Refine
Year of publication
- 2009 (2)
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Has Fulltext
- yes (2)
Is part of the Bibliography
- no (2)
Keywords
- Bismut (1)
- Friedel-Crafts Reaction (1)
- Friedel-Crafts-Reaktion (1)
- Grüne Chemie (1)
- Homogene Katalyse (1)
- Organische Synthese (1)
- Säure-Base-Katalyse (1)
- asymmetric catalysis (1)
- enantioselektive Katalyse (1)
- green chemistry (1)
Institute
Im ersten Teil dieser Arbeit wurden Lewis-Säure-katalysierte Friedel-Crafts-Alkylierungen unter Verwendung von Bismut(III)-Salzen als Katalysator untersucht. Bismut(III)-Salze haben gegenüber vielen anderen Metallsalzen den Vorteil, dass sie ungiftig, luftstabil und preiswert sind. In der Regel werden bei der Friedel-Crafts-Alkylierung überstöchiometrische Mengen einer Lewis-Säure wie AlCl3 benötigt und insbesondere Alkylchloride als Reaktionspartner eingesetzt, was eine hohe Menge unerwünschter Abfallprodukte zur Folge hat. Der Einsatz katalytischer Mengen Bi(OTf)3 und die Verwendung von Benzylalkoholen als elektrophile Reaktionspartner beheben diesen gravierenden Nachteil, da hier lediglich Wasser als Nebenprodukt gebildet wird. So konnte innerhalb der vorliegenden Arbeit zunächst eine effiziente Bi(OTf)3-katalysierte Alkylierungen von 1,3-Diketonen unter Verwendung von Benzyl- und Allylalkoholen als Elektrophile entwickelt werden. Mit lediglich 1 Mol-% Bi(OTf)3 konnten die gewünschten 3-alkylierten 1,3-Diketone in guten Ausbeuten isoliert werden. Weiterhin konnten neben Allyl- und Benzylalkoholen auch Styrene als Elektrophile genutzt werden. Unter Verwendung von 0.5 - 5 Mol-% Bi(OTf)3 konnten sowohl Arene, als auch 1,3-Dicarbonylverbindungen wie z. B. Acetylacetonat als nucleophile Reaktionspartner eingesetzt werden. Die entsprechenden 1,1-Diarylalkane und benzylierten 1,3-Dicarbonyle wurden dabei in hohen Ausbeuten erhalten. Um eine Anwendung für die zuvor entwickelten Methoden zu schaffen, wurde im weiteren Verlauf die Bismut(III)-katalysierte Benzylierung und Hydroalkylierung von 4-Hydroxycoumarinen untersucht. Die so erhaltenen Warfarinderivate sind von hohem medizinischem Nutzen, da diese Verbindungen als hoch potente Vitamin K Antagonisten eine breite Anwendung in der Thrombosevorbeugung oder als Rodentizide finden. Im zweiten Teil dieser Arbeit ging es um die Entwicklung neuer, chiraler Brønsted-Säure Katalysatoren. Die asymmetrische Brønsted-Säure Katalyse ist ein wachsendes Forschungsfeld und es konnten in den letzten Jahren viele enantioselektive Transformationen unter Verwendung chiraler BINOL-Phosphorsäurediester entwickelt werden. Bis vor kurzem waren BINOL-Phosphorsäurediester aufgrund ihres milden pH-Werts auf die Aktivierung von prochiralen Iminen beschränkt. Kürzlich wurden jedoch N-triflierte Phosphoramide als eine neue Klasse hoch potenter Brønsted-Säuren beschrieben. Während dieser Arbeit wurden zunächst verschiedene BINOL-basierte N-Triflylphosphoramide synthetisiert. Ausgehend von H8-BINOL konnte hier eine effiziente 3-Schritt Synthese dieser neuen Katalysatorklasse entwickelt werden. Dieser Syntheseweg verzichtet auf Schutzgruppen und ist daher in kürzerer Zeit und in besseren Ausbeuten durchführbar, als die zuvor beschrieben Synthesewege der ungesättigten BINOL-Phosphate oder N-Triflylphosphoramide. Strukturell wurden die auf diese Weise synthetisierten N-Triflylphosphoramide durch Röntgenstrukturanalyse, NMR und TXRF weiter untersucht und deren Aktivität gegenüber verschiedenen prochiralen Carbonylverbindungen überprüft. Hierbei wurde festgestellt, dass N-Triflylphosphoramide, im Vergleich zu BINOL-Phosphorsäurediestern, deutlich besser in der Lage sind, die asymmetrische Nazarov-Cyclisierung von Divinylketonen zu katalysieren. Die gewünschten Cyclopentenone konnten nach sehr kurzen Reaktionszeiten in hohen Ausbeuten und sehr guten Selektivitäten von bis zu 98% ee isoliert werden. Darauf aufbauend wurde die Brønsted-Säure-katalysierte Aktivierung von ungesättigten α-Ketoestern untersucht. Bei der Verwendung von N-Methylindol als Nucleophil konnten die 4-substituierten α-Ketoester unter Verwendung von 5 Mol-% eines 3,3’-silylierten-N-triflylphosphoramids in hohen Ausbeuten und sehr guten Enantioselektivitäten isoliert werden. Neben der erwarteten 1,4-Addition trat, abhängig von der gewählten Brønsted-Säure, eine Doppeladdition des Indols in 2-Position des α-Ketoesters auf. Das so erhaltene Bisindol zeigte hierbei völlig unerwartet atropisomeres Verhalten. Weiterhin konnte gezeigt werden, dass die Bildung dieses Bisindols vermutlich über eine carbokationische Spezies verläuft und es sich somit um eine enantioselektive Sn1-artige nucleophile Substitution handelt. Darauf aufbauend wurde eine N-Triflylphosphoramid-katalysierte Alkylierung von γ-Hydroxylactamen entwickelt. Hier kommt es Brønsted-Säure-katalysiert zu der Bildung eines N-Acyliminium-Ions, welches schließlich durch Indol als Nucleophil abgefangen wird. Auf diese Weise konnten verschieden substituierte γ-Hydroxylactame in die entsprechenden Indol-substituierten Analoga in hohen Enantioselektivitäten überführt werden. Dies ist das erste Beispiel einer hoch enantioselektiven, Brønsted-Säure-katalysierten Substitution von γ-Hydroxylactamen.
Die vorliegende Arbeit befasst sich mit der Entwicklung von neuen enantioselektiven und diastereoselektiven Brønsted-Säure katalysierten Reaktionen. Das Aktivierungsprinzip entspricht dabei einer klassischen Säure-Base-Reaktion, in der eine Brønsted-Säure einen Elektronenpaar-Donor protoniert, woraus die Bildung eines Ionenpaares resultiert. Erweitert man dieses Konzept durch den Einsatz einer chiralen Protonenquelle und verwendet als Base ein prochirales Substrat, wie ein Imin, so entsteht durch dessen Protonierung ein chirales Ionenpaar, wodurch das Substrat einerseits aktiviert wird und anderseits asymmetrische Induktion über das chirale Anion erfährt. Greift in dem darauf folgenden Schritt ein Nucleophil selektiv über eine Seite des positiv geladenen Elektrophils an, so bildet sich enantioselektiv ein neues Stereozentrum. Die Natur nutzt dieses Prinzip zum Aufbau von optisch reinen α-Aminosäuren. So katalysiert die Glutamatdehydrogenase (GDH) die Darstellung von Glutaminsäure durch Protonierung des entsprechenden α-Iminoglutarats, wodurch der nachfolgende Hydrid-Angriff mittels Nicotinamidadenindinukleotid (NADH) selektiv die (L)-Aminosäure liefert. Dieses Konzept konnte während der eigenen Diplomarbeit auf die enantioselektive Brønsted-Säure katalysierte Transferhydrierung von Ketiminen übertragen werden. Dabei simuliert eine chirale Protonenquelle 1 das Enzym (GDH) und das Reduktionsmittel NADH wird durch ein synthetisches Analogon, das Hantzsch Dihydropyridin 8a ersetzt ... Die vorliegende Arbeit ist kumulativ verfasst. Der größte Teil der hier vorgestellten Ergebnisse ist bereits veröffentlicht oder zur Publikation eingereicht. Die experimentellen Daten sind Bestandteil der in Kapitel 10 aufgeführten Publikationen und werden nicht gesondert diskutiert. Folgende Teile dieser Arbeit wurden bereits veröffentlicht: Highly Enantioselective Organocatalytic Carbonyl-Ene Reaction with strongly Acid, Chiral Brønsted Acids as Efficient Catalysts Rueping M., Theissmann T., Kuenkel A., Koenigs R.M., Angewandte Chemie International Edition 2008, 47, 6798, Angewandte Chemie 2008, 120, 6903. Asymmetric counterion pair catalysis: An enantioselective Brønsted acid-catalyzed protonation Rueping M., Theissmann T., Raja S., Bats J.W., Advanced Synthesis & Catalysis 2008, 350, 1001. An enantioselective chiral brønsted acid catalyzed imino-azaenamine reaction Rueping M., Sugiono E., Theissmann T., Kuenkel A., Köckritz A., Pews-Davtyan A., Nemati N., Beller M., Organic Letters 2007, 9, 1065. Remarkably low catalyst loading in Brønsted acid catalyzed transfer hydrogenations: Enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones Rueping M., Antonchick A.P., Theissmann T., Angewandte Chemie International Edition 2006, 45, 6751, Angewandte Chemie 2006, 118, 6903. A highly enantioselective brønsted acid catalyzed cascade reaction: Organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids Rueping M., Antonchick A.P., Theissmann T., Angewandte Chemie International Edition 2006, 45, 3683, Angewandte Chemie 2006, 118, 3765. Metal-free Brønsted acid catalyzed transfer hydrogenation - New organocatalytic reduction of quinolines Rueping M., Theissmann, T., Atonchick A.P., Synlett 2006, 1071. The twinned crystal structure of diiodobis(triphenylphosphine) palladium(II) dichloromethane disolvate at 173 K Theissmann T., Bolte M., Acta Crystallographica Section E, 2006, E62, 1056. Folgende Manuskripte wurden zur Veröffentlichung eingereicht: First Enantioselective Chiral Brønsted Acid Catalyzed Synthesis of 4´-Substituted Tetrahydroquinolines Rueping M., Theissmann T., Stoeckel M., Atonchick A.P. Asymmetric Organocatalytic Reductions in the Enantioselective Synthesis of Fluoroquinolones, Flumiquine and Levofloxacin Rueping M, Stoeckel M., Theissmann T., Haack K. Synthesis and Structural Investigations of H8-BINOL-derived N-triflylphosphoramides Rueping M., Nachtsheim B.J., Koenigs R., Ieawsuwan W., Theissmann T. Buchbeitrag: Metal-free Brønsted Acid Catalyzed Transfer-Hydrogenation: Enantioselective Synthesis of Tetrahydroquinolines Rueping M., Theissmann T., Atonchick A.P., Catalysts for Fine Chemical Industry, Vol. 5, 2006