Refine
Year of publication
Document Type
- Doctoral Thesis (31)
Has Fulltext
- yes (31)
Is part of the Bibliography
- no (31)
Keywords
Institute
- Biochemie und Chemie (14)
- Biochemie, Chemie und Pharmazie (13)
- Biowissenschaften (3)
- MPI für Biophysik (1)
- Pharmazie (1)
Die NADPH-Oxidasen stellen eine wichtige Quelle für reaktive Sauerstoffspezies (Reactive oxygen species; ROS) im Organismus dar. Hierbei dienen die NADPH-Oxidasen nicht nur der Pathogenabwehr, sondern haben einen Einfluss auf eine Vielzahl an oxidativen, physiologischen Prozessen. Unter den NADPH-Oxidasen ist NOX4 einzigartig, da es hauptsächlich im endoplasmatischen Retikulum (ER) lokalisiert ist, konstitutiv aktiv ist und Wasserstoffperoxid (H2O2) produziert. Wir vermuten, dass diese besonderen Eigenschaften eine Konsequenz aus der Interaktion mit bislang unentdeckten NOX4-interagiereden Proteinen ist.
Zweidimensionale blau-native Polyacrylamid-Gelelektrophorese (BN-PAGE) kombiniert mit SDS-PAGE zeigte NOX4 in makromolekularen Komplexen. Interagierende Proteine wurden durch eine quantitative SILAC (stable isotope labeling of amino acids in cell culture)-Co-immunopräzipitation (Co-IP) in NOX4-überexprimierenden HEK293-Zellen gescreent. Hierdurch konnten verschiedene interagierende Proteine identifiziert werden, wobei Calnexin die robusteste Interaktion aufwies. Calnexin konnte zudem in NOX4-haltigen Komplexen durch Complexome Profiling der BN-PAGE oder gleichzeitiger Antikörperfärbung nachgewiesen werden. Die Calnexin-NOX4-Interaktion konnte mittels reverser Co-IP und Proximity ligation assay bestätigt werden, während NOX1, NOX2 und NOX5 nicht mit Calnexin interagierten. Calnexin-Defizienz, untersucht in embryonalen Mausfibroblasten oder durch shRNA gegen Calnexin, reduzierte die NOX4-Proteinexpression und ROS-Bildung, wobei die mRNA-Expression unverändert blieb. Des Weiteren wurde untersucht, ob der bekannte Interaktionspartner von NADPH-Oxidasen, p22phox, wirklich essentiell für die Expression oder Aktivität von NOX4 ist, da es nur in manchen der NOX4-Co-IPs nachgewiesen wurde. Um den Einfluss von p22phox für NOX4 aufzuklären wurde ein CRISPR/Cas9 Knockdown in NOX4-überexprimierenden HEK293 Zellen etabliert. p22phox zeigte keinen Einfluss auf die NOX4-Expression, jedoch war die NOX4-abhängige ROS-Produktion in p22phox-Knockout Zellen verschwunden.
Unsere Ergebnisse deuten darauf hin, dass endogenes NOX4 makromolekulare Komplexe mit Calnexin ausbildet, welches für die korrekte Reifung, Prozessierung und Funktion von NOX4 im ER nötig ist. Darüber hinaus ist p22phox nicht für die Reifung von NOX4, aber für dessen Aktivität nötig. Diese Ergebnisse zeigen eine vielfältige Regulation von NOX4 auf Proteinebene.
Die Translokation von gelösten Stoffen über zelluläre Membranen ist ein essentieller biologischer Prozess, der durch eine Vielfalt an integralen Membranproteinen vermittelt wird. Diese sind in den selektiven Austausch verschiedenster Stoffe bzw. Teilchen involviert und ermöglichen somit die Kommunikation zwischen den einzelnen Zellkompartimenten untereinander bzw. mit der extrazellulären Umgebung. Eine der größten Familien paraloger Proteine, die den vektoriellen Transport von Substanzen über Zellmembranen katalysieren, stellen die ATP‐binding cassette (ABC)‐Transporter dar. Mitglieder dieser Proteinfamilie sind in allen bisher untersuchten Organismen von Prokaryoten bis hin zu höheren Eukaryoten vertreten und übernehmen essentielle Funktionen in einer Vielzahl von zellulären Abläufen. ABC‐Transporter zeichnen sich durch eine breite Substratdiversität aus, d.h. sie energetisieren unter ATP‐Verbrauch die Translokation zahlreicher, strukturell und chemisch unterschiedlicher Substanzen wie Zucker, Lipide, Ionen, Aminosäuren, Proteine oder auch zelltoxische Stoffe. In Bakterien können sie sowohl als Importproteine fungieren, welche hauptsächlich die Aufnahme von Nährstoffen vermitteln, als auch als Exportproteine, deren Hauptaufgabe es ist, zelltoxische Substanzen aus der Zelle heraus zu schleusen. Eukaryotische ABC‐Transporter sind sowohl in der Plasmamembran als auch in den intrazellulären Membranen zu finden – beispielsweise in denen des Endoplasmatischen Retikulums, des Golgi Apparats, der Lysosomen, der Peroxisomen und der Mitochondrien. Sie fungieren als Exportproteine und sind z.B. an der Ionen‐Homöostase, der Antigenprozessierung, der Insulinfreisetzung oder am Cholesterol‐ und Lipidtransport beteiligt. ...
The ubiquinol:cytochrome c oxidoreductase is a key component of several aerobic respiratory chains in different organisms. It is an integral membrane protein complex, made up of three catalytic subunits (cytochrome b, cytochrome c1 and Rieske iron sulphur protein) and up to eight additional subunits in mitochondria. The complex oxidizes one quinol molecules and reduces two cytochrome c during the Q cycle, originally described by Peter Mitchell. Electrons are split between the low and the high potential chain and protons are released on the positive side of the membrane, increasing the protonmotive force needed by the ATP-synthase for energy transduction. The cytochrome bc1 complex from P. denitrificans is a perfect model for structural and functional studies. Bacteria are easy to grow and the genetic material is readily accessible for genetic manipulation. Moreover, the P. denitrificans aerobic respiratory chain is very close to the mitochondrial one: the complexes involved in electron transfer resemble the ones found in mitochondria, but lack most of the additional subunits. As a unique feature, P. denitrificans has a strongly acidic domain at the N-terminal region of the cytochrome c1, a sequence of 150 aminoacids which does not correlate with any known protein. An analogous composition can be found in the eukaryotic cytochrome bc1 complex as a part of an accessory subunit, proposed to be involved in facilitating electron transfer between the complex and the electron acceptor cytochrome c. In order to study the function of this domain in the P. denitrificans cytochrome bc1 complex, a deletion mutant has been previously cloned and modified with an affinity tag as a C-terminal extension of cytochrome b. The complex is purified by affinity chromatography and characterized by steady-state kinetics using not only horse heart cytochrome c but also the endogenous electron acceptor, the membrane bound cytochrome c552, employed here as a soluble fragment. Steady–state kinetics indicate that the deletion of the long acidic domain had effects neither on the turnover rate nor on the apparent affinity for the substrate. To understand wether the deletion affects the reaction between the cytochrome bc1 complex and the substrate, laser flash photolysis experiments are performed, showing that the interaction observed was not changed in the complex missing the acidic domain. The results presented in this work confirm the ones previously obtained by Julia Janzon using soluble fragments of the same interaction partners. The deletion, however, affected the oligomerization state of the complex, as shown by LILBID (Laser Induced Liquid Bead Ion Desorption) analysis. The wild type complex has a tetrameric structure, better described as a “dimer of dimers”. The deletion of the acidic domain on the cytochrome c1 results in the separation of the two dimers, yielding the canonical dimer. Therefore, the complex deleted in the acidic domain is used for cloning and expression of a heterodimeric complex, containing an inactivating mutation in the quinol oxidation site in only one monomer, thus allowing a selective switch-off for half the complex. Such a complex is needed for the verification of an internal regulation mechanism, the half-of-the-sites reactivity. According to it, the dimeric structure of the cytochrome bc1 complex has functional implications, since the two monomers can communicate and work in a coordinated manner. This approach confirms that substrate oxidation does effectively take place only in one of the two monomers constituting the dimer, and that the binding of substrate at the Qo and Qi site regulates the switch between active and inactive monomer. Moreover, this mechanism works also as an effective protection against the reaction of quinone intermediates with oxygen and the formation of reactive oxygen species (ROS), responsable for cellular aging. The motion of the ISP head domain is also addressed in this work; in particular the mechanism which regulates the movements towards the cytochrome c1 and the electron bifurcation at the quinol oxidation site. Laser flash kinetics in presence of several inhibitors and the substrate allow studying the response of the ISP to the binding of different species at the quinol oxidation site. The binding of ligand at the Qo site in the complex triggers the conformational switch in the ISP head domain, supporting the mechanism proposed in the literature according to which the Qo site is able to “sense” the presence of substrate and transfer the information to the ISP, regulating its mobility. The internal electron pathway between the ISP and the cytochrome c1 has been analyzed also by stopped-flow kinetics, in presence and absence of inhibitors. The results indicate that two kinetic phases describe the reduction of cytochrome c1 by the ISP, and a model for the simulation of the data is proposed.
1. Das Wachstum und die Fähigkeit zur Butyratproduktion von E. callanderi KIST612 wurde in geschlossenen Batch-Kulturen mit den Substraten Glukose, Methanol, Formiat, H2 + CO2 und CO untersucht. E. callanderi KIST612 zeigte sich nur bei Wachstum auf 20 mM Glukose oder 20 mM Methanol in der Lage, Butyrat in größeren Mengen (3,7 – 4,3 mM) zu produzieren. Das Hauptprodukt bei allen untersuchten Wachstumssubstraten war jedoch Acetat.
2. In bioinformatischen Analysen des Genoms von E. callanderi KIST612 konnte nur eine A1AO-ATP-Synthase gefunden werden, welche eine V-typ c-Untereinheit bestehend aus 4 TMH‘s mit nur einer Na+-Bindestelle aufweist. Diese konnte aus gewaschenen Membranen von E. callanderi durch Saccharose-Dichtegradientenzentrifugation, Anionenaustausch-Chromatographie (DEAE) sowie einer Größenausschluss-Chromatographie (Superose 6) bis zur apparenten Homogenität gereinigt werden. Nach Produktion einzelner Untereinheiten (A, B, C, D, E, F und H) in E. coli und Generierung von Antikörpern, konnten alle Untereinheiten (A, B, C, D, E, F, H, a sowie c) in der gereinigten Enzympräparation immunologisch oder mittels „Peptide-Mass-Fingerprinting“ nachgewiesen werden. Es konnte somit erstmals eine A1AO-ATP-Synthase aus einem mesophilen Organismus ohne Verlust von Untereinheiten gereinigt werden.
3. Der Gesamtkomplex wies unter nativen Bedingungen eine molekulare Masse von ca. 670 kDa auf. In elektronenmikroskopischen Aufnahmen zeigte sich anhand der hantelförmigen Strukturen, dass die A1AO-ATP-Synthase als intakter Gesamtkomplex gereinigt werden konnte.
4. Die gereinigte A1AO-ATP-Synthase wurde zunächst anhand ihrer ATP-Hydrolyse-Aktivität biochemisch charakterisiert. Die ATP-Hydrolyse-Aktivität hatte ein pH-Optimum von 7 – 7,5 und ein Temperaturoptimum bei 37 °C. Durch Messung der ATPase-Aktivität in Abhängigkeit von verschiedenen Mengen an Na+ konnte die vorhergesagte Na+-Abhängigkeit des Enzyms nachgewiesen werden. Zudem zeigten Hemmstoffexperimente mit DCCD, dass dieser Inhibitor mit Na+ um die gemeinsame Bindestelle in der c-Untereinheit konkurriert. Dies bestätigte nochmals, dass das Enzym funktionell gekoppelt gereinigt werden konnte.
5. Zur weiteren Untersuchung der Ionenspezifität wurde der an die ATP-Hydrolyse gekoppelte Ionentransport durch Rekonstitution des Enzyms in Liposomen und anschließender Messung des Na+- oder H+-Transports gemessen. In den Proteoliposomen konnte mit Hilfe von 22Na+ gezeigt werden, dass das Enzym Natriumionen translozieren kann. Während in Anwesenheit des Natriumionophors ETH 2120 kein 22Na+-Transport beobachtet werden konnte, führte die Anwesenheit des Protonophors TCS zu einer geringfügigen Stimulation der 22Na+-Translokation. Insgesamt konnte ein primärer Na+-Transport nachgewiesen werden, welcher von der A1AO-ATP-Synthase aus E. callanderi katalysiert wird.
6. Durch Rekonstitution der A1AO-ATP-Synthase aus E. callanderi in Liposomen konnte erstmals biochemisch nachgewiesen werden, dass ein solches Enzym trotz seiner V-Typ c-Untereinheit in der Lage ist, ATP zu synthetisieren. Durch die Zugabe von Ionophoren (ETH 2120 und TCS) konnte der elektrochemische Ionengradient aufgehoben werden, wodurch keine ATP-Synthese beobachtet werden konnte. Der erstmalige Nachweis der ATP-Synthese wurde bei einem ΔµNa+ von 270 mV erbracht.
7. Die ATP-Synthese zeigte sich ebenfalls abhängig von der Na+-Konzentration. Der KM-Wert lag bei 1,1 ± 0,4 mM und war vergleichbar mit dem für die ATP-Hydrolyse ermittelten Wert. Ebenso konnte für die ATP-Synthese-Richtung gezeigt werden, dass DCCD mit Na+ um die gemeinsame Bindestelle in der c-Untereinheit konkurriert.
8. Um den biochemischen Nachweis zu erbringen, dass die A1AO-ATP-Synthase auch unter physiologisch relevanten Potentialen zur ATP-Synthese befähigt ist, wurde der energetische Schwellenwert der ATP-Synthese bestimmt. Dieser betrug 87 mV als Triebkraft für ΔpNa, 94 mV als Triebkraft für Δψ und 90 mV als Triebkraft für ΔµNa+. Erstaunlicherweise konnte die ATP-Synthese der A1AO-ATP-Synthase aus E. callanderi KIST612 sowohl durch Δψ als auch ΔpNa angetrieben werden. Unterschiedliche Kombinationen von Δψ und ΔpNa führten zu dem gleichen energetischen Schwellenwert; Δψ und ΔpNa waren im Enzym aus E. callanderi KIST612 äquivalente Triebkräfte.
9. Der energetische Schwellenwert der A1AO-ATP-Synthase aus E. callanderi KIST612 wurde mit dem der F1FO-ATP-Synthasen aus A. woodii, E. coli und P. modestum verglichen. Dazu wurden die Enzyme im ATP-Synthase-defizienten E. coli-Stamm DK8 produziert und anschließend durch Ni2+-NTA-Affinitätschromatographie gereinigt. Nach Einbau der Enzyme in Liposomen waren alle Enzyme in der Lage, ATP als Reaktion auf ΔµNa+ (A. woodii und P. modestum) oder ΔµH+ (E. coli) zu synthetisieren. Im Vergleich zum Enzym aus E. callanderi zeigten sich zwei auffällige Unterschiede. Erstens war keine der F1FO-ATP-Synthasen in der Lage, ΔpNa/ΔpH als alleinige Triebkraft zu nutzen. Während die ATP-Synthese in den Enzymen aus E. coli und P. modestum nur durch ΔµH+ bzw. ΔµNa+ angetrieben werden konnte, konnte das Enzym aus A. woodii zusätzlich auch durch Δψ als einzige Triebkraft angetrieben werden.
...
Prokaryotische Organismen werden in ihrer natürlichen Umgebung mit schwankenden Umwelteinflüssen konfrontiert oder müssen gegebenenfalls extremen Bedingungen standhalten. Um sich an derartige Veränderungen anpassen zu können und damit ein weiteres Überleben zu sichern, ist es wichtig neue genetische Informationen zu akquirieren. Die molekulare Basis dieser Anpassung sind Genmutationen, Genverlust, intramolekulare Rekombination und/oder horizontaler Gentransfer. Der vorliegende Selektionsdruck der Umwelt begünstigt schlussendlich die Spezialisierung und damit die Erschließung neuer Standorte aufgrund des Erwerbs neuer metabolischer Eigenschaften, Resistenzgene oder Pathogenitätsfaktoren. Vergleichende Analysen bakterieller Genome, welche auf Analysen der GC-Gehalte, der Codon- und Aminosäurenutzung und der Genlokalisation beruhen, zeigten, dass bei diesem evolutiven Prozess bzw. der Weiterentwicklung der bakteriellen Genome der horizontale Gentransfer als treibende Kraft eine entscheidende Rolle spielt. So indizieren Genomstudien, dass 0-22% der gesamten bakteriellen und 5-15% der archaeellen Gene horizontal erworben wurden, wobei der DNA-Transfer nicht ausschließlich zwischen Vertretern einer Domäne, sondern ebenfalls zwischen Organismen unterschiedlicher Domänen stattgefunden hat. So sind z.B. 24 bzw. 16% der Gene von Genomen hyperthermophiler Organismen wie Thermotoga maritima oder Aquifex aeolicus archaeellen Ursprungs. Ebenso finden sich Gene für Chaperone und DNA-Reparaturenzyme im Genom des thermophilen Bakteriums Thermus thermophilus wieder, welche wahrscheinlich ebenfalls durch horizontalen Gentransfer aus hyperthermophilen und archaeellen Genomen erworben wurden um eine Anpassung an extreme Standorte zu ermöglichen. Durch vergleichende Genomstudien wurde ebenfalls festgestellt, dass die durch horizontalen Gentransfer erworbenen Gene oftmals zu einer Neuorganisation von Transkriptionseinheiten und zu einer veränderten Genomorganisation führten. Dennoch finden sich immer wieder Beispiele von horizontal erworbenen Operonen in den verschiedenen Organismen. Gut charakterisierte Vertreter horizontal übertragener Operone sind dabei z.B. das archaeelle H+-ATPase-Operon, das Operon der Na+-translozierenden NADH:Ubichitonoxidoreduktase oder das Nitratreduktase-Operon.
Man unterscheidet bei dem horizontalen Gentransfer zwischen drei Mechanismen der DNAAufnahme: Konjugation, Transduktion und Transformation. Die DNA-Übertragung durch Konjugation ist durch einen spezifischen Zell-Zell-Kontakt definiert, der durch einen von der Donorzelle ausgehenden, sogenannten F-Pilus hergestellt wird. Die Donorzelle überträgt schließlich Plasmid-kodierte genetische Informationen und oftmals Eigenschaften für die eigenständige Konjugation auf eine Rezipientenzelle. Die Transduktion hingegen beschreibt die DNA-Übertragung von Bakteriophagen auf eine Wirtszelle, wobei hier eine hohe Wirtsspezifität Voraussetzung ist. Die Übertragung der DNA von einer Bakterienzelle in eine andere erfolgt dabei ohne Kontakt der Zellen. Die natürliche Transformation ist definiert als Transfer von freier DNA und ermöglicht damit im Gegensatz zu den beiden ersten spezifischen Mechanismen der DNA-Übertragung ein größeres Spektrum der Verbreitung genetischer Informationen. Freie DNA, welche entweder durch Zelllyse oder Typ-IVSekretion ausgeschieden wird und aufgrund von Adsorption an mineralische Oberflächen über längere Zeiträume stabil in der Umgebung vorliegen kann, kann unter der Voraussetzung der Existenz eines speziellen Aufnahmesystems von Bakterien aufgenommen werden. Mittlerweile sind über 44 Bakterien aus unterschiedlichen taxonomischen Gruppen beschrieben, die eine natürliche Kompetenz ausbilden können. Die bekanntesten Beispiele für natürlich transformierbare Gram-negative Bakterien sind Heliobacter pylori, Neisseria gonorrhoeae, Pseudomonas stutzeri, Haemophilus influenzae, T. thermophilus und Acinetobacter baylyi. Auch unter den Gram-positiven Bakterien finden sich einige Vertreter, die natürlich kompetent sind, wie Deinococcus radiodurans, Bacillus subtilis und Streptococcus pneumoniae. Ungeachtet der relevanten Rolle der Transformation im horizontalen Gentransfer, ist über die Struktur und Funktion der komplexen DNA-Aufnahmesysteme wenig bekannt.
Rotary adenosine triphosphate (ATP)ases are ubiquitous, membrane-bound enzyme complexes involved in biological energy conversion. The first subtype, the so-called F1Fo ATP synthase, predominantly functions as an ATP synthesizing machinery in most bacteria, mitochondria and chloroplasts. The vacuolar subtype of enzyme, the V1Vo ATPase, operates as an ATP driven ion pump in eukaryotic membranes. The subtype found in archaea and some bacteria is called A1Ao ATP (synth)ase and is capable of working in both directions either to synthesize ATP or to generate an ion motive force by consuming the same.
All the three above-mentioned subtypes of rotary ATPases work as nanomolecular machines sharing a conserved mechanism to perform the energy conservation process. The simplest form of these enzymes is the bacterial F1Fo ATP synthase. Here, ions are channelled via the membrane stator subunit a to the rotor ring of the enzyme. After almost a complete rotation of the ring the ions are released again on the other side of the membrane. This rotation is further transmitted via the central stalk to the soluble part of the enzyme, the F1-complex, where conformational changes within the nucleotide binding sites result in the synthesis of ATP from ADP and Pi.
The rotor or c-ring of the enzyme is the key protein complex in mediating transmembrane ion translocation. Several structural and biochemical methods have been applied in the past years to study the rotor rings from many different organisms. The results revealed that the stoichiometry of a c-ring of a given species is constant while it can vary between different species within a range of 8 to 15 c subunits. The c-ring stoichiometry determines directly the number of ions transported through Fo per rotation whereby three molecules of ATP are concurrently synthesized in the water-soluble F1 headgroup. Hence the number of c subunits has an important influence on the bioenergetics of the corresponding enzyme and thus the entire organism.
The c-ring of a rotary ATPase is able to specifically bind either protons (H+) or sodium ions (Na+) as the coupling ion for the enzyme. Several structures are already available revealing the coordination network of both types of rotor rings. In each case ion binding includes a highly-conserved carboxylic acid residue (glutamate or aspartate), in addition to a more varying combination of amino acid residues, whereby Na+ coordination is structurally more demanding than H+ binding.
In the first part of my PhD thesis, I aimed to characterize the F1Fo ATP synthase rotor ring of the opportunistic pathogenic bacterium Fusobacterium nucleatum on a functional and structural level. F. nucleatum is an anaerobic bacterium which uses peptides and amino acids as a primary energy source. It is one of the most frequently occuring bacteria in human body infections and involved in human periodontal diseases.
The protein complex was heterologously expressed within a hybrid ATP synthase in Escherichia coli and purified without an affinity tag for further analysis. Two high resolution X-ray structures of the c-ring were solved at low (5.3) and high (8.7) pH to 2.2 and 2.64 Å, respectively. In both structures, the conserved glutamate is in an ion-locked conformation, revealing that the conformational state of the ion binding carboxylate is not depending on the pH of the crystallization condition, which is in good agreement with previous structural and biochemical studies of other c-rings.
A Na+ ion is present within the c-ring binding site and directly coordinated by four amino acid residues and a structural water molecule. Remarkably, the Na+ is bound by two glutamate residues instead of one as is the case in the I. tartaricus Na+ binding c-ring, of which the first high resolution X-ray structure of a c-ring has been solved in 2005. Thus, a new type of Na+ coordination in an ATP synthase rotor ring with a two-carboxylate ion binding motif is described here, which also occurs in other bacteria, including several pathogens. Na+ specificity of the investigated c-ring was further confirmed by a competitive biochemical labeling reaction performed with a fluorescent ATP synthase inhibitor molecule (N-cyclohexyl-N`-[4(dimethylamino)-α-naphtyl] carbodiimide, NCD-4).
We furthermore complemented our functional and structural data of the F. nucleatum c-ring by computational studies to explore the ion translocation mechanism of this enzyme in more details. We therefore analyzed the protonation state of the second, additional glutamate in the ion binding site. Molecular dynamics (MD) simulations and free-energy calculations indicated that this glutamate is constitutively protonated, in the ion-locked as well as in a simulated, more hydrated open-conformation of the ion binding glutamate as when it is travelling through the a/c-ring interface upon c-ring rotation.
Cell-free-synthesized voltage-gated proton channels: Approaches to the study of protein dynamics
(2018)
We often only realize how important health is when diseases manifest themselves through their symptoms and, ultimately, in a diagnosis. Over time, we suffer from many diseases starting with the first childhood disease to colds to gastrointestinal infections. Most diseases pass harmlessly and symptoms fade away. However, not all diseases are so harmless. Alzheimer’s disease, breast cancer, Parkinson’s disease, and colorectal cancer usually cause severe illness with high mortality rates. In pharmaceutical research, efforts are therefore being made to determine the molecular basis of them in order to provide patients with potential relief and, at best, healing. A special group of regulators, involved in the previously mentioned diseases, are voltage-gated proton channels. Thus, the understanding of their structure, function, and potential drug interaction is of great importance for humanity.
Voltage-gated proton channels are localized in the cell membrane. As their name indicates, they are controlled by voltage changes. Depolarization of the cell membrane induces conformational changes that open these channels allowing protons to pass through. Here, the transfer is based on a passive process driven by a concentration gradient between two individual compartments separated by the cell membrane. Voltage-gated proton channels are highly selective for protons and show a temperature- and pH-dependent gating behavior. However, little is known about their channeling mechanism. Previous experimental results are insufficient for understanding the key features of proton channeling.
In this thesis, for the first time, the cell-free production of voltage-sensing domains (VSD) of human voltage-gated proton channels (hHV1) and zebrafish voltage-sensing phosphatases (DrVSP) is described. Utilizing the cell free approach, parameters concerning protein stability, folding and labeling can be easily addressed. Furthermore, the provision of a membrane mimetic in form of detergent micelles, nanodiscs, or liposomes for co-translational incorporations of these membrane proteins is simple and efficient. Both VSDs were successfully produced up to 3 mg/ml. Furthermore, the cell-free synthesis enabled for the first time studies of lipid-dependent co-translational VSD insertions into nanodiscs and liposomes. Cell-free produced VSDs were shown to be active, and to exist mainly as dimers. In addition, also their activation was stated to be lipid-dependent, which has not been described so far. Solution-state NMR experiments were performed with fully and selectively labeled cell-free produced VSDs. With respect to the development of potential drug candidates, I could demonstrate the inhibition of the VSDs by 2-guanidinobenzimidazole (2GBI). Determined KD values were comparable to literature data for the human construct. For the first time, a low affinity for 2GBI of the zebrafish VSD could be described.
In future, the combination of a fast, easy and cheap cell-free production of fully or selectively labeled VSDs and their analysis by solution state NMR will enable structure determinations as well as inhibitor binding studies and protein dynamic investigations of those proteins. The results of these investigations will serve as a basis for example for the development of new drugs. In addition, a detailed description of the lipid-dependent activity might be helpful in controlling the function of voltage-gated proton channels in cancer cells and thereby reducing their growth or disturbing their cell homeostasis in general.
Disturbances in lipid metabolism are responsible for many chronic disorders, such as type 2 diabetes and atherosclerosis. Regulation of lipid metabolism occurs by activated transcription factors peroxisome proliferator-activated receptor δ (PPARδ) and liver X receptor α (LXRα) mediating transcription of different target genes involved in regulation of fatty acid uptake and oxidation or cellular cholesterol homeostasis. This is especially relevant for the macrophages, since pathways regulated by PPARδ and LXRα affect foam cell formation, a process driving the progression of atherosclerotic lesion. AMP-activated protein kinase (AMPK) plays a central role in energy homeostasis in every type of eukaryotic cell, but its role in human macrophages, particularly with regard to lipid metabolism, is not precisely defined yet. Thus, I investigated the impact of AMPK activity on PPARδ and LXRα and the expression of their target genes involved in fatty acid oxidation (FAO) and cholesterol metabolism.
As PPARδ has been described as a potential target for prevention and treatment of several disorders and AMPK as interesting drug target for diabetes and metabolic syndrome, the aim of the first part of my studies was to investigate their interaction in primary human macrophages. Completing the first challenge successfully, I was able to establish a lentiviral transduction system for constitutively active AMPK (consisting of a truncated catalytic AMPKα1 subunit bearing an activating T198D mutation) in primary human macrophages.
Using genome-wide microarray analysis of gene expression, I demonstrate FAO as the strongest affected pathway during combined AMPKα1 overexpression and PPARδ activation.
The most influenced genes were validated by quantitative PCR as well as by Western analysis. I found that AMPK increases the expression of FAO-associated genes targeted by PPARδ. Corroborating the results obtained using AMPKα1 overexpression, PPARδ target gene expression was increased not only by PPARδ agonist GW501516, but also by pharmacological allosteric AMPK activator A-769662. Additional enhancement of target gene mRNA expression was achieved upon co-activation of PPARδ and AMPK. Silencing PPARδ expression increased basal expression of target genes, confirming the repressive nature of ligand-free PPARδ, abolishing the increased target gene expression upon AMPK or PPARδ activation. Measurements of triglyceride contents of human macrophages incubated with VLDL following PPARδ activation demonstrated a reduction of intracellular triglyceride accumulation in cells, which may reflect the enhancement of fat catabolism.
In the second part of my studies, I concentrated on the regulation of cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) expression by AMPK. ABCA1 facilitates
cholesterol efflux from macrophages thus, preventing atherosclerosis progression. For the first time, AMPK implication in the regulation of the ABCA1 pathway could be presented. Both AMPK overexpression and activation lead to significantly increased ABCA1 expression, whereas AMPKα1 knock-down strongly reduced this effect. Besides, I was able to prove an enhanced activity of ABCA1 during AMPK activation in human THP-1 macrophages by measuring cholesterol efflux into apolipoprotein AI-containing medium.
Previous findings showed regulation of ABCA1 by LXRα. I confirmed these results by silencing experiments indicating an essential role of LXRα in ABCA1 regulation pathway.
Here, ABCA1 mRNA as well as protein expression were positively mediated by LXRα. LXRα activation elevated ABCA1 levels, whereas its silencing down-regulated this effect.
Interestingly, ABCA1 was found to be regulated only by LXRα and not through LXRα. At the same time, knock-down of PPARδ, -γ or -δ, which may be also involved in the regulation of LXR/ABCA1 axis, did not influence the activation of ABCA1 expression by an AMPK activator. To confirm that LXRE on Abca1 promoter is essential for ABCA1 regulation, I performed luciferase reporter assay using constructs based on Abca1 promoter with or without LXRE mutation. Mutation of LXRE abolished reporter activity, whereas AMPK activation increased luciferase activity of wild-type LXRE construct. Furthermore, I demonstrate AMPK-dependent LXRα binding to the LXRE site of Abca1 promoter using the method of chromatin immunoprecipitation. AMPK activation significantly increased, whereas silencing of AMPK significantly attenuated LXRα binding, indicating AMPK as one of the most important regulators of ABCA1 expression.
In summary, I provided an evidence for AMPK involvement into lipid and cholesterol metabolism in human macrophages showing the regulation of PPARδ and LXRα target genes. The understanding of AMPK and PPARδ interaction allows the development of new approaches for treatment of metabolic syndrome and related diseases. Increased FAO during the activation of both proteins may exhibit better therapeutic benefit. On the other hand, I have shown the impact of AMPK activation on ABCA1 via LXRα up-regulation leading to increased cholesterol efflux in human macrophages for the first time. These findings thus may impact future improving of anti-atherosclerosis therapies.
Starkes Übergewicht und eine damit einhergehende Hypertrophie von Geweben aber auch des Herz-Kreislauf-Systems führen zu einer Reihe von Folgeerkrankungen wie z. B. Diabetes mellitus Typ 2 oder auch Arteriosklerose. Während im Fettgewebe freie Fettsäuren, die von Makrophagen aufgenommen werden, eine entscheidende Rolle spielen, scheint in der Pathogenese von Arteriosklerose die Aufnahme von Fettsäuren aus Lipoproteinpartikeln durch Makrophagen von großer Wichtigkeit zu sein. Ein weiterer Faktor, der durch freie Fettsäuren ausgelöst wird ist ER-Stress. Makrophagen, die zu Triglycerid (TG) reichen Schaumzellen geworden sind, akkumulieren in arteriosklerotischen Läsionen. Der Lipidmetabolismus von Makrophagen wird transkriptionell u.a. durch den Transkriptionsfaktor PPARγ (Peroxisomproliferator aktivierter Rezeptor γ) reguliert. Sein Zielgen FABP4 (Fettsäuren bindendes Protein 4) beschleunigt die Entwicklung von Arteriosklerose in Mausmodellen. Da die Expression von PPARγ und FABP4 in IL 4- (Interleukin-4) polarisierten Makrophagen induziert wird, sollte die Rolle von FABP4 in humanen, mit IL 4 polarisierten Makrophagen untersucht werden. Hierfür wurden primäre humane Monozyten in Anwesenheit von LPS/IFNγ (Lipopolysaccharid/Interferon γ) bzw. IL 4 zu Makrophagen differenziert. Es zeigte sich, dass in LPS/IFNγ stimulierten Makrophagen PPARγ und dessen Zielgene nicht exprimiert wurden. Dagegen waren sie bei unstimulierten Makrophagen bei IL 4 stimulierten Makrophagen deutlich erhöht. Dies spiegelte sich auch in einer erhöhten Aufnahme von Triglyceriden aus VLDL-Partikeln (Lipoproteinpartikel sehr niedriger Dichte) wider. IL 4 induzierte also einen Fettsäuren akkumulierenden Phänotyp. Durch einen PPAR-Luciferase-Reporter-Test wurde untersucht, ob FABP4 für die Aktivierung von PPARγ nötig war. Dies konnte bestätigt werden, da PPARγ durch seinen Liganden Linolsäure nur in Anwesenheit von FABP4 aktiviert werden konnte. Diese Aktivierung konnte zusätzlich durch den FABP4-Inhibitor HTS01037 verhindert werden. Nun sollte der Einfluss von FABP4 auf die PPARγ-abhängige Genexpression untersucht werden. Hierfür wurde FABP4 während der Differenzierung mit den beiden Inhibitoren HTS01037 oder BMS309403 in IL 4 stimulierten Makrophagen inhibiert. Durch die Inhibition von FABP4 sank die Expression von FABP4 und LPL (Lipoproteinlipase), während die von PPARγ unverändert blieb. Die LPL spielt eine entscheidende Rolle in der Aufnahme von Lipiden aus VLDL-Partikeln und trägt somit zur TG-reichen Schaumzellbildung bei. Die verminderte Expression von LPL spiegelte sich in einer verminderten Lipidaufnahme aus VLDL-Partikeln wider. Gleichzeitig wurde durch die FABP4-Inhibition die Entzündungsantwort der Makrophagen auf VLDL-Partikel abgeschwächt. IL 4 induziert also LPL, indem es PPARγ aktiviert. FABP4 unterstützt hierbei die Aktivierung von PPARγ. Durch die Inhibition kann die LPL-Expression vermindert werden, was die TG-reiche Schaumzellbildung und die Entzündungsreaktion in einem VLDL-reichen Umfeld vermindert und eine neue Therapiemöglichkeit von Arteriosklerose eröffnet. Im Fettgewebe kommt bei starkem Übergewicht, bedingt durch die erhöhte Konzentration an freien Fettsäuren und Hypoxie, zu einer leichten Entzündungsreaktion. Diese Entzündungsreaktion wurde durch eine Stimulation mit Palmitat unter Hypoxie (1 % O2) nachgebildet. Überstände von Makrophagen nach dieser Stimulation (MCM) wurden auf primäre humane Adipozyten übertragen. Diese Überstände konnten zwar keine Insulinresistenz in Adipozyten auslösen, induzierten jedoch eine Entzündungsreaktion. Diese zeigte sich in einer erhöhten Expression der proentzündlichen Zytokine CCL2 (CC-Chemokin-Ligand-2) und IL 6. Gleichzeitig wurde die Expression des antientzündlichen Zytokins Adiponectin vermindert. Der Transfer von MCM ist also ein Modell für die Entstehung der Insulinresistenz in einem frühen Stadium. Beim Versuch, die entzündungsfördernde Fähigkeit des MCMs zu verhindern, wurde AMPK mit verschiedenen Aktivatoren stimuliert. Es zeigte sich, dass der AMPK-Aktivator AICAR (5-Aminoimidazol-4-carboxamidribonukleotid) die Entzündungsantwort und den ER-Stress von mit Hypoxie und Palmitat stimulierten Makrophagen deutlich reduzierte. Der starke Effekt auf den ER-Stress konnte auch mit anderen ER-Stress-Auslösern wie Thapsigargin oder Tunicamycin nachvollzogen werden. Da AICAR ein AMPK-Aktivator ist, wurden typische Effekte der AMPK-Aktvierung wie reduzierte Proteinexpression, verstärkte Sirtuin-1-Aktivierung und Steigerung der Fettsäurenoxidation mittels Inhibitoren verhindert. Dies hatte keinen Einfluss auf die Wirkung von AICAR. Ebenso wurde untersucht, ob AICAR in die Zelle aufgenommen werden musste und ob es zu seiner phosphorylierten Form ZMP umgewandelt werden musste. Durch den Inhibitor ABT 702 kann die Adenosinkinase inhibiert werden, welche die Phosphorylierung katalysiert. Es zeigte sich, dass die Phosphorylierung von AICAR zu ZMP nicht erforderlich war, damit AICAR die ER-Stress-Antwort hemmen konnte. AICAR und nicht ZMP wirkte gegen den ER-Stress. Da durch das fehlende ZMP die AMPK nicht aktiviert wurde, war das ein weiteres Zeichen, dass AICAR AMPK-unabhängig wirkte. Dies konnte durch einen AMPK-Knockdown bestätigt werden. Durch einen Knockdown verschiedener Adenosintransporter konnte gezeigt werden, dass SLC28A3 (Soluttransporterfamlie 28 Typ A3) verantwortlich für die Aufnahme von AICAR in primäre humane Makrophagen war. Es konnte demnach gezeigt werden, dass AICAR den ER-Stress in primären humanen Makrophagen in einem von AMPK unabhängigen Mechanismus vermindert. Dafür wird es mittels SLC28A3 in die Zelle aufgenommen und wirkt als AICAR und nicht als ZMP. Diese Erkenntnisse stellen eine interessante, neue therapeutische Möglichkeit im Feld von Arteriosklerose und Diabetes dar.
In mitochondria, biogenesis of oxidase is a crucial process involving the participation of an array of assembly factors. Studying the process of biogenesis in eukaryotes is highly complicated due to the presence and partaking of two genetic systems. Employing a bacterial model such as Paracoccus denitrificans that utilizes only one genetic system enables easy studying of the assembly process. The aa3 cytochrome c oxidase of P. denitrificans shows high structural and functional homology to its mitochondrial counterpart despite its simple subunit composition. The assembly of the core subunits I and II that house the active redox centers (heme a, and heme a3.CuB centre in subunit I; and the binuclear CuA centre in subunit II) along with the chaperons responsibly for their incorporation form the crux of this work. This work concentrates particularly on CtaG, a chaperone previously speculated to be involved in the delivery of copper to the CuB center in subunit I. As the full length structure of CtaG or its structural homologues have not been solved, attempts were made to obtain high-diffracting crystals of CtaG by heterologously expressing it in E. coli. Growth media, expression strains and induction parameters were some of the conditions screened in order to obtain optimal yield. Additives, pH and detergent were screened to yield a homogeneous preparation of CtaG. Crystallization trials were conducted by employing the sitting drop, vapour diffusion, method and later the bicelles were employed. Preliminary crystals obtained were further optimized employing seeding, detergent and additives, to improve diffraction. The diffraction improved from 30 Å to 15 Å. BN PAGE (Blue Native Polyacrylamide Gel Electrophoresis) analysis and cross-linking studies were undertaken to decipher the oligomeric condition of CtaG. Both the methods indicate that the protein is a dimer under native conditions. To study the importance of CtaG in the process of oxidase assembly, two deletion mutants were obtained from the lab; one with only ctaG deleted and the other with ctaG and most of the upstream ORF. The effect of the deletion was assayed on the assembly and activity of oxidase. The deletion mutants showed residual activity of approx. 20 %, while displaying a very low heme signal (both in membranes and in purified COX). In order to exclude polar effects arising due to gene manipulation, complementation strains were prepared, reintroducing ctaG alone into both the deletion strains. Complementation strains, where only ctaG was deleted and re-introduced assayed for COX activity showed a restoration in activity to approx. 70 %. Further, calculating the heme:protein ratio, the deletion strains displayed a value of 7 nmol/mg of oxidase which was increased to wild type levels of 16 nmol/mg in the complementation strains. To further confirm the absence of the copper in subunit I, total reflection X-ray fluorescence spectroscopy analysis was carried out, which showed a decrease in the copper content in the deletion strain, restored on complementation. The strain lacking in the ORF and ctaG when complemented with ctaG alone illustrated no increase in activity or heme signal in comparison to that of the deletion strain. These point at a possible role for ORF in the assembly of COX, which is still absent in the complementation strains. To further characterize the ORF, a series of bioinformatical analysis was carried out, the results from which were insufficient to characterize the ORF conclusively. In order to enlist the proteins involved in the biosynthesis of COX, two independent approaches were employed. Two-dimensional gel examinations of solubilised membranes from untreated and cross-linked cells were analyzed by Western blotting. The CtaG-COX interaction was observed in untreated membranes, which was additionally strengthened by cross-linking. To further confirm this association, pull-down assays were done employing protein A coated magnetic beads coated with different antibodies and incubated with solubilised membranes derived from untreated or cross-linked cells. The elutions were assayed by Western blotting and confirmed for the CtaG-COX interaction. These fractions were further analysed by mass spectrometry to identify other chaperons involved in biogenesis of oxidase. Along with CtaG, I also noticed Sco, Surf1c and other factors involved in the recruitment and transport of heme (CtaB, CtaA, and Ccm proteins). Interestingly, protein components of both ribosomal subunits and protein translocation factors were observed, which indicated a co-translational approach for co-factor insertion into COX.