Refine
Year of publication
Document Type
- Doctoral Thesis (52)
Has Fulltext
- yes (52)
Is part of the Bibliography
- no (52)
Keywords
- Pharmazeutische Chemie (3)
- Arzneimittel (2)
- Ginkgo biloba (2)
- Ginkgoblatt-Extrakt (2)
- In vitro (2)
- Medicinal Chemistry (2)
- Weihrauch (2)
- 5-LO (1)
- Aldosteron (1)
- Aldosteronantagonist (1)
Institute
- Pharmazie (37)
- Biochemie, Chemie und Pharmazie (8)
- Biochemie und Chemie (6)
- Biowissenschaften (1)
Synthese und Struktur-Wirkungsbeziehungen neuer rezeptorselektiver Dopamin-D 2- und -D 3-Liganden
(2003)
Dopaminrezeptoren gehören zur Familie der G-Protein-gekoppelten Rezeptoren, der bisher größten Rezeptorklasse. Seit der Identifizierung der zuvor unbekannten Rezeptorsubtypen D3-D5 in den Jahren 1990 und 1991 hat die Erforschung des dopaminergen Systems neuen Anschub erhalten, der maßgeblich auf das spezifische Vorkommen jeweiliger Subrezeptoren in diskreten Hirnarealen zurückzuführen ist. Während dopaminerge Neuronen an neurologischen und psychiatrischen Störungen wie Morbus Parkinson, Schizophrenie und Drogenmißbrauch bzw. -abhängigkeit seit geraumer Zeit in einen ursächlichen Zusammenhang gebracht werden, begründen die unterschiedlichen Charakteristika der Rezeptorsubtypen hinsichtlich Lokalisation, Aminosäuresequenz und pharmakologischem Verhalten die Hoffnung, mit subrezeptorselektiven Wirkstoffen neue therapeutische Ansätze verwirklichen zu können, die eine Reduktion der gravierenden, mit bisherigen Therapiekonzepten korrelierten Nebenwirkungen erlauben. In der vorliegenden Arbeit wurden, ausgehend von den D2- und D3-rezeptorbevorzugenden Wirkstoffen ST 177, L-741,626, ST 314, NAN190, ST 198 und BP 897, gezielte Modifikationen an unterschiedlichen Molekülteilen unternommen, um ihre jeweils charakteristischen pharmakologischen Eigenschaften stärker zu profilieren.
Synthese und in vitro-pharmakologische Charakterisierung von dualen PPARalpha/gamma-Agonisten
(2005)
Die Behandlung von Hypertriglyceridämien und Insulinresistenz erfolgt heute vor allem durch den Einsatz der Fibrate und Thiazolidindione (TZDs). Eine neue Wirkstoffklasse stellen die vor der Zulassung stehenden Glitazare dar, die als duale PPARalpha/gamma-Agonisten die lipidsenkenden Eigenschaften der Fibrate und die insulinsensitivierenden Eigenschaften der TZDs in einer Molekülklasse vereinen. Peroxisomen Proliferator-aktivierte Rezeptoren (PPARs) gehören zur Klasse der nukleären Rezeptoren, von denen drei Subtypen (PPARalpha, beta und gamma) bekannt sind. PPARalpha fungiert als molekulares Target für die Klasse der Fibrate, welche als Lipidsenker eingesetzt werden, wohingegen die Thiazolidindione (TZDs) bei Typ 2 Diabetes indiziert sind und ihre Wirkung als selektive PPARgamma-Aktivatoren (Insulinsensitizer) entfalten. Duale PPARalpha/gamma-Agonisten wie Muraglitazar und Tesaglitazar stellen eine neue Klasse von Arzneistoffen dar, deren Zulassung beantragt ist und die zukünftig zur Behandlung von Typ 2 Diabetikern mit gestörtem Lipidprofil eingesetzt werden. Im Rahmen der vorliegenden Dissertation wurde eine Leitstrukturoptimierung am selektiven PPARalpha-Agonist Pirinixinsäure (WY 14643) mit Hilfe subtypspezifischer Reportergenassays durchgeführt. Dabei wurde wurde zunächst eine geeignete Synthesestrategie zur Darstellung von Pirinixinsäurederivaten etabliert, was zur Charakterisierung und Identifizierung einer Serie von potenten dualen PPARalpha/gamma-Agonisten führte. Die Synthesestrategie zur Darstellung von sowohl im Arylamino-Bereich (W) als auch in alpha-Position (R) modifizierten Derivaten der Pirinixinsäure bestand im Allgemeinen in einer vierstufigen Reaktionsfolge. Die PPAR-Modulatoren 18-25, 30, 53-59, 62, 65, 69, 71, 73 und 74-77 wurden in vitro-pharmakologisch unter Anwendung Subtyp-selektiver Reportergen-Assays (mPPARalpha, hPPARalpha, beta, gamma) charakterisiert. Durch Strukturmodifikationen im Arylamino-Bereich (Substanzen 18-25) der Leitstruktur WY 14643 (EC50 (hPPARalpha) = 39.8 mikroM, EC50 (hPPARgamma) = 53.7 mikroM) konnte im Falle der 4-Halogenaryl-substituierten Liganden 18 (Br) und 20 (Cl) eine signifikante Steigerung der hPPARalpha-Aktivität um den Faktor 4 (18) bzw. den Faktor 3 (20) erzielt werden. Die Inaktivität der Precursorverbindungen 74-77 demonstriert den für PPAR-Aktivität essentiellen terminalen hydrophoben Molekülrest, welcher dem 2,3-Dimethylphenyl-Rest von WY 14643 entspricht. Die alpha-alkylsubstituierten Derivate 53-57 zeigten sowohl am hPPARalpha als auch am hPPARgamma eine mit der aliphatischen Kettenlänge steigende Potenz. Die EC50-Werte (hPPARalpha) der Carbonsäuren 53-57 und 62 liegen zwischen 1.2 und 8.8 mikroM, wobei sich das alpha-Hexyl-Derivat 57 und das alpha-Butyl-Derivat 56 mit EC50-Werten von 1.2 mikroM (57) bzw. 1.3 mikroM (56) entsprechend einer Steigerung der Aktivität gegenüber WY 14643 um Faktor 33 (57) bzw. Faktor 30 (56) als besonders potent erwies. Am hPPARgamma präsentieren ebenso das alpha-butylsubstituierte Derivat 56 und der alpha-hexylsubstituierte Ligand 57 mit EC50-Werten von 3 mikroM (56) bzw. 3.6 mikroM (57) und einer Steigerung der Bindungsaktivität gegenüber WY 14643 von ~Faktor 18 (56) bzw. ~Faktor 15 (57) die Verbindungen mit der höchsten PPARgamma-Aktivität. Im Rahmen dieser Dissertation gelang somit die Auffindung neuartiger Leitstrukturen 56 und 57. Die alpha-butyl- und alpha-hexylsubstituierten Liganden 56 und 57 besitzen dualen hPPARalpha/gamma-Charakter. Die PPARalpha/gamma-agonistischen Eigenschaften der neuentwickelten alpha-alkylsubstituierten Pirinixinsäurederivate werden durch ein von Pirard et al etabliertes Pharmakophor- und Selektivitätsmodell, welches die Ligandenbindungsdomäne (LBD) der PPARs durch fünf Bindungstaschen beschreibt, unterstützt. Die Einführung von alpha-Alkylsubstituenten in das Grundgerüst der Pirinixinsäure führt offensichtlich zum Besetzen der linken proximalen Bindungstasche und somit zu einer im Vergleich zur Leitstruktur WY 14643 stärkeren Bindung an die Ligandenbindungsdomäne des Rezeptors.
Boswelliasäuren (BAs) sind pentazyklische Triterpene, die als biologisch aktive Komponenten des Weihrauchharzes aus Boswellia serrata identifiziert wurden. Weihrauchpräparate werden seit langer Zeit in der indischen Medizin zur Behandlung entzündlicher Erkrankungen angewandt. Klinische Untersuchungen an Patienten mit chronisch entzündlichen Darmerkrankungen und peritumoralen Hirnödemen zeigen ebenfalls vielversprechende Effekte. Bislang wurde die 5-Lipoxygenase (5-LO) als Schlüsselenzyms der Leukotrien(LT)-Biosynthese und die Elastase als molekulare Targets der BAs identifiziert und in direkten Zusammenhang mit der antiinflammatorischen Wirkung gebracht. LTs sind wirksame Mediatoren entzündlicher und allergischer Reaktionen, die von Leukozyten freigesetzt werden und ihre Effekte über spezifische G-Protein-gekoppelte Rezeptoren (GPCRs) vermitteln. Unter den verschiedenen getesteten BAs ist 3-O-Acetyl-11-Keto-BA (AKBA) der potenteste 5-LO Inhibitor, wohingegen 11-Keto-BA (KBA) etwa 3-fach weniger aktiv ist und BAs ohne 11-Keto-Funktion (ß-BA und A-ß-BA) kaum wirksam sind. Darüber hinaus lassen AKBA und KBA eine wesentlich potenterer Hemmung der 5-LO Aktivität in intakten Zellen als in zellfreien Systemen erkennen. Die Hemmung der 5-LO bzw. der LT-Biosynthese als antiinflammatorisches Wirkprinzip der BAs wird derzeit sehr kontrovers diskutiert und ist aufgrund der Diskrepanz zwischen den erreichbaren Blutspiegeln und den IC50-Werten für die 5-LO Hemmung eher unwahrscheinlich. Ziel der Arbeit war es die molekularen Grundlagen der pharmakologischen Eigenschaften von BAs aufzuklären. Der Schwerpunkt lag bei der Identifizierung und Charakterisierung zentraler Signaltransduktionsmechanismen, die von BAs in menschlichen Blutzellen (polymorphkernigen Leukozyten (PMNL), Thrombozyten) vermittelt werden. Daneben sollten funktionelle Zellantworten untersucht und in einen kausalen Zusammenhang mit der Signaltransduktion und einer Rezeptoraktivierung gebracht werden. Parallel dazu wurde die Wirkung der BAs auf eukaryontische Zelllinien (MM6 Zellen, HL60 Zellen) untersucht. Überraschenderweise konnte festgestellt werden, dass KBA und AKBA in Konzentrationen > 10 µM potente Aktivatoren von PMNL sind, während BAs ohne 11-Keto-Gruppe kaum aktiv sind. Vergleichbar mit chemotaktischen Stimuli (z.B. fMLP, PAF), erhöhen AKBA und KBA die intrazelluläre Ca2+-Konzentration und aktivieren die Mitogenaktivierten Proteinkinasen p38 MAPK und p42/44MAPK. Untersuchungen der proximalen Signaltransduktionswege ergaben, dass die Phosphatidylinositol 3-Kinase (PI 3-K), nicht jedoch die Proteinkinase C, in die AKBA-induzierte MAPK Aktivierung involviert ist. In Analogie zu chemotaktischen Liganden von GPCR (z.B. fMLP, PAF) kommt es durch Zellstimulation mit BAs zu funktionellen Zellantworten in Leukozyten, Es konnte gezeigt werden, dass 11-Keto-BAs in der Lage sind, die Bildung von reaktiven Sauerstoffspezies, die Freisetzung von Arachidonsäure (AA) und ihre anschließende Metabolisierung durch 5-LO in PMNL zu induzieren, Dies ist einleuchtend, da diese Prozesse u.a. durch Ca2+ Mobilisierung und MAPK Aktivierung vermittelt werden können. Die pharmakologische Charakterisierung der zugrundeliegenden Signalwege liefert Hinweise auf eine Abhängigkeit von Ca2+, die Beteiligung der PI 3-K und der p42/44MAPK. Im Gegensatz zu AKBA und KBA sind BAs ohne 11-Keto-Gruppe (ß-BA und A-ß-BA) potente Agonisten für Thrombozyten und stimulieren, in ähnlichem Ausmaß wie Thrombin, die Ca2+ Mobilisierung und die Aktivierung von MAPK. Auch funktionelle Zellantworten wie die Bereitstellung von AA sowie deren Metabolisierung durch 12-LO werden durch BAs ohne Keto-Funktion induziert. Zusammenfassend sind also BAs in hohen, pharmakologisch nicht-relevanten Konzentrationen als multifunktionelle Agonisten inflammatorischer Prozesse aufzufassen. Es ist jedoch denkbar, dass BAs in niedrigen Konzentrationen eine antagonistische Wirkung an bestimmten Rezeptoren gegenüber chemotaktischen Faktoren (z.B. PAF, LTB4) ausüben. Dies könnte eine plausible Erklärung für die entzündungshemmenden Wirkungen der Boswelliasäuren sein.
In den letzten Jahren gewann die Photodynamische Therapie deutlich an Bedeutung bei der Behandlung von Neoplasien. Für die nächsten Jahren werden weitere Zulassungen für neue Indikationen erwartet. Diese Neuzulassungen werden einerseits durch neue Photosensibilisatoren und andererseits durch neue Ansätze beim Drug Targeting ermöglicht. Zur Zeit wird der Ansatz forciert, die Sensibilisatoren an einen tumorspezifischen Antikörper zu knüpfen. Eine weitere Möglichkeit für das Drug Targeting besteht darin, den Photosensibilisator an tumorspezifische Rezeptorliganden zu binden. In der vorliegenden Dissertation wird der Versuch einer Kopplung eines Photosensibilisators über einen Spacer an ein nicht steroidales Antiprogestin erarbeitet. Der Progesteron-Rezeptor wurde als Target ausgewählt, da zahlreiche Tumorarten, wie beispielsweise das Mammakarzinom, den Progesteron-Rezeptor überexprimieren. Als Leitstruktur für die Synthese der Antiprogestine wurde ein mariner Naturstoff ausgewählt. Das Cyclocymopol-Derivat besitzt den Vorteil einer im Vergleich zu Mifepriston verbesserten Selektivität für den Progesteron-Rezeptor und eines einfacheren synthetischen Zugangs. Für die Erstellung einer Bibliothek von Progesteron-Antagonisten, die auf den Cyclocymopol-Derivaten aufbauen, sind hinsichtlich der Struktur-Wirkungs-Beziehungen zwei Merkmale zu beachten. Der aromatische Ring muss eine elektronenziehende Gruppe, der aliphatische Ring eine exocyclische Methylengruppe aufweisen, da diese Gruppen essentiell für die Rezeptorbindung sind. Bei der Synthese des Progesteron-Antagonisten wird zunächst ein Benzaldehyd-Derivat mit dem gewünschten Spacer verknüpft, der in der Folge mit dem Phototherapeutikum verknüpft werden kann. Im nächsten Schritt wird die Aldehydfunktion mit Natriumborhydrid zur Alkoholfunktion reduziert. Die so erhaltenen Alkohole werden anschließend mit Hilfe einer Appelartigen Reaktion in das Bromid überführt. Die Benzylbromide wurden mit Isophoron und Buthyllithium zu dem Naturstoff-Analoga umgesetzt. Durch Variieren der Reaktionsbedingungen konnten die aus der Literatur bekannten Ausbeuten erhöht werden. Für die Einführung der exocyclischen Methylengruppe in die Naturstoff-Derivate mussten zunächst verschiedene Synthesenmethoden untersucht werden. In der Literatur wurde für diesen Synthesewege bisher das Tebbe Reagenz eingesetzt, welches bei den hier eingesetzten Edukten zu keiner Reaktion führte. Es kann vermutet werden, dass die sterische Hinderung durch den Spacer die Umsetzung blockiert. In weiteren Experimenten wurde versucht, über eine Simmons-Smith-ähnliche Reaktion die gewünschte Funktionalität zu erhalten. Da auch bei dieser Reaktion das gewünschte Produkt nicht erhalten werden konnte, wurde in weiteren Ansätzen die Peterson-Olefinierung ausgewählt. Mit dieser Methode gelang es schließlich, geringe Mengen des gewünschten Produktes herzustellen. Als Nebenreaktion kam es dabei jedoch zu einer Methylierung des aromatischen Rings. Durch Anwendung der Horner-Emmons-Reaktion konnte schließlich das Antiproestin in ausreichender Menge und Reinheit erhalten werden. Es war jedoch nicht möglich, das in Abb. 7 erläuterte Zielmolekül aus dem Photosensibilisator, Spacer und Antiprogestin darzustellen.
Pharmakokinetische Charakterisierung der Terpenlaktone aus Ginkgo biloba im ZNS am Tiermodell
(2010)
Ginkgo biloba (Gb), eine der am besten untersuchten pharmazeutisch-medizinisch genutzten Pflanzen, wird heute in Form von Spezialextrakten im Sinne einer evidenzbasierten Phytopharmakatherapie eingesetzt. Grundlage hierfür sind die genaue Spezifikation der Zusammensetzung des Spezialextraktes in Bezug auf die wirksamkeitsbestimmenden Inhaltsstoffe, balstbare klinische Daten, das Erforschen des molekularen Wirkmechanismus‘ des Gesamtextraktes aber auch der Einzelbestandteile und die Pharmakokinetik im Targetgewebe. Heute werden im Sinne einer evidenzbasierten Phytopharmakatherapie lediglich Extrakte verwendet, die der Monographie der Komission E entsprechen (22 - 27% Flavonoide, 5 - 7% Terpenlaktone und weniger als 5 ppm Ginkgolsäuren). Der am besten klinisch und pharmakologisch untersuchte Gb-Spezialextrakt ist EGb 761® (Tebonin®), der im zentralen Fokus der vorliegenden Arbeit steht. Die im Jahr 2008 vom IQWiG veröffentlichte Metaanalyse zur Klinik von EGb 761® hat in äußerst detaillierter Form belastbare Daten zur Wirksamkeit dieses Extraktes beschrieben. Es kann festgehalten werden, dass ein Einsatz dieses Spezialextraktes im Rahmen der Therapie einer beginnenden Demenz zu befürworten ist. Basis des klinischen Einsatzes des EGb 761® sind in vitro und in vivo pharmakologische Untersuchungen. Es werden unterschiedliche Gesamtkonzepte zur Wirkung von EGb 761® bzw. Einzeleffekte der Inhaltsstoffe im ZNS diskutiert. Konsensfähig sind heute sicher die Mitochondrien-stabilisierende Wirkung der Terpenlaktone und ein antioxidativer Effekt der Flavonoide. Bb zeigt zusätzlich deutlich protektive Effekte in Bezug auf durch zerebrovaskuläre Ereignisse geschädigte Hirnareale. Darüber hinaus ist die Wirkung der Flavonoide auf die monoaminerge Neurotransmission aktueller Gegenstand der Forschung. Basis jeglicher pharmakologischen Betrachtung ist das pharmakokinetische Verhalten der wirksamen Inhaltsstoffe im Target-Gewebe. Nachdem die ZNS-Bioverfügbarkeit der Flavonoide nachgewiesen wurde, hat die vorliegende Arbeit das zentrale Ziel, die pharmakokinetische Charakteristik der Terpenlaktone aus Gb im ZNS zu untersuchen. Zur quantitativen Analyse der Terpenlaktone (GKA, GKB, GKC und Bb) in biologischen Matrices (Hirn-Homogenat, Plasma) und Hirn-Dialysat-Pufferlösung (aCSF-Puffer) wurde eine LC-MS-Analytik-Methode entwickelt und validiert. Unter Verwendung einer 250x4 mm, Multo High 100 RP18, 5 μm (CS-Chromatographie Service GmbH)-Säule und einer isokratischen Auftrennung mittels einer mobilen Phase bestehend aus 60% 0,1%-iger Ameisensäure und 40%-igem Methanol konnten alle vier genannten Terpenlaktone simultan innerhalb von 20 Minuten analysiert werden. Die beschriebene LC-MS(TOF)-Methode verfügt über eine ausreichende Sensitivität, um die Analyten im nanomolaren Bereich zu quantifizieren (z.B. LOQ Bb in aCSF-Puffer: 0,25 pg/μl; LOQ Bb in Hirnhomogenat: 1 ng/ml). Die Aufarbeitung der Plasma- bzw. Hirn-Homogenat-Proben erfolgte durch eine flüssig-flüssig-Extraktion mit Hilfe von Extrelut®-Säulen; die Hirn-Dialysat-Proben bedurften keiner Probenaufarbeitung. Mit Hilfe der beschriebenen Analytik-Methode war es möglich, GKA, GKB, GKC und Bb in Plasma und Hirnhomogenat von Ratten nach oraler Gabe von 600 mg/kg Körpergewicht EGb 761® bzw. einer vergleichbaren Menge der Reinsubstanzen zu bestimmen. Im Rahmen dieses Projektes wurde ein direkter Vergleich der erhalten Plasma-Konzentrationen nach Extrakt- bzw. Reinsubstanzgabe gezogen, wobei der Extrakt die höhere AUC (für GKA u. Bb) und daher bessere Bioverfügbarkeit aufwies. Es konnten in Plasma und Gehirngewebe sowohl GKA als auch GKB und Bb in nativer nicht metabolisierter Form nachgewiesen werden. GKC konnte weder in Plasma noch in Hirngewebe bestimmt werden, was die in der Literatur diskutierte These einer schnellen Metabolisierung (Methylierung) stärkt. Die Terpenlaktone sind im Plasma sehr schnell angeflutet und zeigten ein ebenfalls zügiges Abfallen, so dass 24 Stunden nach oraler Applikation keine Konzentrationen mehr zu detektieren waren. Bei der Untersuchung der Hirn-Gewebspiegel von GKA, GKB und Bb zeigten sich keine Unterschiede nach Gabe von Extrakt bzw. Reinsubstanz. Die Substanzen fluteten im Vergleich zum Plasma etwas verzögert an, fielen aber auch bis 24 Stunden nach Applikation wieder unter die Nachweisgrenze. Die Konzentrations-Zeit-Kurven ähnelten in ihrer Form stark denen aus Plasma, waren jedoch zeitlich nach rechts verschoben, so dass ausgeschlossen werden kann, dass es sich im Hirngewebe um Artefakt aus Restblut handelt. Wesentliches Resultat dieser Untersuchungen war, dass erstmalig nach oraler Gabe von EGb 761® gezeigt wurde, dass deutliche Gewebespiegel im Gehirn von Ratten zu erzielen sind und damit diese Substanzen im Target-Gewebe die postulierten pharmakologischen Wirkungen ausüben können. Aufbauend auf diesen Ergebnissen wurden mit Hilfe der Mikrodialyse-Technik und der bereits beschriebenen LC-MS-Analytik-Methode weitere pharmakokinetische Untersuchungen am Maus-Modell durchgeführt. Es konnte zunächst rein technisch im Rahmen von Wiederfindungsuntersuchungen gezeigt werden, dass die im Dialysat bestimmte Menge Bb ca. 6% der tatsächlich im Extrazellularraum des Maus-Hirns vorliegenden Bb-Konzentration entspricht. Weiterhin zeigten diese Versuche, dass Bb kaum an Plasma-Proteine bindet, da keine signifikanten Unterschiede bei der Dialyse von Bb aus Puffer, Blut oder Plasma zu sehen waren. In einem ersten Tierversuch an gesunden Mäusen konnten die pharmakokinetischen Charakteristika von Bb, die in der Fütterungsstudie an Ratten bestimmt wurden, reproduziert werden, obwohl es sich um einen völlig divergenten Versuchsaufbau, unterschiedliche Tierspezies und nicht um die gleichen Applikationsformen handelt. Diese Tatsache unterstreicht die Aussage beider Studien. Als zusätzliche Aussage ergibt sich aus dem Versuchsaufbau, dass Bb frei und biologisch aktiv im Extrazellularraum vorliegt und nicht z.B. in Membranen gebunden ist. Die Möglichkeit mittels Mikrodialyse und LC-MS-Technik Bb im Extrazellularraum definierter Hirnregionen nachzuweisen, erlaubte eine pharmakokinetische Charakterisierung von Bb in vom Schlaganfall geschädigten Hirngewebe. Es zeigte sich, dass bei Gabe von 10 mg/Kg Bb eine Stunde vor dem Schlaganfall die Bb-Konzentrationen zwar deutlich abfallen, aber dann relativ konstant bleiben, was durch einen fehlenden Abtransport durch die unterbrochene Blutversorgung zu erklären ist.
Das Auftreten von plötzlichem Herztod, das häufig durch ventrikuläre Tachyarrhythmien ausgelöst wird, stellt bis heute eine Herausforderung bei der Therapie der Patienten mit schwerer Herzinsuffizienz dar. Derartige Arrhythmien werden bei über 85% der Patienten mit schwerer Herzinsuffizienz beschrieben und über 50% der Todesursachen werden dabei auf das Auftreten von plötzlichem Herztod zurückgeführt. Es wird vermutet, dass das elektrische Remodeling als Teil der gesamten kardialen Umbauvorgänge bei der Entstehung einer Herzinsuffizienz die pathophysiologische Grundlage dieser Arrhythmien darstellt. Das Renin-Angiotensin-Aldosteron System spielt eine zentrale Rolle bei der Ausbildung des elektrischen Remodeling und insbesondere erhöhte Aldosteronkonzentrationen korrelieren mit dem Risiko kardiovaskulärer Zwischenfälle. Darüberhinaus konnte in zwei klinischen Studien (RALES und EPHESUS) gezeigt werden, dass die Therapie herzinsuffizienter Patienten mit den Aldosteronantagonisten Spironolacton und Eplerenon die Mortalität und Morbidität und insbesondere auch das Auftreten von plötzlichem Herztod signifikant senken konnte. Weitere Studien zeigen eine Verbindung zwischen dem Auftreten einer Herzinsuffizienz und Veränderungen in der Funktion und Expression kardiospezifischer repolarisierender K+-Kanäle. Neben den klinischen Daten, die einen protektiven Effekt der Aldosteronantagonisten bei plötzlichem Herztod belegen, ist wenig über die Auswirkungen von Aldosteron auf das elektrische Remodeling des Herzens bekannt. In dieser Arbeit sollte daher die Auswirkung einer chronischen Aldosteronexposition in Ratten auf die elektrophysiologischen Eigenschaften des Herzens untersucht werden. Dazu wurde Wistar-Ratten Aldosteron verabreicht und einigen Tieren die Aldosteronantagonisten Spironolacton und Eplerenon, um die Effekte der unspezifischen (Spironolacton) und spezifischen (Eplerenon) MR Blockade auf die elektrischen Eigenschaften der Kardiomyozyten zu untersuchen. Die Aldosteron exponierten Tiere entwickelten eine linksventrikuläre Hypertrophie, die sich unabhängig von Blutdruckveränderungen entwickelte, sowie ein signifikant verlängertes QT-Intervall, vermehrt auftretende ventrikuläre Extrasystolen und ventrikuläre Tachykardien. Die Elektrolytwerte (K+, Na+, Cl-) waren dabei nicht verändert. Die Aldosteronantagonisten Spironolacton und Eplerenon waren in der Lage, die unter Aldosteron auftretenden Veränderungen zu verhindern. Die Transkription der Untereinheiten kardiospezifischer K+-Kanäle (Ito, IKur, IK1) und des L-Typ Ca2+-Kanals war unter Aldosteronstimulation im linken Ventrikel signifikant erniedrigt. Auf Proteinebene konnte dies für die Kanaluntereinheiten Kv1.5 (IKur), Kir2.3 (IK1) und Cav1.2 (L-Typ Ca2+-Kanal) bestätigt werden. Die Untersuchung eventuell zugrunde liegender Signaltransduktionswege lieferte erniedrigte mRNA Expressionslevel der kardiospezifischen Proteinkinase C Isoformen PKC-α und PKC-ε, wohingegen die mRNA-Expression von PKC-δ unter Aldosteronstimulation unverändert war. Diese Veränderungen in der Transkription der PKC Isoformen wurden durch Behandlung der Tiere mit den Aldosteronantagonisten inhibiert, was für einen MR vermittelten Effekt spricht. Weiterhin zeigte eine chronische Aldosteronstimulation eine erniedrigte mRNA Expression von Calcineurin Aß (PPP3CB) sowie Calcineurinaktivität in linksventrikulärem Gewebe der Tiere. Dieser Effekt konnte durch die Aldosteronantagonisten nicht aufgehoben werden, so dass ein Signaltransduktionsweg, der nicht über den MR vermittelt wird, zugrunde liegen könnte. Insgesamt konnte in dieser Arbeit gezeigt werden, dass chronisch erhöhte Aldosteronkonzentrationen im Rattenherz blutdruckunabhängig zu strukturellen und elektrischen Veränderungen führen, die das Auftreten maligner ventrikulärer Arrhythmien begünstigen. Beide Aldosteronantagonisten Spironolacton und Eplerenon sind in der Lage, die durch Aldosteron vermittelten Effekte in gleicher Weise zu inhibieren. Die Ergebnisse zeigen pathophysiologische Zusammenhänge auf, die die Bedeutung von Aldosteron und der Therapie mit Aldosteronantagonisten für die Behandlung der Herzinsuffizienz und in Zukunft möglicherweise der Hypertrophie unterstreichen.
Der Extrakt des indischen Weihrauchs (Boswellia serrata) ist eines der wenigen pflanzlichen Heilmittel, dem von der EMEA der Orphan Drug Status zur Behandlung des peritumoralen Hirnödems verliehen wurde. Boswellia serrata Extrakt und die Boswelliasäuren, die wirksamen Inhaltsstoffe des Weihrauchs, zeigten in zahlreichen in vitro-Untersuchungen antiinflammatorische und antitumorale Wirksamkeit. Diese Wirkungen konnten auch in mehreren klinischen Studien nachgewiesen werden. Untersuchungen zum pharmakokinetischen Verhalten der Boswelliasäuren zeigten, dass Weihrauch nur eine geringe orale Bioverfügbarkeit aufweist. Ziel der Arbeit war es daher, den Einfluss von Löslichkeit, Metabolismus und Permeabilität auf die Bioverfügbarkeit der Boswelliasäuren zu untersuchen. Weihrauchextrakte sind in wässrigen Medien schlecht löslich. In einer Rattenstudie wurde deshalb untersucht, inwieweit die verbesserte Löslichkeit des Extrakts in einer nanoskaligen Boswellia serrata Formulierung zu einer verbesserten Bioverfügbarkeit führt. Eine bestehende LC-MS-Methode zur Bestimmung von KBA und AKBA aus Plasma und Hirngewebe wurde optimiert und revalidiert. Zur Vervollständigung des pharmakokinetischen Profils wurden die KBA- und AKBA-Konzentrationen auch in der Leber der Ratten bestimmt. Die analytische Methode wurde hierfür nach den anerkannten FDA-Richtlinien erfolgreich validiert. Die Plasma- und Leberkonzentrationen waren jedoch bei den Ratten, die die nanoskalige Boswellia serrata Formulierung bekamen, in den ersten Stunden nach der oralen Verabreichung nicht signifikant höher als bei den Ratten, die den unbehandelten Extrakt erhielten. Die in dieser Arbeit durchgeführten Untersuchungen zur metabolischen Stabilität von KBA und AKBA in Rattenlebermikrosomen (RLM), Humanlebermikrosomen (HLM) und Rattenhepatozyten (RH) zeigten, dass KBA einer stark ausgeprägten hepatischen Metabolisierung unterliegt. AKBA hingegen erscheint metabolisch relativ stabil. Die Identifizierung der Metabolite ergab, dass Boswelliasäuren in RLM hauptsächlich Phase-I-Metabolite wie mono-, di-, und seltener auch trihydroxylierte Metabolite bilden. Von AaBA und AbBA konnten keine Metabolite detektiert werden. Das metabolische Profil von KBA und AKBA in RH war mit dem in RLM vergleichbar. In einer Rattenstudie konnten dann im Plasma und in der Leber jedoch nicht im Hirn der Ratten KBA-Metabolite nachgewiesen werden, während für AKBA in vivo keine Metabolite detektiert wurden. Phase-II-Metabolite konnten weder von KBA noch von AKBA nachgewiesen werden. Bisher war man davon ausgegangen, dass die niedrigen Plasmakonzentrationen von AKBA in vivo durch eine Deacetylierung zu KBA zustande kommen. Diese These konnte im Rahmen dieser Arbeit widerlegt werden. Im Caco-2-Zellmodell zeigte KBA eine mittlere Permeabilität. Es konnte gezeigt werden, dass KBA und AKBA offensichtlich keinem Efflux-Transport unterliegen. AKBA erwies sich sowohl in absorptiver und sekretorischer Richtung als auch bei 4° C als schlecht permeabel. Da KBA und AKBA die Aktivität des ABC-Transportproteins Pgp modulieren, wurde in dieser Arbeit überprüft, ob diese beiden Boswelliasäuren auch Substrate des Pgp sind. Die Permeation von KBA und AKBA war in Anwesenheit des Pgp-Inhibitors Verapamil jedoch nicht signifikant verändert, was darauf hindeutet, dass KBA und AKBA keine Pgp-Substrate sind. Die Ergebnisse dieser Arbeit bilden einen wichtigen Baustein zur weiteren Aufklärung des pharmakokinetischen Verhaltens von KBA und AKBA. So ist die begrenzte systemische Verfügbarkeit von KBA auf eine mittlere Absorption aus dem Gastrointestinaltrakt in Kombination mit der umfangreichen hepatischen Metabolisierung zurückzuführen. Die niedrigen systemischen Konzentrationen von AKBA hingegen liegen eher in der schlechten Absorption begründet. Auf der Basis der extensiven Metabolisierung von KBA und der schlechten Permeabilität von AKBA stellt sich im Allgemeinen die Frage nach dem tatsächlichen Wirkmechanismus von KBA und AKBA. In keiner pharmakokinetischen Studie konnten die in vitro pharmakologisch aktiven Konzentrationen dieser beiden Boswelliasäuren erzielt werden. Es ist daher nicht auszuschließen, dass auch andere Wirkmechanismen als die bisher beschriebenen existieren. Unter dem Gesichtspunkt möglicher Arzneimittelinteraktionen wurde die Wirkung von KBA und AKBA auf MRP2 und OATP1B3 in zwei zellbasierten Assays untersucht. Es konnte gezeigt werden, dass KBA und AKBA die Aktivität von MRP2 und OATP1B3 in Konzentrationen modulieren, welche im Rahmen dieser Arbeit in der Leber von Ratten nachgewiesen wurden. Da Weihrauchextrakt häufig in Comedikation verwendet wird, sollte im Hinblick auf die Arzneimittelsicherheit in Zukunft geprüft werden, ob es zu praxisrelevanten Arzneimittelinteraktionen mit klinisch relevanten MRP2- und OATP1B3-Substraten kommt.
Eine große Anzahl pharmakologischer und klinischer Studien zeigt die Wirksamkeit des standardisierten Ginkgo biloba Extraktes EGb 761 bei vaskulären und kognitiven Stö-rungen, wie der Alzheimer-Krankheit, der vaskulären Demenz und der peripheren arte-riellen Verschlusskrankheit. Experimentelle Ergebnisse weisen darauf hin, dass Terpen-laktone und Flavonolglykoside für die meisten pharmakologischen Wirkungen von EGb 761 verantwortlich sind. Allerdings gibt es wenige Studien, die die orale Biover-fügbarkeit von Terpenlaktonen und besonders von Flavonolglykosiden aus Ginkgo bilo-ba im Blut oder Zentralnervensystem untersuchten. Deshalb wurde in dieser Arbeit die Fähigkeit der Flavonoidglykosiden bzw. deren Metaboliten die Blut-Hirn-Schranke zu überwinden im Tierversuch an männlichen Sprague-Dawley-Ratten erforscht. Unter-sucht wurden dabei orale Einfach- und Mehrfachgaben von EGb 761 über einen Zeit-raum von 8 Tagen in den Dosierungen 100 bzw. 600 mg Extrakt pro kg Körpergewicht. Zusätzlich wurde die Verteilung der Ginkgoflavonolmetabolite in den unterschiedlichen Bereichen des Gehirns untersucht (Hippocampus, frontaler Cortex, Striatum und Klein-hirn). Zu diesem Zweck wurde eine HPLC-Fluoreszenzmethode für die Ermittlung der Plasma- und Gehirnkonzentrationen der Flavonoidmetaboliten (Derivate von Quercetin, Kämpferol und Isorhamnetin) entwickelt und validiert. In beiden Studien (Einfach- und Mehrfachgabe) wurden Flavonoidmetaboliten im Plasma und im Gehirn nachgewiesen. Dabei wurden Metaboliten in allen untersuchten Gehirnbereichen gefunden. Bei der Dosierung von 100 mg/kg war Kämpferol vorzugsweise im frontalen Cortex lokalisiert, während die anderen Flavonole in allen Regionen vergleichbare Konzentrationen auf-wiesen. Bei der höheren Dosierung von 600 mg/kg waren die Konzentrationen der Fla-vonolmetaboliten in allen Gehirnbereichen vergleichbar. Obgleich die vier untersuchten Gehirnbereiche nur 38% des gesamten Gehirns darstellten, wurden die meisten Gink-goflavonole in diesen Regionen gefunden. Im übrigen Gehirngewebe wurden nur be-grenzte Mengen von Flavonolen nachgewiesen. Zusammenfassend kann festgehalten werden, dass es erstmalig gelungen ist, im Tier-versuch die Bioverfügbarkeit einer der therapeutisch aktiven Substanzklassen von Ginkgo biloba - die Flavonoide - sowohl im Plasma als auch im ZNS nachzuweisen.
Im Rahmen der vorliegenden Arbeit sollte mit der Aktivierung des Peroxisomen Proliferator-aktivierten Rezeptors eine Rationale und ein möglicher Wirkmechanismus für die traditionelle Anwendung von Gewürz- und Arzneipflanzen bei der Therapie des Typ 2 Diabetes aufgezeigt werden. Vor diesem Hintergrund wurden über fünfzig traditionell bei Diabetes angewandte Pflanzen ausgewählt und mit Ethanol extrahiert. Die erhaltenen Trockenextrakte wurden daraufhin in einem von mir etablierten Reporter-Gen Assay auf eine mögliche Aktivierung der drei Subtypen des PPAR hin untersucht. Von den getesteten Extrakten wurde für fünfundzwanzig, also annähernd die Hälfte, eine signifikante Aktivierung des PPARgamma nachgewiesen. Von diesen zeigten wiederum vierzehn außerdem eine signifikante Aktivierung des PPARalpha, lediglich drei dieser Extrakte zeigten auch eine signifikante Aktivierung des PPARdelta. Somit konnte ich eine mögliche Rationale und einen potentiellen Wirkmechanismus für die volksmedizinische Anwendung dieser Pflanzen bei Diabetes aufzeigen. Von den wirksamen Extrakten wiesen am PPARgamma sieben eine ausreichend hohe Aktivität auf, dass wir auch bei niedrigeren Testkonzentrationen noch einen signifikanten Effekt und somit eine Konzentrationsabhängigkeit des aufzeigen konnten. Für PPARa konnten wir lediglich für drei der Extrakte eine Konzentrationsabhängigkeit aufzeigen, bei PPARdelta für keinen der Extrakte. Die beiden am stärksten aktiven Extrakte aus Rosmarinus offic. und Salvia offic. zeigten bereits ab etwa 10 mg/L signifikante Aktivität am PPARgamma, so dass wir für diese beiden Extrakte mit 20 bzw. 40 mg/L EC50-Konstanten bestimmen konnten. Diese halbmaximale Aktivierungskonstante liegt damit für den potenteren Rosmarin-Extrakt lediglich um den Faktor 200 höher als die des bei Diabetes eingesetzten Arzneistoffs Pioglitazon (Actos®). Die weitere Untersuchung dieser beiden Extrakte ergab, dass in beiden Carnosolsäure bzw. Carnosol enthalten waren, welche bei der Untersuchung im Reporter-Gen Assay EC50-Konzentrationen von 20 bzw. 40 mikroM für die Aktivierung des PPARgamma aufwiesen. Damit sind diese Reinsubstanzen bereits nur noch um den Faktor siebzig schwächer wirksam als Pioglitazon. Vergleicht man hingegen mit Bezafibrat (Cedur®), einem als Lipidsenker eingesetzten Arzneistoff, welcher aufgrund seiner pan-PPAR-agonistischen Wirkung mit EC50-Konzentrationen von je etwa 50 mikroM von besonderem Interesse ist, so sind die beiden Diterpene Carnosolsäure und Carnosol im Hinblick auf PPARgamma äquipotent oder eher stärker aktiv. Der Gehalt an diesen beiden Diterpenen in den von mir hergestellten Extrakten war nun zwar mit in Summe drei bzw. neun Prozent um den Faktor zehn bzw. drei zu niedrig, als dass sich der PPARgamma Agonismus der beiden Extrakte hierdurch hinreichend erklären ließe. Allerdings konnten wir für einen kommerziell erhältlichen und auf 40% Carnosolsäure angereicherten Rosmarin-Extrakt einen EC50-Wert von 10 mg/L bestimmen für die Aktivierung von PPARgamma bestimmen. Eine Aktivität, welche sich zu 70% allein auf den Gehalt an Carnosolsäure zurückführen lässt. Neben dem Nachweis der PPARgamma Aktivität von Carnosolsäure und Carnosol einerseits und der von ethanolischen Rosmarin- und Salbei-Extrakten andererseits, konnte ich somit einen hinreichenden Beweis führen, dass Carnosolsäure zumindest für Rosmarin, vermutlich auch für Salbei, als eines der aktiven Prinzipien anzusehen ist. Meine Befunde liefern damit eine mögliche Erklärung und Wirkmechanismus für die in Tiermodellen gefundene hypoglykämische Wirksamkeit von Rosmarin, Salbei und Carnosolsäure. Darüber hinaus legen meine Untersuchungen nahe, dass in beiden Pflanzen weitere PPARgamma Aktivatoren enthalten sind. Da Carnosol selbst bereits ein Oxidationsprodukt der Carnosolsäure darstellt, kämen hier weitere auch bereits beschriebene Oxidationsprodukte sicherlich in Frage. Diese Oxidationsprodukte stellen allerdings zumeist nur labile Übergangsprodukte dar und sind aus diesem Grunde auch als nicht Reinstoffe erhältlich. Der Nachweis einer PPAR Aktivität könnte somit angesichts der benötigten Inkubationsdauer im Reporter-Gen Assay so nicht geführt werden. Neben den bereits angeführten Ergebnissen ist die hohe Rate von positiven Treffern in meinem Screening selbst einer der interessantesten Befunde. Die signifikante Aktivierung von PPARgamma durch nahezu die Hälfte der getesteten Extrakte lässt die Vermutung zu, dass PPAR agonistische Substanzen im Pflanzenreich sehr weit verbreitet sein könnten. Zwar bestehen zu Recht Vorbehalte gegenüber der Testung von Vielstoff-Gemischen bzw. den hierbei erhaltenen Ergebnissen. Viele pflanzliche Inhaltsstoffe z.B. Gerbstoffe können zu einer unspezifischen Hemmung der Aktivität von Enzyme führen. Das verwendete Testsystem setzt allerdings neben Membrangängigkeit der aktiven Prinzipien die spezifische Aktivierung der Expression eines Gens, dessen Aktivität anschließend bestimmt wird, voraus. Die Art des verwendeten Assay macht damit die Erfassung unspezifischer Effekte eher unwahrscheinlich. Darüberhinaus mag für die Güte der Ergebnisse meines Screenings sprechen, dass unabhängig von uns für einige der gescreenten Pflanzen z.B. Kurkuma und Chili mit den Kurkuminoiden und Capsaicin kürzlich PPAR aktive Prinzipien beschrieben wurden. Vielmehr lässt sich die Hypothese formulieren, dass eine ganze Reihe sekundärer pflanzlicher Inhaltsstoffe zumindest mäßig aktive PPAR Agonisten darstellen. An prominenter Stelle wäre hier die Substanzklasse der Terpene zu nennen, von denen eine ganze Reihe sowohl linearer etwa Farnesol und Phytansäure, als auch cyclischer z.B. Tumeron, Abietansäure, Oleanolsäure und Ursolsäure bereits als PPAR-Aktivatoren beschrieben wurden. Angesichts der hohen Lipophilie dieser Substanz-Klasse und einer relativ großen und wenig selektierenden Bindungstasche des PPAR lässt sich auch für andere Terpene ein PPAR Agonismus erwarten. Der positive Effekt, den eine überwiegend pflanzliche Ernährung nach epidemiologischen Erkenntnissen auf die Gesundheit bewirkt, mag deshalb in Teilen auf PPAR-agonistische Prinzipien zurückzuführen sein. Neben dem höheren Anteil an mehrfach ungesättigen Fettsäuren im Vergleich zu tierischer Nahrung könnten enthaltene Terpene hier durchaus einen relevanten Beitrag leisten. In einem weiteren in Kooperation durchgeführten Projekt konnte darüber hinaus gezeigt werden, dass die schwache Aktivität des phenolischen Stilben-Derivats Resveratrol am PPARgamma einen Beitrag leistet zur Beeinflussung des Polyamin-Stoffwechsels und der hierdurch bedingten Regulation der Zell-Proliferation. Weiterhin konnte mit Hilfe der in unserem Reporter-Gen Assay erhaltenen Ergebnisse gezeigt werden, dass ein virtuelles Computer-basiertes Screening einer Substanzbibliothek effektiv ist, bei der Findung von PPAR Leitstrukturen.