Refine
Year of publication
Document Type
- Doctoral Thesis (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Großhirnrinde (2)
- Sehrinde (2)
- sparse coding (2)
- Abstandsinformation (1)
- Auditory cortex (1)
- Bilderkennung (1)
- Entwicklungspsychologie (1)
- Gedächtnis (1)
- Gedächtnisbildung (1)
- Gehirn (1)
Institute
Inhaltsverzeichnis 1. Einleitung …………………………………………………………………...3 1.1 Erklärungsversuche und Forschungsergebnisse der Gegenwart ……8 1.2 Zielrichtung und Abgrenzung der aktuellen Arbeit ………………..21 1.3 Intention und Erläuterung der Versuchsreihen ………………….....25 2. Grundlagen und Methodiken bezüglich des subjektiven visuellen Wahrnehmungsraums …………………………………………………........27 2.1 Die nativistische und die empiristische Anschauung ………………27 2.2 Räumliche Anordnungen der wahrgenommenen Objekte …………31 2.3 Über die visuell vermittelte Richtungs- und Lagebestimmung …....33 2.4 Visuelle Auswertungen der korrespondierenden Netzhautstellen …42 2.5 Visuelle Auswertungen der disparaten Netzhautstellen …………...44 2.6 Die Größenkonstanzleistung ………………………………………47 2.7 Psychophysikalische Grundlagen und Schwellenwerte …………...50 2.8 Physiologische Grundlagen ………………………………………..54 3. Experimentelle Untersuchung ……………………………………………..60 3.1 Versuchsaufbau und Ablauf zur Durchführung der Experimente …60 3.1.1 Zusammensetzungen der Versuchsteilnehmer ……………66 3.1.2 Erläuterungen und Ablauf der 2 Versuchsreihen …………66 3.2 Graphische Darstellungen der Messergebnisse ……………………71 3.2.1 I.Versuchsreihe ……………………………………………71 3.2.2 II.Versuchsreihe …………………………………………...93 3.3 Auswertung und Aufbereitung der Messdaten …………………..102 3.3.1 Auswertungen der I.Versuchsreihe ……………………..102 3.3.2 Auswertungen der II.Versuchsreihe …………………….120 3.3.3 Fehlerbetrachtungen der Versuchsreihen I und II ………122 3.4 Diskussion der Messdaten ……………………………………….124 4. Zusammenfassung und Ausblick ………………………………………...135 Begriffsverzeichnis mit kurzer Erklärung.…………………………………...137 Literaturverzeichnis …………………………………………………….........141 Bildquellenverzeichnis ………………………………………………….......143 Als Fazit kann man folgendes zusammenfassend sagen: Die aufgestellte Arbeitshypothese wurde durch die beiden Versuchsreihen verifiziert, denn die Ergebnisse ergaben folgendes: - In den Messreihen der Versuchsreihe I ist jeweils ein Anstieg der eingestellten Größe, je mehr Abstandsinformationen zugelassen wurden, zu verzeichnen. Das bedeutet, der Anstieg wurde umso größer, desto größer die AID wurde. Auch waren in allen Messreihen die monokularen Größeneinstellungen, bei sonst konstanter AID, gegenüber der binokularen Größeneinstellung geringer. Bei Verringerung der Einstellentfernung wurden die Abweichungen zwischen den subjektiven und den objektiven Größen ebenfalls größer. Das heißt also, die subjektive visuelle Wahrnehmungsgröße ist von der AID wie folgt abhängig: Das visuelle System bewertet subjektiv die Wahrnehmungsgröße bei maximaler AID nach oben und relativ dazu, bei minimaler AID nach unten. - Dass die aufgestellten Parameter die AID bedingen, konnte durch die 1. Messreihe gezeigt werden, da der jeweilige Anstieg der eingestellten Größe, nur durch die Variation eines Parameters erfolgte. Die Querdisparation konnte aber hier nicht als Parameter der die AID bedingt isoliert untersucht werden. Bei den meisten Probanden ergaben sich sehr schnell Doppelbilder und erzeugten bei ihnen ein Unbehagen. Aber dennoch floss dieser Parameter als einflussnehmende Größe in den Konvergenzgrad mit ein. Das Netzhautbild konnte nur kombiniert mit dem psychologischen Gefühl der Nähe isoliert betrachtet werden. Damit die Voraussetzungen in beiden Versuchen gleich waren, wurde in der Versuchsreihe II unter gleichen Versuchsbedingungen wie in der Versuchsreihe I gemessen. Auch hier wurden die Abstandsinformationen von minimal bis maximal sukzessive zugelassen. Durch die Messdaten der Versuchsreihe II konnte eindeutig gezeigt werden, dass die Abstandsunterschiedsschwelle umso geringer ausfällt, desto mehr Abstandskriterien hinzukamen, also die AID erhöht wurde. Analog kehren sich die Verhältnisse um, wenn die AID erniedrigt wird. Durch diesen kausalen Zusammenhang zwischen der Abstandsunterschiedsschwelle des visuellen Systems und der Güte der AID bestätigt sich zusätzlich die Annahme, dass die eingeführten Parameter des Abstandes tatsächlich als solche zu betrachten sind und die AID konstituieren. Denn wären sie keine Konstituenten der AID, so müssten die Unterschiedsschwellen der Versuchsreihe II in etwa gleich sein. Da aber die Änderung der Randbedingungen sich auf die verwertbaren Abstandsinformationen bezogen und somit die AID jeweils geändert wurde, ist die aufgestellte Annahme über die Parameter, welche die AID bedingen, berechtigt. - Dass im orthostereoskopischen Bereich die subjektiven Größeneinstellungen gegenüber der Zentralprojektion am weitesten auseinander liegen, bestätigte sich durch alle Messreihen der Versuchsreihe I. In diesem Bereich existiert die maximale Unabhängigkeit der visuellen Wahrnehmungsgröße vom Gesichtswinkel. In diesem Bereich liegt eine sehr hohe Güte in der Größenkonstanzleistung des visuellen Systems vor. Dass die Größenkonstanz qualitativ dem aufgestellten Formalismus aus Annahme 2 genügt und die aufgestellte qualitative Relation sie beschreibt, konnte nicht gezeigt werden. Das begründet sich durch das Zustandekommen der Größenkonstanz. Sie resultiert bekanntlich aus einer Entfernungsänderung. Je nach dem, ob sich ein Objekt dem Beobachter nähert oder entfernt, setzt diese Bildgrößenkompensation ein. Von daher unterliegt sie einem dynamischen Prozess und kann dadurch mit Relation (2´) nicht beschreiben werden. - Mit der Relation 2´ kann man qualitativ die Unbestimmtheit in der visuellen Wahrnehmungsentfernung beschreiben und qualitativ erklären. Der Aspekt der Abstandsunterschiedsschwelle ist etwas verwirrend. Auf der einen Seite handelt es sich um eine Vermögensleistung des visuellen Systems, welches abhängig ist von den vorliegenden Abstandsinformationen, die ihrerseits die AID bedingen. Auf der anderen Seite bedingt die Abstandsunterschiedsschwelle die AID durch ihre Güte und Qualität, beeinflusst also umgekehrt auch die AID. In der Versuchsreihe 2 wurde auf die Vermögensleistung des visuellen Systems und deren Abhängigkeit von den Parametern eingegangen, die auch die AID bedingen. Dies diente dazu, zusätzlich zu zeigen, dass es sich bei diesen Parametern um Parameter handelt, welche die AID bedingen. Die Argumentationskette lautete wie folgt: Die Abstandsunterschiedsschwelle beeinflusst die AID. Die betrachteten Parameter beeinflussten die Abstandsunterschiedsschwelle, dass experimentell verifiziert wurde. Daraus folgte dann, dass eben diese Parameter auch die AID bedingen. Diese Argumentation diente nur als zusätzliches Hilfsmittel. Bei Punkt 4 sollte die Abstandsunterschiedsschwelle und ihr Einfluss auf die Unbestimmtheit hin betrachtet werden. Dies hat aber nur sekundäre Relevanz, da hier die Anwendung der Relation 2´ im Vordergrund stand. - Ob die Fitting-Funktion, welche die Messdaten der Versuchsreihe I approximierte, sich als Algorithmus für die Darstellung einer Bewegungssimulation eignet, kann noch nicht gesagt werden. Es müssen noch Untersuchungen umgesetzt werden, welche die Diagonalbewegung beschreiben. In der stirnfrontalen Vor- und Zurückbewegung ist der simulierte Bewegungsablauf mit der Fitting-Funktion gegenüber der linearen Darstellung realistischer. Dies ist in der ersten 100cm Raumtiefe besonders merklich, da die Fitting-Funktion die Größenkonstanzleistung des visuellen Systems berücksichtigt. Die auf dem konventionellen Computerspielmarkt eingesetzten Algorithmen für die Darstellung von Vor- und Zurückbewegungen sind dagegen nahezu linear, welches dem Beobachter einen etwas unnatürlichen Seheindruck vermittelt. Die Fitting-Funktion könnte auch für die Simulation von Zeichentrickfilmen verwendet werden. Auch dort wird die Größenkonstanzleistung des visuellen Systems nicht berücksichtigt. Aber gerade diese Konstanzleistung gestaltet die Größenvariation der wahrgenommenen Objekte bei Entfernungsänderungen. Dies ist besonders im orthostereoskopischen Bereich merklich.
Already today modern driver assistance systems contribute more and more to make individual mobility in road traffic safer and more comfortable. For this purpose, modern vehicles are equipped with a multitude of sensors and actuators which perceive, interpret and react to the environment of the vehicle. In order to reach the next set of goals along this path, for example to be able to assist the driver in increasingly complex situations or to reach a higher degree of autonomy of driver assistance systems, a detailed understanding of the vehicle environment and especially of other moving traffic participants is necessary.
It is known that motion information plays a key role for human object recognition [Spelke, 1990]. However, full 3D motion information is mostly not taken into account for Stereo Vision-based object segmentation in literature. In this thesis, novel approaches for motion-based object segmentation of stereo image sequences are proposed from which a generic environmental model is derived that contributes to a more precise analysis and understanding of the respective traffic scene. The aim of the environmental model is to yield a minimal scene description in terms of a few moving objects and stationary background such as houses, crash barriers or parking vehicles. A minimal scene description aggregates as much information as possible and it is characterized by its stability, precision and efficiency.
Instead of dense stereo and optical flow information, the proposed object segmentation builds on the so-called Stixel World, an efficient superpixel-like representation of space-time stereo data. As it turns out this step substantially increases stability of the segmentation and it reduces the computational time by several orders of magnitude, thus enabling real-time automotive use in the first place. Besides the efficient, real-time capable optimization, the object segmentation has to be able to cope with significant noise which is due to the measurement principle of the used stereo camera system. For that reason, in order to obtain an optimal solution under the given extreme conditions, the segmentation task is formulated as a Bayesian optimization problem which allows to incorporate regularizing prior knowledge and redundancies into the object segmentation.
Object segmentation as it is discussed here means unsupervised segmentation since typically the number of objects in the scene and their individual object parameters are not known in advance. This information has to be estimated from the input data as well.
For inference, two approaches with their individual pros and cons are proposed, evaluated and compared. The first approach is based on dynamic programming. The key advantage of this approach is the possibility to take into account non-local priors such as shape or object size information which is impossible or which is prohibitively expensive with more local, conventional graph optimization approaches such as graphcut or belief propagation.
In the first instance, the Dynamic Programming approach is limited to one-dimensional data structures, in this case to the first Stixel row. A possible extension to capture multiple Stixel rows is discussed at the end of this thesis.
Further novel contributions include a special outlier concept to handle gross stereo errors associated with so-called stereo tear-off edges. Additionally, object-object interactions are taken into account by explicitly modeling object occlusions. These extensions prove to be dramatic improvements in practice.
This first approach is compared with a second approach that is based on an alternating optimization of the Stixel segmentation and of the relevant object parameters in an expectation maximization (EM) sense. The labeling step is performed by means of the _−expansion graphcut algorithm, the parameter estimation step is done via one-dimensional sampling and multidimensional gradient descent. By using the Stixel World and due to an efficient implementation, one step of the optimization only takes about one millisecond on a standard single CPU core. To the knowledge of the author, at the time of development there was no faster global optimization in a demonstrator car.
For both approaches, various testing scenarios have been carefully selected and allow to examine the proposed methods thoroughly under different real-world conditions with limited groundtruth at hand. As an additional innovative application, the first approach was successfully implemented in a demonstrator car that drove the so-called Bertha Benz Memorial Route from Mannheim to Pforzheim autonomously in real traffic.
At the end of this thesis, the limits of the proposed systems are discussed and a prospect on possible future work is given.
A framework for the analysis and visualization of multielectrode spike trains / von Ovidiu F. Jurjut
(2009)
The brain is a highly distributed system of constantly interacting neurons. Understanding how it gives rise to our subjective experiences and perceptions depends largely on understanding the neuronal mechanisms of information processing. These mechanisms are still poorly understood and a matter of ongoing debate remains the timescale on which the coding process evolves. Recently, multielectrode recordings of neuronal activity have begun to contribute substantially to elucidating how information coding is implemented in brain circuits. Unfortunately, analysis and interpretation of multielectrode data is often difficult because of their complexity and large volume. Here we propose a framework that enables the efficient analysis and visualization of multielectrode spiking data. First, using self-organizing maps, we identified reoccurring multi-neuronal spike patterns that evolve on various timescales. Second, we developed a color-based visualization technique for these patterns. They were mapped onto a three-dimensional color space based on their reciprocal similarities, i.e., similar patterns were assigned similar colors. This innovative representation enables a quick and comprehensive inspection of spiking data and provides a qualitative description of pattern distribution across entire datasets. Third, we quantified the observed pattern expression motifs and we investigated their contribution to the encoding of stimulus-related information. An emphasis was on the timescale on which patterns evolve, covering the temporal scales from synchrony up to mean firing rate. Using our multi-neuronal analysis framework, we investigated data recorded from the primary visual cortex of anesthetized cats. We found that cortical responses to dynamic stimuli are best described as successions of multi-neuronal activation patterns, i.e., trajectories in a multidimensional pattern space. Patterns that encode stimulus-specific information are not confined to a single timescale but can span a broad range of timescales, which are tightly related to the temporal dynamics of the stimuli. Therefore, the strict separation between synchrony and mean firing rate is somewhat artificial as these two represent only extreme cases of a continuum of timescales that are expressed in cortical dynamics. Results also indicate that timescales consistent with the time constants of neuronal membranes and fast synaptic transmission (~10-20 ms) appear to play a particularly salient role in coding, as patterns evolving on these timescales seem to be involved in the representation of stimuli with both slow and fast temporal dynamics.
This thesis investigates the development of early cognition in infancy using neural network models. Fundamental events in visual perception such as caused motion, occlusion, object permanence, tracking of moving objects behind occluders, object unity perception and sequence learning are modeled in a unifying computational framework while staying close to experimental data in developmental psychology of infancy. In the first project, the development of causality and occlusion perception in infancy is modeled using a simple, three-layered, recurrent network trained with error backpropagation to predict future inputs (Elman network). The model unifies two infant studies on causality and occlusion perception. Subsequently, in the second project, the established framework is extended to a larger prediction network that models the development of object unity, object permanence and occlusion perception in infancy. It is shown that these different phenomena can be unified into a single theoretical framework thereby explaining experimental data from 14 infant studies. The framework shows that these developmental phenomena can be explained by accurately representing and predicting statistical regularities in the visual environment. The models assume (1) different neuronal populations processing different motion directions of visual stimuli in the visual cortex of the newborn infant which are supported by neuroscientific evidence and (2) available learning algorithms that are guided by the goal of predicting future events. Specifically, the models demonstrate that no innate force notions, motion analysis modules, common motion detectors, specific perceptual rules or abilities to "reason" about entities which have been widely postulated in the developmental literature are necessary for the explanation of the discussed phenomena. Since the prediction of future events turned out to be fruitful for theoretical explanation of various developmental phenomena and a guideline for learning in infancy, the third model addresses the development of visual expectations themselves. A self-organising, fully recurrent neural network model that forms internal representations of input sequences and maps them onto eye movements is proposed. The reinforcement learning architecture (RLA) of the model learns to perform anticipatory eye movements as observed in a range of infant studies. The model suggests that the goal of maximizing the looking time at interesting stimuli guides infants' looking behavior thereby explaining the occurrence and development of anticipatory eye movements and reaction times. In contrast to classical neural network modelling approaches in the developmental literature, the model uses local learning rules and contains several biologically plausible elements like excitatory and inhibitory spiking neurons, spike-timing dependent plasticity (STDP), intrinsic plasticity (IP) and synaptic scaling. It is also novel from the technical point of view as it uses a dynamic recurrent reservoir shaped by various plasticity mechanisms and combines it with reinforcement learning. The model accounts for twelve experimental studies and predicts among others anticipatory behavior for arbitrary sequences and facilitated reacquisition of already learned sequences. All models emphasize the development of the perception of the discussed phenomena thereby addressing the questions of how and why this developmental change takes place - questions that are difficult to be assessed experimentally. Despite the diversity of the discussed phenomena all three projects rely on the same principle: the prediction of future events. This principle suggests that cognitive development in infancy may largely be guided by building internal models and representations of the visual environment and using those models to predict its future development.
This dissertation connects two independent fields of theoretical neuroscience: on the one hand, the self-organization of topographic connectivity patterns, and on the other hand, invariant object recognition, that is the recognition of objects independently of their various possible retinal representations (for example due to translations or scalings). The topographic representation is used in the presented approach, as a coordinate system, which then allows for the implementation of invariance transformations. Hence this study shows, that it is possible that the brain self-organizes before birth, so that it is able to invariantly recognize objects immediately after birth. Besides the core hypothesis that links prenatal work with object recognition, advancements in both fields themselves are also presented. In the beginning of the thesis, a novel analytically solvable probabilistic generative model for topographic maps is introduced. And at the end of the thesis, a model that integrates classical feature-based ideas with the normalization-based approach is presented. This bilinear model makes use of sparseness as well as slowness to implement "optimal" topographic representations. It is therefore a good candidate for hierarchical processing in the brain and for future research.
At present, there is a huge lag between the artificial and the biological information processing systems in terms of their capability to learn. This lag could be certainly reduced by gaining more insight into the higher functions of the brain like learning and memory. For instance, primate visual cortex is thought to provide the long-term memory for the visual objects acquired by experience. The visual cortex handles effortlessly arbitrary complex objects by decomposing them rapidly into constituent components of much lower complexity along hierarchically organized visual pathways. How this processing architecture self-organizes into a memory domain that employs such compositional object representation by learning from experience remains to a large extent a riddle. The study presented here approaches this question by proposing a functional model of a self-organizing hierarchical memory network. The model is based on hypothetical neuronal mechanisms involved in cortical processing and adaptation. The network architecture comprises two consecutive layers of distributed, recurrently interconnected modules. Each module is identified with a localized cortical cluster of fine-scale excitatory subnetworks. A single module performs competitive unsupervised learning on the incoming afferent signals to form a suitable representation of the locally accessible input space. The network employs an operating scheme where ongoing processing is made of discrete successive fragments termed decision cycles, presumably identifiable with the fast gamma rhythms observed in the cortex. The cycles are synchronized across the distributed modules that produce highly sparse activity within each cycle by instantiating a local winner-take-all-like operation. Equipped with adaptive mechanisms of bidirectional synaptic plasticity and homeostatic activity regulation, the network is exposed to natural face images of different persons. The images are presented incrementally one per cycle to the lower network layer as a set of Gabor filter responses extracted from local facial landmarks. The images are presented without any person identity labels. In the course of unsupervised learning, the network creates simultaneously vocabularies of reusable local face appearance elements, captures relations between the elements by linking associatively those parts that encode the same face identity, develops the higher-order identity symbols for the memorized compositions and projects this information back onto the vocabularies in generative manner. This learning corresponds to the simultaneous formation of bottom-up, lateral and top-down synaptic connectivity within and between the network layers. In the mature connectivity state, the network holds thus full compositional description of the experienced faces in form of sparse memory traces that reside in the feed-forward and recurrent connectivity. Due to the generative nature of the established representation, the network is able to recreate the full compositional description of a memorized face in terms of all its constituent parts given only its higher-order identity symbol or a subset of its parts. In the test phase, the network successfully proves its ability to recognize identity and gender of the persons from alternative face views not shown before. An intriguing feature of the emerging memory network is its ability to self-generate activity spontaneously in absence of the external stimuli. In this sleep-like off-line mode, the network shows a self-sustaining replay of the memory content formed during the previous learning. Remarkably, the recognition performance is tremendously boosted after this off-line memory reprocessing. The performance boost is articulated stronger on those face views that deviate more from the original view shown during the learning. This indicates that the off-line memory reprocessing during the sleep-like state specifically improves the generalization capability of the memory network. The positive effect turns out to be surprisingly independent of synapse-specific plasticity, relying completely on the synapse-unspecific, homeostatic activity regulation across the memory network. The developed network demonstrates thus functionality not shown by any previous neuronal modeling approach. It forms and maintains a memory domain for compositional, generative object representation in unsupervised manner through experience with natural visual images, using both on- ("wake") and off-line ("sleep") learning regimes. This functionality offers a promising departure point for further studies, aiming for deeper insight into the learning mechanisms employed by the brain and their consequent implementation in the artificial adaptive systems for solving complex tasks not tractable so far.
Das Gehirn ist die wohl komplexeste Struktur auf Erden, die der Mensch erforscht. Es besteht aus einem riesigen Netzwerk von Nervenzellen, welches in der Lage ist eingehende sensorische Informationen zu verarbeiten um daraus eine sinnvolle Repräsentation der Umgebung zu erstellen. Außerdem koordiniert es die Aktionen des Organismus um mit der Umgebung zu interagieren. Das Gehirn hat die bemerkenswerte Fähigkeit sowohl Informationen zu speichern als auch sich ständig an ändernde Bedingungen anzupassen, und zwar über die gesamte Lebensdauer. Dies ist essentiell für Mensch oder Tier um sich zu entwickeln und zu lernen. Die Grundlage für diesen lebenslangen Lernprozess ist die Plastizität des Gehirns, welche das riesige Netzwerk von Neuronen ständig anpasst und neu verbindet. Die Veränderungen an den synaptischen Verbindungen und der intrinsischen Erregbarkeit jedes Neurons finden durch selbstorganisierte Mechanismen statt und optimieren das Verhalten des Organismus als Ganzes. Das Phänomen der neuronalen Plastizität beschäftigt die Neurowissenschaften und anderen Disziplinen bereits über mehrere Jahrzehnte. Dabei beschreibt die intrinsische Plastizität die ständige Anpassung der Erregbarkeit eines Neurons um einen ausbalancierten, homöostatischen Arbeitsbereich zu gewährleisten. Aber besonders die synaptische Plastizität, welche die Änderungen in der Stärke bestehender Verbindungen bezeichnet, wurde unter vielen verschiedenen Bedingungen erforscht und erwies sich mit jeder neuen Studie als immer komplexer. Sie wird durch ein komplexes Zusammenspiel von biophysikalischen Mechanismen induziert und hängt von verschiedenen Faktoren wie der Frequenz der Aktionspotentiale, deren Timing und dem Membranpotential ab und zeigt außerdem eine metaplastische Abhängigkeit von vergangenen Ereignissen. Letztlich beeinflusst die synaptische Plastizität die Signalverarbeitung und Berechnung einzelner Neuronen und der neuronalen Netzwerke.
Der Schwerpunkt dieser Arbeit ist es das Verständnis der biologischen Mechanismen und deren Folgen, die zu den beobachteten Plastizitätsphänomene führen, durch eine stärker vereinheitlichte Theorie voranzutreiben.Dazu stelle ich zwei funktionale Ziele für neuronale Plastizität auf, leite Lernregeln aus diesen ab und analysiere deren Konsequenzen und Vorhersagen.
Kapitel 3 untersucht die Unterscheidbarkeit der Populationsaktivität in Netzwerken als funktionales Ziel für neuronale Plastizität. Die Hypothese ist dabei, dass gerade in rekurrenten aber auch in vorwärtsgekoppelten Netzwerken die Populationsaktivität als Repräsentation der Eingangssignale optimiert werden kann, wenn ähnliche Eingangssignale eine möglichst unterschiedliche Repräsentation haben und dadurch für die nachfolgende Verarbeitung besser unterscheidbar sind. Das funktionale Ziel ist daher diese Unterscheidbarkeit durch Veränderungen an den Verbindungsstärke und der Erregbarkeit der Neuronen mithilfe von lokalen selbst-organisierten Lernregeln zu maximieren. Aus diesem funktionale Ziel lassen sich eine Reihe von Standard-Lernenregeln für künstliche neuronale Netze gemeinsam abzuleiten.
Kapitel 4 wendet einen ähnlichen funktionalen Ansatz auf ein komplexeres, biophysikalisches Neuronenmodell an. Das Ziel ist eine spärliche, stark asymmetrische Verteilung der synaptischen Stärke, wie sie auch bereits mehrfach experimentell gefunden wurde, durch lokale, synaptische Lernregeln zu maximieren. Aus diesem funktionalen Ansatz können alle wichtigen Phänomene der synaptischen Plastizität erklärt werden. Simulationen der Lernregel in einem realistischen Neuronmodell mit voller Morphologie erklären die Daten von timing-, raten- und spannungsabhängigen Plastizitätsprotokollen. Die Lernregel hat auch eine intrinsische Abhängigkeit von der Position der Synapse, welche mit den experimentellen Ergebnissen übereinstimmt. Darüber hinaus kann die Lernregel ohne zusätzliche Annahmen metaplastische Phänomene erklären. Dabei sagt der Ansatz eine neue Form der Metaplastizität voraus, welche die timing-abhängige Plastizität beeinflusst. Die formulierte Lernregel führt zu zwei neuartigen Vereinheitlichungen für synaptische Plastizität: Erstens zeigt sie, dass die verschiedenen Phänomene der synaptischen Plastizität als Folge eines einzigen funktionalen Ziels verstanden werden können. Und zweitens überbrückt der Ansatz die Lücke zwischen der funktionalen und mechanistische Beschreibungsweise. Das vorgeschlagene funktionale Ziel führt zu einer Lernregel mit biophysikalischer Formulierung, welche mit etablierten Theorien der biologischen Mechanismen in Verbindung gebracht werden kann. Außerdem kann das Ziel einer spärlichen Verteilung der synaptischen Stärke als Beitrag zu einer energieeffizienten synaptischen Signalübertragung und optimierten Codierung interpretiert werden.
This thesis will first introduce in more detail the Bayesian theory and its use in integrating multiple information sources. I will briefly talk about models and their relation to the dynamics of an environment, and how to combine multiple alternative models. Following that I will discuss the experimental findings on multisensory integration in humans and animals. I start with psychophysical results on various forms of tasks and setups, that show that the brain uses and combines information from multiple cues. Specifically, the discussion will focus on the finding that humans integrate this information in a way that is close to the theoretical optimal performance. Special emphasis will be put on results about the developmental aspects of cue integration, highlighting experiments that could show that children do not perform similar to the Bayesian predictions. This section also includes a short summary of experiments on how subjects handle multiple alternative environmental dynamics. I will also talk about neurobiological findings of cells receiving input from multiple receptors both in dedicated brain areas but also primary sensory areas. I will proceed with an overview of existing theories and computational models of multisensory integration. This will be followed by a discussion on reinforcement learning (RL). First I will talk about the original theory including the two different main approaches model-free and model-based reinforcement learning. The important variables will be introduced as well as different algorithmic implementations. Secondly, a short review on the mapping of those theories onto brain and behaviour will be given. I mention the most in uential papers that showed correlations between the activity in certain brain regions with RL variables, most prominently between dopaminergic neurons and temporal difference errors. I will try to motivate, why I think that this theory can help to explain the development of near-optimal cue integration in humans. The next main chapter will introduce our model that learns to solve the task of audio-visual orienting. Many of the results in this section have been published in [Weisswange et al. 2009b,Weisswange et al. 2011]. The model agent starts without any knowledge of the environment and acts based on predictions of rewards, which will be adapted according to the reward signaling the quality of the performed action. I will show that after training this model performs similarly to the prediction of a Bayesian observer. The model can also deal with more complex environments in which it has to deal with multiple possible underlying generating models (perform causal inference). In these experiments I use di#erent formulations of Bayesian observers for comparison with our model, and find that it is most similar to the fully optimal observer doing model averaging. Additional experiments using various alterations to the environment show the ability of the model to react to changes in the input statistics without explicitly representing probability distributions. I will close the chapter with a discussion on the benefits and shortcomings of the model. The thesis continues whith a report on an application of the learning algorithm introduced before to two real world cue integration tasks on a robotic head. For these tasks our system outperforms a commonly used approximation to Bayesian inference, reliability weighted averaging. The approximation is handy because of its computational simplicity, because it relies on certain assumptions that are usually controlled for in a laboratory setting, but these are often not true for real world data. This chapter is based on the paper [Karaoguz et al. 2011]. Our second modeling approach tries to address the neuronal substrates of the learning process for cue integration. I again use a reward based training scheme, but this time implemented as a modulation of synaptic plasticity mechanisms in a recurrent network of binary threshold neurons. I start the chapter with an additional introduction section to discuss recurrent networks and especially the various forms of neuronal plasticity that I will use in the model. The performance on a task similar to that of chapter 3 will be presented together with an analysis of the in uence of different plasticity mechanisms on it. Again benefits and shortcomings and the general potential of the method will be discussed. I will close the thesis with a general conclusion and some ideas about possible future work.
Die vorgelegte Dissertation behandelt den Einfluss homöostatischer Adaption auf die Informationsverarbeitung und Lenrprozesse in neuronalen Systemen. Der Begriff Homöostase bezeichnet die Fähigkeit eines dynamischen Systems, bestimmte interne Variablen durch Regelmechanismen in einem dynamischen Gleichgewicht zu halten. Ein klassisches Beispiel neuronaler Homöostase ist die dynamische Skalierung synaptischer Gewichte, wodurch die Aktivität bzw. Feuerrate einzelner Neuronen im zeitlichen Mittel konstant bleibt. Bei den von uns betrachteten Modellen handelt es sich um eine duale Form der neuronalen Homöostase. Das bedeutet, dass für jedes Neuron zwei interne Parameter an eine intrinsische Variable wie die bereits erwähnte mittlere Aktivität oder das Membranpotential gekoppelt werden. Eine Besonderheit dieser dualen Adaption ist die Tatsache, dass dadurch nicht nur das zeitliche Mittel einer dynamischen Variable, sondern auch die zeitliche Varianz, also die stärke der Fluktuation um den Mittelwert, kontrolliert werden kann. In dieser Arbeit werden zwei neuronale Systeme betrachtet, in der dieser Aspekt zum Tragen kommt.
Das erste behandelte System ist ein sogennantes Echo State Netzwerk, welches unter die Kategorie der rekurrenten Netzwerke fällt. Rekurrente neuronale Netzwerke haben im Allgemeinen die Eigenschaft, dass eine Population von Neuronen synaptische Verbindungen besitzt, die auf die Population selbst projizieren, also rückkoppeln. Rekurrente Netzwerke können somit als autonome (falls keinerlei zusätzliche externe synaptische Verbindungen existieren) oder nicht-autonome dynamische Systeme betrachtet werden, die durch die genannte Rückkopplung komplexe dynamische Eigenschaften besitzen. Abhängig von der Struktur der rekurrenten synaptischen Verbindungen kann beispielsweise Information aus externem Input über einen längeren Zeitraum gespeichert werden. Ebenso können dynamische Fixpunkte oder auch periodische bzw. chaotische Aktivitätsmuster entstehen. Diese dynamische Vielseitigkeit findet sich auch in den im Gehirn omnipräsenten rekurrenten Netzwerken und dient hier z.B. der Verarbeitung sensorischer Information oder der Ausführung von motorischen Bewegungsmustern. Das von uns betrachtete Echo State Netzwerk zeichnet sich dadurch aus, dass rekurrente synaptische Verbindungen zufällig generiert werden und keiner synaptischen Plastizität unterliegen. Verändert werden im Zuge eines Lernprozesses nur Verbindungen, die von diesem sogenannten dynamischen Reservoir auf Output-Neuronen projizieren. Trotz der Tatsache, dass dies den Lernvorgang stark vereinfacht, ist die Fähigkeit des Reservoirs zur Verarbeitung zeitabhängiger Inputs stark von der statistischen Verteilung abhängig, die für die Generierung der rekurrenten Verbindungen verwendet wird. Insbesondere die Varianz bzw. die Skalierung der Gewichte ist hierbei von großer Bedeutung. Ein Maß für diese Skalierung ist der Spektralradius der rekurrenten Gewichtsmatrix.
In vorangegangenen theoretischen Arbeiten wurde gezeigt, dass für das betrachtete System ein Spektralradius nahe unterhalb des kritischen Wertes von 1 zu einer guten Performance führt. Oberhalb dieses Wertes kommt es im autonomen Fall zu chaotischem dynamischen Verhalten, welches sich negativ auf die Informationsverarbeitung auswirkt. Der von uns eingeführte und als Flow Control bezeichnete duale Adaptionsmechanismus zielt nun darauf ab, über eine Skalierung der synaptischen Gewichte den Spektralradius auf den gewünschten Zielwert zu regulieren. Essentiell ist hierbei, dass die verwendete Adaptionsdynamik im Sinne der biologischen Plausibilität nur auf lokale Größen zurückgreift. Dies geschieht im Falle von Flow Control über eine Regulation der im Membranpotential der Zelle auftretenden Fluktuationen. Bei der Evaluierung der Effektivität von Flow Control zeigte sich, dass der Spektralradius sehr präzise kontrolliert werden kann, falls die Aktivitäten der Neuronen in der rekurrenten Population nur schwach korreliert sind. Korrelationen können beispielsweise durch einen zwischen den Neuronen stark synchronisierten externen Input induziert werden, der sich dementsprechend negativ auf die Präzision des Adaptionsmechanismus auswirkt.
Beim Testen des Netzwerks in einem Lernszenario wirkte sich dieser Effekt aber nicht negativ auf die Performance aus: Die optimale Performance wurde unabhängig von der stärke des korrelierten Inputs für einen Spektralradius erreicht, der leicht unter dem kritischen Wert von 1 lag. Dies führt uns zu der Schlussfolgerung, dass Flow Control unabhängig von der Stärke der externen Stimulation in der Lage ist, rekurrente Netze in einen für die Informationsverarbeitung optimalen Arbeitsbereich einzuregeln.
Bei dem zweiten betrachteten Modell handelt es sich um ein Neuronenmodell mit zwei Kompartimenten, welche der spezifischen Anatomie von Pyramidenneuronen im Kortex nachempfunden ist. Während ein basales Kompartiment synaptischen Input zusammenfasst, der in Dendriten nahe des Zellkerns auftritt, repräsentiert das zweite apikale Kompartiment die im Kortex anzutreffende komplexe dendritische Baumstruktur. In früheren Experimenten konnte gezeigt werden, dass eine zeitlich korrelierte Stimulation sowohl im basalen als auch apikalen Kompartiment eine deutlich höhere neuronale Aktivität hervorrufen kann als durch Stimulation nur einer der beiden Kompartimente möglich ist. In unserem Modell können wir zeigen, dass dieser Effekt der Koinzidenz-Detektion es erlaubt, den Input im apikalen Kompartiment als Lernsignal für synaptische Plastizität im basalen Kompartiment zu nutzen. Duale Homöostase kommt auch hier zum Tragen, da diese in beiden Kompartimenten sicherstellt, dass sich der synaptische Input hinsichtlich des zeitlichen Mittels und der Varianz in einem für den Lernprozess benötigten Bereich befindet. Anhand eines Lernszenarios, das aus einer linearen binären Klassifikation besteht, können wir zeigen, dass sich das beschriebene Framework für biologisch plausibles überwachtes Lernen eignet.
Die beiden betrachteten Modelle zeigen beispielhaft die Relevanz dualer Homöostase im Hinblick auf zwei Aspekte. Das ist zum einen die Regulation rekurrenter neuronaler Netze in einen dynamischen Zustand, der für Informationsverarbeitung optimal ist. Der Effekt der Adaption zeigt sich hier also im Verhalten des Netzwerks als Ganzes. Zum anderen kann duale Homöostase, wie im zweiten Modell gezeigt, auch für Plastizitäts- und Lernprozesse auf der Ebene einzelner Neuronen von Bedeutung sein. Während neuronale Homöostase im klassischen Sinn darauf beschränkt ist, Teile des Systems möglichst präzise auf einen gewünschten Mittelwert zu regulieren, konnten wir Anhand der diskutierten Modelle also darlegen, dass eine Kontrolle des Ausmaßes von Fluktuationen ebenfalls Einfluss auf die Funktionalität neuronaler Systeme haben kann.
The nature of spontaneous brain activity during wakefulness and sleep: a complex systems approach
(2014)
In this thesis we study the organization of spontaneous brain activity during wakefulness and all stages of human non-rapid eye movement sleep using an approach based on developments and tools from the theory of complex systems. After a brief introduction to sleep physiology and different theoretical models of consciousness, we study how the organization of cortical and sub-cortical interactions is modified during the sleep cycle. Our results, obtained by modeling global brain activity as a complex functional interaction network, show that the capacity of the human brain to integrate different segregated functional modules is diminished during deep sleep, in line with an informationintegration account of consciousness. We then show that integration is impaired not only across space but also in the temporal domain, by assesing the emergence of long-range temporal correlations in brain activity and how they are modified during sleep. We propose an encompassing explanation for this observation, namely, that the brain operatsat different dynamical regimes during different states of consciousness. Finally, we gather massive amounts of data from different collaborative projects and apply machine learning techniques to reveal that the \resting state" cannot be considered as a pure brain state and is in fact a mixture containing different levels of conscious awareness. This last result has deep implications for future attempts to develop a discovery science of brain function both in health and disease.