Refine
Year of publication
Document Type
- Doctoral Thesis (36)
Has Fulltext
- yes (36)
Is part of the Bibliography
- no (36)
Keywords
- Hörrinde (3)
- Cochlea (2)
- DPOAE (2)
- Elektrophysiologie (2)
- Mittelhirn (2)
- Mongolische Rennmaus (2)
- auditory cortex (2)
- Acetylcholin (1)
- Akustik (1)
- Aminobuttersäure <gamma-> (1)
Institute
- Biowissenschaften (35)
- Medizin (1)
In der vorliegenden Studie wurde der modulierende Einfluss von Acetylcholin auf die Frequenzabstimmung der Neurone im primären Hörkortex untersucht. Im primären Hörkortex von betäubten Wüstenrennmäusen (Meriones unguiculatus) wurden Einzel- und Mehrzellableitungen in Elektrodenpenetrationen senkrecht zur Kortexoberfläche durchgeführt und die Antworteigenschaften der Neurone vor und während der iontophoretischen Applikation von Acetylcholin, dem Agonisten Carbachol bzw. dem muskarinischen Antagonisten Atropin gemessen. Bei rund der Hälfte der gemessenen Neurone konnte ein cholinerger Einfluss auf die Frequenz-Antwortbereiche gemessen werden. Dabei können sich die Frequenz-Antwortbereiche unter dem Einfluss von Acetylcholin sowohl vergrößern als auch verkleinern, so dass für die gesamte Neuronenpopulation keine signifikante gerichtete Veränderung auftrat. Bereits bei den niedrigsten verwendeten Dosen von Acetylcholin waren maximale Effekte zu beobachten. Cholinerge Einflüsse in Form von Veränderungen der Frequenz-Abstimmkurven von Neuronen konnten in allen kortikalen Schichten gemessen werden. Im zweiten Teil der vorliegenden Arbeit werden die neuronalen Antworten auf repetitive Schallereignisse, d.h. einfache zeitliche Muster, beschrieben. Für die Versuche wurden drei unterschiedlich zeitlich strukturierte Reize ausgewählt. Es handelte sich um sinusamplituden-modulierte (SAM) Reize, sowie repetitive Ton- und Rauschpulse. SAM Reize und repetitive Tonpulse ähnelten sich in ihrem Frequenzgehalt. Die repetitiven Ton- und Rauschpulse wiesen ein identisches zeitliches Muster auf, das sich von SAM Reizen unterschied. Es wurden sowohl die Wiederholfrequenzen, als auch an der besten Wiederholfrequenz die Schalldruckpegel systematisch verändert. Zusätzlich erfolgte die iontophoretische Applikation von Bicucullin (BIC), um den möglichen Einfluss schneller GABAerger Inhibition zu ermitteln. Während die neuronale Aktivitätsrate mit höheren Wiederholfrequenzen annähernd konstant blieb, war die Stärke der zeitlichen Synchronisation der neuronalen Aktivität von der jeweiligen Wiederholfrequenz des repetitiven Reizes abhängig. Die zeitliche Synchronisation der neuronalen Aktivität sank in der Mehrheit der Neurone mit steigender Wiederholfrequenz drastisch ab (Tiefpasscharakteristik) und nur in einem Bruchteil der Neurone fanden sich einzelne Wiederholfrequenzen, die eine maximale Synchronisation auslösten (Bandpasscharakteristik). Die kortikalen Neurone zeigten unabhängig vom benutzten Reiztyp ein gutes neuronales Folgeverhalten auf repetitive Schallreize bis zu Wiederholfrequenzen von 15 – 30 Hz, mit besten Wiederholfrequenzen von 5 -10 Hz. Unter dem Einfluss von BIC war eine deutliche Veränderung der neuronalen Aktivitätsrate zu erkennen. Diese hatte jedoch weder einen Effekt auf die Synchronizität, noch auf die Repräsentation der Reiztypen. Eine einfache Inhibition im auditorischen Kortex fällt damit als Erklärung für die gemessenen neuronalen Aktivitätsmuster aus. In der realen Umwelt können komplexe akustische Reize in sehr unterschiedlichen Schallintensitäten auftreten. Die reizsynchronisierte neuronale Aktivität erlaubt, ein zeitliches Muster innerhalb eines komplexen Reizes zu kodieren. Es wurde untersucht, inwieweit diese zeitliche Kodierung von der Schallintensität abhängt und inwieweit schnelle GABAerge Inhibition darauf einwirkt. Es fand sich kein Zusammenhang zwischen der allgemeinen neuronalen Aktivitätsrate oder der neuronalen Synchronizität in Abhängigkeit vom Schalldruckpegel. Allerdings konnte bei verschiedenen Neuronenpopulationen ein unterschiedliches Verhalten in der Synchronisation mit höheren Schalldruckpegeln bei Stimulation der Neurone mit SAM Reizen und repetitiven Tonpulsen festgestellt werden, das im Hinblick auf die sich verändernde Flankensteilheit bei höheren Schalldruckpegeln und den daraus resultierenden veränderten Interstimulusintervallen diskutiert wird. Die Ergebnisse aus den Experimenten mit BIC und variierenden Schalldruckpegeln zeigten im Mittel keinen Einfluss der kortikalen Inhibition auf die Abhängigkeit der neuronalen Aktivitätsrate und der Synchronisation vom Schalldruckpegel. Allerdings fanden sich im Einzelfall Änderungen in der Synchronisation auf SAM Reize unter BIC. Insgesamt scheint der Einfluss der kortikalen Inhibition auf Veränderungen der neuronalen Antwort im Zusammenhang mit variierenden Schalldruckpegeln gering bzw. nicht vorhanden zu sein.
Gepaarte assoziative Magnetstimulation (PAS) kann im primären menschlichen Motorkortex (M1) sowohl langzeitpotenzierungs- (LTP) als auch langzeitdepressionsähnliche (LTD) Erregbarkeitsveränderungen hervorrufen. Dies kann durch die Untersuchung magnetisch evozierter Potentiale (MEP) erfasst werden. Dagegen ist wenig über die Auswirkungen von PAS auf willkürliche Aktivität des motorischen Kortex bekannt. Im ersten Experiment haben wir bewegungsabhängige kortikale Potentiale (MRCP) bei zehn gesunden Probanden im EEG registriert, um die willkürliche Aktivität im Motorkortex während der Vorbereitung zweier motorischer Aufgaben zu erfassen. Die Probanden mussten dabei entweder den Daumen abduzieren (Hauptmuskel: Musculus abductor pollicis brevis, APB) oder das Handgelenk strecken (Hauptmuskel: Musculus extensor carpi radialis, ECR). Die Amplituden der motorisch evozierten Potentiale im APB wurden dabei durch PASLTP gesteigert, durch PASLTD vermindert und blieben bei PAScontrol unverändert. Im Gegensatz dazu wurden sie im ECR durch keine PAS-Bedingungen verändert. PASLTP verminderte die Negativität der MRCP während des späten Bereitschaftspotentials (-500 bis 0 ms vor Bewegungsbeginn) nur in der APB-Aufgabe. Diese Veränderungen zeigten sich hauptsächlich über zentralen Elektroden kontralateral zur bewegten Hand. Dieser Effekt korrelierte negativ mit dem durch PASLTP induzierten MEP-Anstieg im APB. PASLTD und PAScontrol hatten dagegen keinen Einfluss auf die MRCP Amplituden. Unsere Ergebnisse deuten auf eine spezifische Wechselwirkung von PAS mit willkürlicher Aktivität im Motorkortex während der Vorbereitung motorischer Aufgaben hin. Dies könnte durch ein Zusammenspiel aus erhöhter Exzitabilität von M1 und einer unterbrochenen effektiven Konnektivität zwischen prämotorischen Arealen und M1 erklärt werden. Die Modulation des dorsolateralen prämotorischen Kortex (PMd) durch repetitive transkranielle Magnetstimulation (rTMS) verändert die kortikospinale Erregbarkeit in M1. Die Auswirkungen von PMd-rTMS auf vorbereitende Prozesse für willkürliche Bewegungsabläufe sind jedoch unklar. Contingent negative variation (CNV) repräsentiert im EEG kortikale Vorbereitungsprozesse äußerlich getriggerter Bewegungen während das Bereitschaftspotential (BP) Vorbereitungsprozesse intern getriggerter Bewegungen repräsentiert. Im zweiten Experiment wurden CNV und BP jeweils vor und nach PMd-rTMS untersucht. Das Experiment bestand aus drei CNV-Versuchsblöcken mit insgesamt 243 Durchgängen. Dabei mussten die Probanden auf visuelle Anweisung hin eine zwei-Item Finger-Bewegungssequenz durchführen. RTMS wurde sowohl mit 1 Hz als auch mit 5 Hz bei einer Intensität von 110% der aktiven motorischen Schwelle (AMT) unter individueller MR-Navigation appliziert. Die Erfassung des BP erfolgte während der Durchführung derselben motorischen Aufgaben, allerdings bekamen die Probanden keine Anweisungen. Die Durchschnittsamplituden der frühen und späten Komponente von CNV (CNV1:1500-500 ms vor dem Startsignal (S2); CNV: 500-0 ms vor S2) und der frühen und späten Komponente des BP (BP1: 1500-500 ms vor EMG Beginn; BP2: 500-0 ms vor EMG-Beginn) wurden quantitativ für 25 zentrale Elektrodenpositionen verglichen. CNV2 zeigte eine signifikante Bahnung über dem frontal-zentralen Bereich nach 1 Hz PMd-rTMS, blieb aber unverändert nach 5 Hz PMd-rTMS. CNV1, BP1 und BP2 blieben durch 1 Hz und 5 Hz PMd-rTMS unbeeinflusst. Diese Ergebnisse lassen vermuten, dass der dominante PMd eine wichtigere Rolle in der Vorbereitung extern getriggerter Bewegungen spielt, als dies bei intern getriggerten Bewegungen der Fall zu sein scheint. Die CNV2-Antwort könnte eine intensive Interaktion innerhalb des menschlichen motorischen Kontrollnetzwerks anzeigen, die möglicherweise auf kompensationsähnlichen Mechanismen beruht.
Intrinsic response properties of auditory thalamic neurons in the Gerbil (Meriones unguiculatus)
(2007)
Neurons in the medial geniculate body (MGB) have the complex task of processing the auditory ascending information from the periphery and a more extensive descending input from the cortex. Differences in the pattern of afferent and efferent neuronal connections suggest that neurons in the ventral and dorsal divisions of the MGB take different roles in this complex task. The ventral MGB (vMGB) is the primary, tonotopic, division and the dorsal MGB (dMGB) is one of the higher order, nontonotopic divisions. The vMGB neurons are arranged tonotopically, have sharp tuning properties, and a short response delay to acoustic stimuli. The dMGB neurons are not tonotopically arranged, have broad tuning properties, and a long response delay to acoustical stimuli. These two populations of neurons, with inherently different tasks, may display differences in intrinsic physiological properties, e.g. the capacity to integrate information on a single cell level. Neurons of the ventral and dorsal divisions of the MGB offer an ideal system to explore and compare the intrinsic neuronal properties related to auditory processing. Coronal slices of 200 μm thicknesses were prepared from the thalamus of 4 - 5 week old gerbils. The current-clamp configuration of the patch-clamp technique was used to do experiments on the dorsal and ventral divisions of the medial geniculate body. Slices were subsequently Nissl stained to verify the location of recording. Recordings from the dorsal and ventral divisions exhibited differences in response to depolarizing current injections. The ventral division responded with significantly shorter first spike latency (vMGB = 41.50 ± 7.7, dMGB = 128.43 ± 16.28; (p < 0.01)) and rise time constant (vMGB = 6.95 ± 0.90, dMGB = 116.67 ± 0.13; (p < 0.01)) than the dMGB. Neurons in the dorsal division possessed a larger proportion of slowly accommodating neurons (rapidly accommodating: vMGB: 89%, dMGB: 64%), including a subpopulation of neurons that fired at resting membrane potential. Neurons in the vMGB are primarily responsible for relaying primary auditory input. Dorsal MGB neurons relay converging multimodal input. A comparative analysis with the primary auditory neurons, the Type I and Type II spiral ganglion neurons, reveals a similar pattern. Type I neurons relay primary auditory input and exhibit short first spike latencies and rise time constants. The Type II neurons relay converging input from many sources, while possessing significantly slower response properties and a greater subpopulation of slowly accommodating neurons. Hence, accommodation, first spike latency, and rise time constant are suggested to be a reflection of the amount of input that must be integrated before an action potential can be fired. More converging input correlates to slower accommodation, a longer first spike latency and rise time. Conversely, a greater capacity to derive discrete input is associated with rapid accommodation, along with a short first spike latency and rise time.
Echoortende Fledermäuse verfügen über ein hochauflösendes Gehör. Sie können anhand einer geringen Zeitverzögerung zwischen ausgesendetem Echoortungsruf und dem Echo die Entfernung von Objekten bestimmen. Je nach Spezies und deren spezifischer Ortungsstrategie gibt es unterschiedliche Typen von Ortungslauten. Die meisten Fledermäuse verwenden frequenzmodulierte (FM) Ortungssignale und zählen zu den FM-Fledermäusen. CF-FM-Fledermäuse verwenden dagegen zusätzlich zu FM-Komponenten konstantfrequente Signalelemente (CF-FM). Diese sind besonders zur Detektion flügelschlagender Beuteinsekten in dichter Vegetation von Vorteil. Im auditorischen Kortex (AC) von Fledermäusen existieren so genannte FM-FM-Neurone, die auf die Auswertung der Verzögerungszeiten zwischen Rufaussendung (FM-Ruf) und Echo (FM-Echo) spezialisiert sind. Eine Besonderheit von FM-FM-Neuronen ist, dass sie bei CF-FM-Fledermäusen systematisch, entsprechend ihrer bevorzugten Echoverzögerungen, im AC angeordnet sind. Somit sind die FM-FM-Neurone chronotop entlang einer rostro-kaudalen Achse organisiert. Solche FM-FM-Neurone wurden bislang auch in FM-Fledermäusen nachgewiesen, jedoch waren sie nicht chronotop organisiert. Ein Ziel dieser Promotionsarbeit war es, FM-FM-Neurone bei der FM-Fledermaus Carollia perspicillata hinsichtlich ihrer Eigenschaften und ihrer räumlichen Anordnung im AC zu untersuchen. Die Befunde der vorliegenden Studie an C. perspicillata zeigen, dass alle untersuchten Neurone im dorsalen AC sowohl auf hochfrequente Reintöne als auch auf FM-FM-Stimulation reagierten. Die Echoverzögerungen, auf welche die Neurone im Areal reagierten, lagen zwischen 1 und 32 ms, was einer Distanz zwischen Fledermaus und Objekt von 16 cm bis 5,3 m entspricht. Überraschenderweise waren die kortikalen FM-FM-Neurone bei C. perspicillata chronotop organisiert, ähnlich wie bei insektenfressenden CF-FM-Fledermäusen. Warum eine chronotope Anordnung von FM-FM-Neuronen im AC bei CF-FM-Fledermäusen von Nutzen sein kann, ist nicht geklärt. Bislang wurde vermutet, dass eine systematische Anordnung die Zeitverarbeitungsprozesse optimiert und vor allem beim Insektenjagen in dichter Vegetation vorteilhaft sein könnte. Der vorliegende Befund ist außergewöhnlich, da er zeigt, dass auch bei der überwiegend frugivoren Fledermaus C. perspicillata FM-FM-Neurone chronotop angeordnet sind, und damit verdeutlicht, dass der funktionelle Rückschluss hinsichtlich des Beutefangs neu diskutiert werden muss. Neben der Charakterisierung von FM-FM-Neuronen bei adulten C. perspicillata war Ziel der vorliegenden Arbeit, die postnatale Entwicklung des AC im Hinblick auf die Frequenzrepräsentation zu untersuchen. Während der Entwicklung von C. perspicillata wurden drei wichtige Veränderungen festgestellt: (1) Das Audiogramm zeigt, dass der Hörbereich von Neugeborenen charakteristische Frequenzen (CF) zwischen 15 und 80 kHz aufweist. Dieser Frequenzbereich entspricht etwa 72% des Hörbereichs von Adulten. Während der ersten vier postnatalen Entwicklungswochen findet eine Frequenzverschiebung um etwa 0,4 Oktaven hin zu höheren Frequenzen statt. Insgesamt erhöhen sich die CF der Neurone im dorsalen AC von Neugeborenen bis hin zu Adulten um 30 kHz. (2) Die Sensitivität der hochfrequenten Neurone nimmt während der ersten postnatalen Woche um 15 dB zu und bleibt ab dieser Entwicklungsphase relativ konstant. (3) Die Sensitivität der tieffrequenten Neurone im ventralen AC nimmt im Laufe der Entwicklung um etwa 30 dB zu. Die CF der tieffrequenten Neurone sinken unerwartet während der postnatalen Entwicklung von Juvenilen zu Adulten um etwa 10 kHz. Diese Ergebnisse könnten auf eine bidirektionale Ausreifung der Cochlea hinweisen. Eine dritte ontogenetische Teilstudie der vorliegenden Arbeit befasste sich erstmalig mit den FM-FM-Neuronen und deren Organisation während der postnatalen Entwicklung. Die Befunde zeigen, dass während der Ontogenese drei wichtige Modifikationen auftreten: (1) Bereits bei Neugeborenen liegt der Anteil an FM-FM-Neuronen bei 21% im Vergleich zur Aktivität auf Reintöne. Dieser Anteil nimmt in der ersten Entwicklungswoche auf 56% zu und steigt einhergehend mit der beginnenden Flugtüchtigkeit der Tiere in der dritten Entwicklungswoche abrupt auf 84%. (2) Bei Neugeborenen werden im Vergleich zu älteren Entwicklungsphasen ausschließlich Entfernungen zwischen Fledermaus und Objekt von 50 cm bis 2,5 m auf neuronaler Ebene mittels FM-FM-Neurone codiert. Bereits nach der ersten postnatalen Woche sind die CD ähnlich verteilt wie bei adulten Tieren. Die Sensitivität an den CD nimmt während der Entwicklung vom Neugeborenen zum Adulten um etwa 20 dB zu. (3) Bereits bei Neugeborenen sind die FM-FM-Neurone im dorsalen AC chronotop angeordnet und über alle Altersgruppen hinweg bleibt die Chronotopie bestehen. Die Befunde der vorliegenden Studie zeigen erstmalig, dass die kortikalen Zeitverarbeitungsareale und die Chronotopie pränatal angelegt werden.
Die mittelamerikanische Jagdspinne Cupiennius salei Keys. zeigt nach Reizung ventraler Tasthaare auf den proximalen Beingliedern in freier Natur und auch im Labor das relativ einfache, reflektorische Verhalten des „Körperanhebens“. Ziel der vorliegenden Arbeit war, den am Körperanheben maßgeblich beteiligten Coxamuskel c2 hinsichtlich seiner Anatomie, seiner funktionellen Faserzusammensetzung und Innervation sowie seiner Aktivität beim „Körperanheben“ und bei weiteren Bewegungsweisen der Spinne zu untersuchen. (1) Der c2-Muskel liegt im Prosoma der Spinne und setzt für jedes Bein am anterioren Coxarand an. In den 1. - 3. Beinpaaren liegt c2 zweigeteilt (apodemaler und tergaler Anteil), im Hinterbeinpaar dagegen einteilig (nur tergaler Anteil) vor. (2) Histochemische Nachweisreaktionen (Glykogengehalt, relative Succinatdehydrogenase- und relative myofibrilläre Adenosintriphosphatase-Aktivität) ergeben eine heterogene Faserzusammensetzung des c2-Muskels aus 4 Muskelfasertypen (A, B, C, D). Der apodemale c2-Anteil besteht homogen aus A-Fasern. (3) Messungen mit Laserdiffraktometrie zeigen für die A- und B-Fasern signifikant kürzere Sarkomerlängen als für die C- und D-Fasern. (4) Sodium-Dodecylsulfat-Polyacrylamid-Gelelektrophorese weist als Besonderheit für die A- und B-Fasern eine Paramyosin-Isoform P1 (107 kDa), eine Isoform der leichten Ketten des Myosins LC2 (22 kDa) und vermehrt eine Troponin-Isoform T4 (46 kDa) nach. In den Cund D-Fasern kommt allein eine 43-kDa-Bande und vermehrt eine Troponin-Isoform T2 (50 kDa) vor. (5) Der c2-Muskel der Vorder- und Hinterbeine wird durch einen eigenen Nerv innerviert. Retrograde Anfüllungen („Backfills“) des Nervs mit neuronalen Tracern legen eine polyneurale Innervation des c2-Muskels aller Beine dar, höchstwahrscheinlich jeweils durch 6 Motoneurone. Zwei davon sind jeweils positiv GABA (Gamma-Amino-Buttersäure) -immunreaktiv; dies ist ein Hinweis auf eine mögliche inhibitorische Innervation des c2-Muskels. (6) Wie Elektromyogramme freilaufender Spinnen zeigen, besteht das Körperanhebeverhalten aus zwei aufeinanderfolgenden Reaktionen: einer lokalen c2-Kontraktion im taktil gereizten Bein, die eine Bewegung im zugehörigen Prosoma-Coxa-Gelenk verursacht, und einer durch diese aktive Bewegung hervorgerufenen plurisegmentalen Reaktion im c2 der übrigen 7 Beine. Wird eine Coxa passiv bewegt, kann auch in festgelegten Spinnen eine plurisegmentale Reaktion aller 8 Beine ausgelöst werden. (7) Sowohl bei der lokalen als auch bei der plurisegmentalen Reaktion des „Körperanhebens“ rekrutiert c2 die gleichen neuromuskulären Einheiten. Dies deutet auf die gleiche zentalnervöse Endstrecke beider Reaktionen hin. Die Anzahl der elektrophysiologisch unterscheidbaren neuromuskulären Einheiten stimmt mit der der anatomisch nachgewiesenen Motoneuronen und Fasertypen überein. (8) Der tergale c2-Anteil ist immer, der apodemale Anteil nur bei schnellem Körperanheben, schnellen Laufstarts und bei Schreckreaktionen (Flucht) der Spinne aktiv. Hierbei rekrutiert der apodemale Teil nur zu Beginn der Verhaltensweise schnelle phasische Einheiten. (9) Ich diskutiere bei welchen Bewegungsweisen der Spinne die 4 Fasertypen vermeindlich zum Einsatz kommen, wie sie höchstwahrscheinlich innerviert werden und welche Konsequenzen die c2-Zweiteilung in den vorderen Beinpaaren (1 - 3) auf die Beinbewegung im Verhalten haben könnte. Am wahrscheinlichsten ist eine verstärkte Druckerhöhung zur Beinextension durch schnelle anfängliche Kontraktionen des „apodemalen Hebels“ und eine vektorielle Kräfteaddition der zwei Muskelteile. (10) Anhang II behandelt den internen Gelenkrezeptor R0 im Prosoma-Coxa-Gelenk. Ausschaltversuche weisen R0 als unentbehrlich für das Zustandekommen der plurisegmentalen Reaktion aus. Lage und Anordnung der R0-Sinneszellen sind in den Beinpaaren 1 - 3 und den Hinterbeinen verschieden.
Visual information is processed hierarchically in the human visual system. Early during processing basic features are analysed separately while at later stages of processing, they are integrated into a unified percept. By investigating a basic visual feature and following its integration at different levels of processing one can identify specific patterns. In certain visual impairments, these patterns can function defectively and their detailed study can clarify the cause of the visual deficit. Here we investigate orientation as a basic feature and use a property of the visual system called adaptation. Adaptation occurs as a decrease in the level of neural activity during repetitive presentation of the same stimulus. Psychophysical studies have shown that adaptation transfers interocularly, meaning that if only one eye is adapted the other eye shows also adaptation effects. Our aim was to investigate interocular transfer by means of functional magnetic resonance imaging (fMRI). Even though adaptation was demonstrated in the fMRI environment, the interocular transfer was never investigated in such a setup. First, we developed a method to measure interocular transfer of adaptation to gratings with fMRI. We then went further to test it in various groups of subjects. In normally sighted humans interocular transfer was present both in early (striate) as well as later visual areas (extrastriate). In subjects with impaired stereovision (with or without normal visual acuity) interocular transfer was absent in the investigated regions. Detailed analysis of the recorded differences between subjects with and subjects without stereovision was performed. The results of this analysis are presented in detail in this book. These results suggest that the neuronal mechanisms involved in the interocular transfer of pattern adaptation share, at least in part, the neural circuitry underlying binocular functions and stereopsis. We conclude that fMRI adaptation can be used for the assessment of cortical binocularity in humans with normal and impaired stereopsis. Further investigations are needed to address more subtle aspects of the lack of interocular transfer. Towards this purpose, through a fourth experiment we propose further directions that might shed more light on the issue of stereovision and its clinical implications. We show that carefully tuned variations in our experimental procedure might reveal other aspects of binocularity in the human visual system. We believe that the method we developed, apart from the interesting results shown here, has a high potential to be further used for other research questions. Following the above summarized ideas, the thesis comprises of three parts (chapters). The first chapter provides the main theoretical backgrounds of the visual system and of the MRI imaging technique, chapter two describes the experimental procedures while the results and their detailed discussion are detailed in chapter three.
Neuronale Repräsentation intrinsischer cochleärer Signale im Colliculus inferior der Wüstenrennmaus
(2008)
Die vorliegende Arbeit untersucht die neuronale Repräsentation von cochleären Verzerrungsprodukten im auditorischen Mittelhirn der Wüstenrennmaus. Die hohe Sensitivität und die gute Frequenzauflösung des Hörorgans der Säugetiere basiert auf einer aktiven mechanischen Verstärkung der schallinduzierten Basilarmembranschwingung im Innenohr. Die äußeren Haarsinneszellen, die während des Transduktionsprozesses zyklisch ihre Länge ändern und dabei zusätzliche Schwingungsenergie in das System zurückführen, sind der zugrunde liegende Motor des aktiven cochleären Verstärkers. Die stark nichtlinearen Eigenschaften dieses Verstärkers führen allerdings bei gleichzeitiger Verstärkung mehrerer Frequenzkomponenten zur Generierung von Kombinationsschwingungen, welche im Ursprungssignal nicht vorhanden sind. Wird das Ohr beispielsweise durch zwei Töne mit den Frequenzen f1 und f2 stimuliert (f1<f2), so entstehen verschiedene Kombinationsschwingungen, deren prominenteste das quadratische (f2-f1) und das cubische (2 f1-f2) Verzerrungsprodukt sind. Diese Verzerrungen des Ursprungssignals breiten sich von ihrem Entstehungsort im Innenohr, dem Überlappungsbereich der Stimuluswanderwellen, im Flüssigkeitsraum der Cochlea aus und werden über das Mittelohr in den Gehörgang übertragen. Im Gehörgang sind sie mit Hilfe eines sensitiven Mikrophons als otoakustische Emissionen (DPOAE - distortion product otoacoustic emissions) messbar. Zusätzlich bilden sie an ihrem Resonanzort auf der Basilarmembran, vergleichbar mit einem externen Stimuluston gleicher Frequenz, eine eigene Wanderwelle aus und aktivieren den Transduktionsprozess. Die neuronalen Korrelate der cochleären Verzerrungsprodukte sind auf verschiedenen Stationen der Hörbahn messbar und cochleäre Verzerrungsprodukte können als separate Töne wahrgenommen werden. In der vorliegenden Arbeit wurden die neuronalen Korrelate und otoakustischen Emissionen von cochleären Verzerrungsprodukten erstmals simultan bestimmt. Durch den direkten Vergleich der neuronalen Aktivität mit der peripheren Emissionsmessung sollen eventuelle zentralnervöse Veränderungen der Repräsentation der cochleären Verzerrungsprodukte untersucht werden. Dazu wurde die elektrische Aktivität von 91 Neuronen des Colliculus inferior der Wüstenrennmaus während der Stimulation durch zwei hochfrequente Stimulustöne gemessen. Die Frequenzen der Stimulustöne waren so gewählt, dass die Frequenz eines, durch sie evozierten Verzerrungsproduktes, mit der charakteristischen Frequenz des jeweiligen Neurons übereinstimmte. In 95 % aller Messungen konnte eine robuste neuronale Aktivität während Zweitonstimulation gemessen werden, die sich auf die Stimulation durch ein spezifisches cochleäres Verzerrungsprodukt zurückführen lässt. Bei einem Teil der Versuche wurden die Verzerrungsprodukte durch direkte intracochleäre Auslöschung mit einem dritten Tonstimulus eindeutig als Quelle der neuronalen Aktivität bestätigt. Für Verzerrungsproduktfrequenzen oberhalb 1,3 kHz lassen sich die Antworten der Neurone im schwellennahen Bereich gut mit den simultan im Gehörgang bestimmten DPOAE-Pegeln erklären, was einen engen Zusammenhang zwischen intracochleärem Verzerrungsproduktpegel und DPOAE-Pegel nahe legt. Bei höheren Stimuluspegeln konnten die maximalen neuronalen Antworten auf den intracochleären Verzerrungsproduktstimulus signifikant von der Einzeltonantwort abweichen, wobei sowohl eine Erhöhung als auch eine Reduktion der Maximalantwort möglich war. Ein inhibitorischer bzw. verstärkender Einfluss der Stimulustöne auf die neuronale Verzerrungsproduktantwort wird als mögliche Ursache der Unterschiede diskutiert. Für Verzerrungsproduktfrequenzen unterhalb 1,3 kHz wurde ein deutlicher Unterschied zwischen dem intracochleären Verzerrungsproduktpegel und dem im Gehörgang gemessenen Emissionspegel deutlich. Ein Teil der getesteten tieffrequenten Neurone antwortete während Zweitonstimulation bereits für Stimuluspegel, die unterhalb der Reintonschwelle des Neurons lagen. Eine frequenzspezifische Verschlechterung der Mittelohrübertragungsleistung bei tiefen Frequenzen wird als mögliche Ursache für die unterschwelligen Antworten der Neurone diskutiert. Die Ergebnisse der vorliegenden Arbeit zeigen, dass cochleäre Verzerrungsprodukte einen substanziellen Anteil an der neuronalen Repräsentation von komplexen Stimuli haben können. Im Besonderen machen die vorgestellten Daten deutlich, dass die neuronalen Repräsentation der Grundfrequenz eines komplexen Klangs wesentlich von cochleären Verzerrungsprodukten beeinflusst sein kann. Dies bedeutet, dass bereits im Innenohr Tonhöheninformation extrahiert werden kann und damit die Relevanz in der Literatur diskutierter neuronaler Mechanismen zur Berechnung von Tonhöhe relativiert wird.
Eine Einschränkung des Hörvermögens durch Schäden der Sinnesrezeptoren im Innenohr gilt beim Menschen sowie bei allen anderen Säugetieren als irreversibel. Die Hörforschung ist an der Frage interessiert, ob durch Plastizität in zentralen Teilen des auditorischen Systems Kompensationsmechanismen die Folgen mildern können. Die vorliegende Arbeit befasst sich mit der Frage, ob und in welchem Umfang nach peripheren Hörschäden durch zentrale Kompensationsmechanismen eine Erholung des Hörvermögens auftritt auf der Basis von plastischen Änderungen der neuronalen Verarbeitung der Eingangssignale aus dem geschädigten Hörorgan. Schäden des Sinnesepithels im Innenohr, z.B. durch überlaute Beschallung oder ototoxische Substanzen, betreffen in der Regel zunächst die äußeren Haarzellen und führen zu einem Verlust der Empfindlichkeit und Frequenzspezifität des Hörvermögens. Eine primäre selektive Schädigung der inneren Haarzellen (IHZ) tritt im Tiermodell, aus unbekannten Gründen nur bei einer Spezies auf, dem Chinchilla (Chinchilla laniger) und zwar nach Gabe des antineoplastischen Medikament Carboplatin. Das gute Tieffrequenzhören der Chinchillas (0.1-20 kHz) ermöglicht außerdem Aussagen zur akustischen Signalverarbeitung in einem für das menschliche Gehör relevanten Frequenzbereich (0.02-16 kHz). Dieses Tiermodell bietet somit die Gelegenheit, die Veränderungen in zentralen Teilen des auditorischen Systems nach einer definierten sensorischen Schädigung zu untersuchen. Hierfür kommt u.a. das auditorische Mittelhirn, der Colliculus Inferior (IC) in Frage. Der IC wird als Hauptintegrationszentrum der Hörbahn angesehen weil er Eingänge von fast allen vor ihm liegenden auditorischen Kernen (z.B. Nucleus cochlearis, Nucleus olivaris und Leminscus lateralis) bekommt. Ein weiterer Grund für die Wahl des IC als Untersuchungsgebiet der vorliegenden Arbeit ist, die Frage zu beantworten, ob die auf der Ebene des auditorischen Kortex bereits nachgewiesene funktionelle Plastizität auch auf der Ebene des IC schon realisiert oder vorbereitet wird. Die vorliegende Arbeit untersucht das Antwortverhalten der Neurone im ICc an wachen Tieren vor und nach einem selektiven Teilverlust der IHZ bei Erhalt der äußeren Haarzellen. Die Arbeitshypothese ist, dass es nach einem abgeschwächten sensorischen Eingang zu Veränderungen der exzitatorischen und inhibitorischen Antwortfelder kommt, die als funktionelle Plastizität bzw. als Kompensation verstanden werden können. Anhand elektrophysiologischer Ableitungen im ICc von wachen, chronisch implantierten Tieren wurden die exzitatorischen und die inhibitorischen Antwortfelder der Neurone durch Einton- und Zweiton- Stimulation getrennt gemessen und bestimmt. Die Resultate zeigen, dass die exzitatorischen und inhibitorischen Antworteigenschaften im IC bei wachen und narkotisierten Tieren unterschiedlich sind. In wachen Tieren weist die Inhibition generell höhere Variation auf als in narkotisierten Tieren und ist unabhängiger von der Art der Exzitation. Eine Carboplatinbehandlung führte bei allen Tieren nach 3-7 Tagen zu einer Abnahme der Amplituden und einer Erhöhung der Schwellen der akustisch evozierten Hirnstammpotentiale (ABRs). Die histologische Untersuchung des Innenohres (10 Wochen nach Carboplatinbehandlung), zeigte bei allen Tieren Verluste der IHZ (zwischen 20 und 60%) entlang der gesamten Basilarmembran. Es wurden aber keine Verluste von ÄHZ festgestellt. Die Gehirn-Schnitte zeigten, dass die Registrierungen aus dem zentralen Teil des Colliculus Inferior stammen. Die physiologische Untersuchung der Antworteigenschaften der Neurone im IC 4-6 Wochen nach der carboplatinbedingten Schädigung der IHZ zeigte eine Reduktion der Inhibition, die u.a. deutlich an dem Verlauf der Intensitätskennlinien zu beobachten war. Nach dem Teilverlust der IHZ wurden viel weniger nichtmonotone Kennlinien gefunden als vor der Innenohrschädigung. Darüber hinaus beobachteten wir eine Reduzierung der inhibitorischen Regionen und eine signifikante Ausweitung der exzitatorischen Antwortfelder nach dem Teilverlust der IHZ. Die Resultate der vorliegenden Arbeit führen zu der Schlussfolgerung, dass nach einer Teilschädigung der inneren Haarzellen, unter Erhalt der ÄHZ nur ein geringer Sensitivitätsverlust in der zentralen Hörbahn auftritt. Der Verlust von 20-60% der IHZ und der damit einhergehende reduzierte afferente Informationsfluss führt zu physiologischen Veränderungen in der Hörbahn, die im IC von wachen Tieren vor allem durch eine Reduktion der Inhibition hervortritt. Dies deutet daraufhin, dass zentrale Kompensationsmechanismen bei peripheren Hörschäden nicht, wie bisher vermutet, erst in kortikalen sondern zum Teil bereits in subkortikalen Arealen (im Mittelhirn) stattfinden.
The single unit doctrine proposes that each one of our percepts and sensations is represented by the activity of specialized high-level cells in the brain. A common criticism applied to this proposal is the one referred to as the "combinatorial problem". We are constantly confronted with unlimited combinations of elements and features, and yet we face no problem in recognizing patterns and objects present in visual scenes. Are there enough neurons in the brain to singly code for each one of our percepts? Or is it the case that perceptions are represented by the distributed activity of different neuronal ensembles? We lack a general theory capable of explaining how distributed information can be efficiently integrated into single percepts. The working hypothesis here is that distributed neuronal ensembles signal relations present in the stimulus by selectively synchronizing their spiking responses. Synchronization is generally associated with oscillatory activity in the brain. Gamma oscillations in particular have been linked to various integrative processes in the visual system. Studies in anesthetized animals have shown a conspicuous increase in power for the gamma frequency band (30 to 60 Hz) in response to visual stimuli. Recently, these observations have been extended to behavioral studies which addressed the role of gamma activity in cognitive processes demanding selective attention. The initial motivation for carrying out this work was to test if the binding-by-synchronization (BBS) hypothesis serves as a neuronal mechanism for perceptual grouping in the visual system. To this aim we used single and superimposed grating stimuli. Superimposed gratings (plaids) are bi-stable stimuli capable of eliciting different percepts depending on their physical characteristics. In this way, plaids can be perceived either as a single moving surface (pattern plaids), or as two segregated surfaces drifting in different directions (component plaids). While testing the BBS hypothesis, we performed various experiments which addressed the role of both stimulus and cortical architecture on the properties of gamma oscillations in the primary visual cortex (V1) of monkeys. Additionally, we investigated whether gamma activity could also be modulated by allocating attention in time. Finally, we report on gamma-phase shifts in area V1, and how they depend on the level of neuronal activation. ...
In welchen Situationen steht ein Tier unter Stress und wie beeinflusst Stress dessen Wohlbefinden? Dies sind die Kernfragen, mit denen Zoos konfrontiert sind, wenn es darum geht, den Bedürfnissen ihrer Tiere gerecht zu werden. Die Beantwortung dieser Fragen ist jedoch angesichts der großen individuellen Variabilität des Inputs, der Stress hervorrufen kann,und des Outputs, der das Wohlbefinden bestimmt, eine Herausforderung. Um diese Herausforderung zu meistern, brauchen Zoos Kenntnisse darüber, welche Haltungsbedingungen und Managementsituationen Verhaltens-, physiologische oder emotionale Veränderungen hervorrufen, sowohl positive als auch negative. Dies trifft insbesondere auf Arten zu, die aufgrund ihrer Biologie und des großen öffentlichen Interesses große Anforderungen an das Management in Menschenobhut stellen, wie den Afrikanischen Elefanten. Die vorliegende Arbeit hatte daher das Ziel, unter Berücksichtigung der individuellen Variation die Auswirkungen bestimmter Managementsituationen auf physiologischen Stress und das Wohlbefinden der Tiere zu evaluieren.
Für diese Arbeit wurden zehn Afrikanische Elefanten aus drei Zoos im Rahmen eines Experiments in 2016 und 2017 mehrmals untersucht. Dieses Experiment umfasste zum einen die Messung von physiologischem Stress auf der Basis der Konzentration des „Stresshormons“ Cortisol im Speichel der Elefanten. Zu diesem Zweck wurden an bestimmten Tagen und zu folgenden Zeitpunkten Speichelproben entnommen: morgens, nachmittags vor und mehrmals nach einer von zwei Managementsituationen (positives Verstärkungstraining [PRT] und neuartiges Enrichmentobjekt [NOV]). Zum anderen diente die Exposition gegenüber dem neuartigen Enrichmentobjekt als sogenannter Novel Object Test. Dieser Standardtest der Persönlichkeitsforschung bei Tieren deckte bei anderen Arten konsistente Verhaltensunterschiede zwischen Individuen auf. Um zu untersuchen, ob dies auch auf Afrikanische Elefanten zutrifft, wurden die individuellen Verhaltensreaktionen auf das neuartige Objekt aufgezeichnet. Darüber hinaus wurden unabhängig von dem Experiment vor und nach einem Transport jeweils morgens und nachmittags Speichelproben von dem transferierten Tier und von zwei Tieren im Bestimmungszoo gesammelt, um den Effekt dieses potenziellen Stressors auf die individuellen Cortisolspiegel zu untersuchen.
Publikation A zeigt, dass die Elefanten unter den Bedingungen des Routinemanagements (das heißt dem routinemäßigen Tagesablauf der Tierpflege) am Morgen signifikant höhere Cortisolwerte im Speichel aufwiesen als am Nachmittag. Diese diurnale Variation der Cortisolsekretion ist typisch für tagaktive Arten und wurde daher auch für die untersuchten Elefanten erwartet. Unter Stressbedingungen wurde weder ein signifikanter Unterschied zwischen den Cortisolspiegeln vor und nach dem Transport noch zwischen den Cortisolwerten am Morgen und am Nachmittag festgestellt. Der prozentuale Unterschied zwischen dem morgendlichen und nachmittäglichen Cortisolspiegel war jedoch beim transferierten Tier nach dem Transport wesentlich geringer als vor dem Transport, was möglicherweise auf eine Stressreaktion auf den Transport und die Eingewöhnung im neuen Zoo hindeutet. Darüber hinaus zeigten sich deutliche Cortisolanstiege unmittelbar nach der ersten Zusammenführung des transferierten Tiers mit dem Bullen im neuen Zoo. Dieses Ergebnis demonstriert zum einen, dass Cortisol physiologischen Stress widerspiegelt. Zum anderen zeigt es die Notwendigkeit, zeitnah nach einem Stressor Speichelproben zu entnehmen, was nach dem Transport nicht möglich war.
Die Studie in Manuskript B zeigt unterschiedliche durchschnittliche Zeitverläufe der Cortisolantworten im Speichel auf die Managementsituationen PRT und NOV. PRT könnte aufgrund des beobachteten cortisolsenkenden und damit potenziell stresspuffernden Effekts förderlich für das Wohlbefinden sein. NOV induzierte im Mittel eine moderate, kurzfristige Cortisolantwort. Dies deutet darauf hin, dass die Tiere geringem physiologischem Stress ausgesetzt waren, mit dem sie jedoch erfolgreich umgehen konnten. Außerdem bestand eine bemerkenswerte individuelle Variation in den Cortisolverläufen in derselben Situation. Die Unterschiede im Cortisolspiegel zwischen den Tieren hingen mit dem Alter (bei NOV) und dem Zoo (bei PRT) zusammen. Der Effekt des Geschlechts und des Haltungssystems auf den Cortisolspiegel war hingegen variabel. Die Ergebnisse der Studie zeigen, dass die individuelle Variation der Cortisolsekretion unbedingt berücksichtigt werden muss, um physiologischen Stress zuverlässig zu erkennen.
Die Studie in Manuskript C ergab, dass sich die untersuchten Tiere im Novel Object Test konsistent in ihrem Verhalten gegenüber einem neuartigen Objekt unterschieden. Dieses Ergebnis zeigt, dass der Novel Object Test auch bei Elefanten genutzt werden kann, um die Persönlichkeit der Tiere zu untersuchen...