA / Foxf1 adjacent non-Coding developmental regulatory RNA (Fendrr) and lncFsd2, were studied in this work to demonstrate the variety of cellular and biological processes that require lncRNA-mediated fine-tuning, in regard to the cardiopulmonary system.
Swhtr was found to be expressed exclusively in cardiomyocytes and became critical for regeneration after myocardial injury. Mice lacking Swhtr did not show issues under normal conditions, but failed to undergo compensatory hypertrophic remodeling after injury, leading to increased mortality. This effect was rescued by re-expressing Swhtr, demonstrating importance of the RNA. Genes dependent on Swhtr during cardiac stress were found to likely be regulated by NKX2-5 through physical interaction with Swhtr. Fendrr was found to be expressed in lung and interacted with target promoters through its RNA:dsDNA binding domain, the FendrrBox, which was partially required for Fendrr function. Fendrr, together with activated WNT signaling, regulated fibrosis related target genes via the FendrrBox in fibroblasts. LncFsd2, an ubiquitously expressed lncRNA, showed possible interaction with the striated muscle specific Fsd2, but its exact function and regulatory role remain unclear in muscle physiology. Immunoprecipitation and subcellular fractionation experiments suggest that lncFsd2 might be involved in nuclear retention of Fsd2 mRNA, thus fine-tuning FSD2 protein expression. These investigations have shed light on the roles of these lncRNAs in stress responses, fibrosis-related gene regulation, and localization processes, advancing our understanding of cardiovascular and pulmonary maintenance, reaction to injury, and diseases. The diverse and intricate roles of these three lncRNAs highlight how they influence various cellular processes and disease states, offering avenues for exploring lncRNA functions in different biological contexts.
Aim: The cytochrome P450 reductase (POR) along with the cytochrome P450 enzymes (CYP) are responsible for the metabolism of a multitude of metabolites important for the maintenance of tissue function. Defects in this system have been associated with cardiovascular diseases. These enzymes are known to produce vasoactive lipids that modulate vascular tone. The aim of this study was to identify the consequence of a loss in endothelial POR for vascular function.
Methods and Results: To identify the endothelial contribution of the POR/CYP450 system to vascular function, we generated an endothelial-specific, tamoxifen-inducible POR knockout mouse (ecPOR-/-). Under basal condition ecPOR-/- already exhibited endothelial dysfunction in aorta and mesenteric vessels (acetylcholine-dependent relaxation, LogEC50 -7.6M for CTR vs. -7.2M for ecPOR-/- in aorta) and lower nitric oxide levels in the plasma (CTR: 236.8 ±77.4; ecPOR-/- 182.8 ±34.1 nmol/L). This dysfunction was coupled to attenuated eNOS function detected by the heavy arginine assay and decreased eNOS phosphorylation on S1177. Furthermore, insulin-induced phosphorylation of the eNOS activator, AKT, was also attenuated in the aorta from ecPOR-/- mice as compared to control mice. CYP450-dependent EET production was lower in plasma, lung and aorta of ecPOR-/- mice and this was accompanied with increased levels of vasoconstriction prostanoids (lipidomics of aorta, plasma and lung freshly isolated from CTR and ecPOR-/- mice). MACE-RNAseq from these aortas also showed a significant increase in genes annotated to eicosanoid production. In an in vivo angiotensin II model, acute deletion of POR increased the blood pressure as measured by telemetry and tail cuff (137.4 ± 15.9 mmHg in WT; 152.1 ± 7.154 mmHg in ecPOR-/-). In a rescue experiment using the NSAID naproxen, the increase in blood pressure induced by deletion of endothelial POR was abolished.
Conclusion: Collectively, in endothelial cells POR regulates eNOS activity and orchestrates the metabolic fate of arachidonic acid towards the vessel dilating EETs and away from deleterious prostanoids. In the absence of POR this endothelial regulation is compromised leading to vascular dysfunction.