Refine
Year of publication
Document Type
- Doctoral Thesis (53)
Has Fulltext
- yes (53)
Is part of the Bibliography
- no (53)
Keywords
- Pharmazeutische Chemie (3)
- Arzneimittel (2)
- Ginkgo biloba (2)
- Ginkgoblatt-Extrakt (2)
- In vitro (2)
- Medicinal Chemistry (2)
- Weihrauch (2)
- 5-LO (1)
- Aldosteron (1)
- Aldosteronantagonist (1)
Institute
- Pharmazie (38)
- Biochemie, Chemie und Pharmazie (8)
- Biochemie und Chemie (6)
- Biowissenschaften (1)
Boswelliasäuren (BAs) sind pentazyklische Triterpene, die als biologisch aktive Komponenten des Weihrauchharzes aus Boswellia serrata identifiziert wurden. Weihrauchpräparate werden seit langer Zeit in der indischen Medizin zur Behandlung entzündlicher Erkrankungen angewandt. Klinische Untersuchungen an Patienten mit chronisch entzündlichen Darmerkrankungen und peritumoralen Hirnödemen zeigen ebenfalls vielversprechende Effekte. Bislang wurde die 5-Lipoxygenase (5-LO) als Schlüsselenzyms der Leukotrien(LT)-Biosynthese und die Elastase als molekulare Targets der BAs identifiziert und in direkten Zusammenhang mit der antiinflammatorischen Wirkung gebracht. LTs sind wirksame Mediatoren entzündlicher und allergischer Reaktionen, die von Leukozyten freigesetzt werden und ihre Effekte über spezifische G-Protein-gekoppelte Rezeptoren (GPCRs) vermitteln. Unter den verschiedenen getesteten BAs ist 3-O-Acetyl-11-Keto-BA (AKBA) der potenteste 5-LO Inhibitor, wohingegen 11-Keto-BA (KBA) etwa 3-fach weniger aktiv ist und BAs ohne 11-Keto-Funktion (ß-BA und A-ß-BA) kaum wirksam sind. Darüber hinaus lassen AKBA und KBA eine wesentlich potenterer Hemmung der 5-LO Aktivität in intakten Zellen als in zellfreien Systemen erkennen. Die Hemmung der 5-LO bzw. der LT-Biosynthese als antiinflammatorisches Wirkprinzip der BAs wird derzeit sehr kontrovers diskutiert und ist aufgrund der Diskrepanz zwischen den erreichbaren Blutspiegeln und den IC50-Werten für die 5-LO Hemmung eher unwahrscheinlich. Ziel der Arbeit war es die molekularen Grundlagen der pharmakologischen Eigenschaften von BAs aufzuklären. Der Schwerpunkt lag bei der Identifizierung und Charakterisierung zentraler Signaltransduktionsmechanismen, die von BAs in menschlichen Blutzellen (polymorphkernigen Leukozyten (PMNL), Thrombozyten) vermittelt werden. Daneben sollten funktionelle Zellantworten untersucht und in einen kausalen Zusammenhang mit der Signaltransduktion und einer Rezeptoraktivierung gebracht werden. Parallel dazu wurde die Wirkung der BAs auf eukaryontische Zelllinien (MM6 Zellen, HL60 Zellen) untersucht. Überraschenderweise konnte festgestellt werden, dass KBA und AKBA in Konzentrationen > 10 µM potente Aktivatoren von PMNL sind, während BAs ohne 11-Keto-Gruppe kaum aktiv sind. Vergleichbar mit chemotaktischen Stimuli (z.B. fMLP, PAF), erhöhen AKBA und KBA die intrazelluläre Ca2+-Konzentration und aktivieren die Mitogenaktivierten Proteinkinasen p38 MAPK und p42/44MAPK. Untersuchungen der proximalen Signaltransduktionswege ergaben, dass die Phosphatidylinositol 3-Kinase (PI 3-K), nicht jedoch die Proteinkinase C, in die AKBA-induzierte MAPK Aktivierung involviert ist. In Analogie zu chemotaktischen Liganden von GPCR (z.B. fMLP, PAF) kommt es durch Zellstimulation mit BAs zu funktionellen Zellantworten in Leukozyten, Es konnte gezeigt werden, dass 11-Keto-BAs in der Lage sind, die Bildung von reaktiven Sauerstoffspezies, die Freisetzung von Arachidonsäure (AA) und ihre anschließende Metabolisierung durch 5-LO in PMNL zu induzieren, Dies ist einleuchtend, da diese Prozesse u.a. durch Ca2+ Mobilisierung und MAPK Aktivierung vermittelt werden können. Die pharmakologische Charakterisierung der zugrundeliegenden Signalwege liefert Hinweise auf eine Abhängigkeit von Ca2+, die Beteiligung der PI 3-K und der p42/44MAPK. Im Gegensatz zu AKBA und KBA sind BAs ohne 11-Keto-Gruppe (ß-BA und A-ß-BA) potente Agonisten für Thrombozyten und stimulieren, in ähnlichem Ausmaß wie Thrombin, die Ca2+ Mobilisierung und die Aktivierung von MAPK. Auch funktionelle Zellantworten wie die Bereitstellung von AA sowie deren Metabolisierung durch 12-LO werden durch BAs ohne Keto-Funktion induziert. Zusammenfassend sind also BAs in hohen, pharmakologisch nicht-relevanten Konzentrationen als multifunktionelle Agonisten inflammatorischer Prozesse aufzufassen. Es ist jedoch denkbar, dass BAs in niedrigen Konzentrationen eine antagonistische Wirkung an bestimmten Rezeptoren gegenüber chemotaktischen Faktoren (z.B. PAF, LTB4) ausüben. Dies könnte eine plausible Erklärung für die entzündungshemmenden Wirkungen der Boswelliasäuren sein.
In den letzten Jahren gewann die Photodynamische Therapie deutlich an Bedeutung bei der Behandlung von Neoplasien. Für die nächsten Jahren werden weitere Zulassungen für neue Indikationen erwartet. Diese Neuzulassungen werden einerseits durch neue Photosensibilisatoren und andererseits durch neue Ansätze beim Drug Targeting ermöglicht. Zur Zeit wird der Ansatz forciert, die Sensibilisatoren an einen tumorspezifischen Antikörper zu knüpfen. Eine weitere Möglichkeit für das Drug Targeting besteht darin, den Photosensibilisator an tumorspezifische Rezeptorliganden zu binden. In der vorliegenden Dissertation wird der Versuch einer Kopplung eines Photosensibilisators über einen Spacer an ein nicht steroidales Antiprogestin erarbeitet. Der Progesteron-Rezeptor wurde als Target ausgewählt, da zahlreiche Tumorarten, wie beispielsweise das Mammakarzinom, den Progesteron-Rezeptor überexprimieren. Als Leitstruktur für die Synthese der Antiprogestine wurde ein mariner Naturstoff ausgewählt. Das Cyclocymopol-Derivat besitzt den Vorteil einer im Vergleich zu Mifepriston verbesserten Selektivität für den Progesteron-Rezeptor und eines einfacheren synthetischen Zugangs. Für die Erstellung einer Bibliothek von Progesteron-Antagonisten, die auf den Cyclocymopol-Derivaten aufbauen, sind hinsichtlich der Struktur-Wirkungs-Beziehungen zwei Merkmale zu beachten. Der aromatische Ring muss eine elektronenziehende Gruppe, der aliphatische Ring eine exocyclische Methylengruppe aufweisen, da diese Gruppen essentiell für die Rezeptorbindung sind. Bei der Synthese des Progesteron-Antagonisten wird zunächst ein Benzaldehyd-Derivat mit dem gewünschten Spacer verknüpft, der in der Folge mit dem Phototherapeutikum verknüpft werden kann. Im nächsten Schritt wird die Aldehydfunktion mit Natriumborhydrid zur Alkoholfunktion reduziert. Die so erhaltenen Alkohole werden anschließend mit Hilfe einer Appelartigen Reaktion in das Bromid überführt. Die Benzylbromide wurden mit Isophoron und Buthyllithium zu dem Naturstoff-Analoga umgesetzt. Durch Variieren der Reaktionsbedingungen konnten die aus der Literatur bekannten Ausbeuten erhöht werden. Für die Einführung der exocyclischen Methylengruppe in die Naturstoff-Derivate mussten zunächst verschiedene Synthesenmethoden untersucht werden. In der Literatur wurde für diesen Synthesewege bisher das Tebbe Reagenz eingesetzt, welches bei den hier eingesetzten Edukten zu keiner Reaktion führte. Es kann vermutet werden, dass die sterische Hinderung durch den Spacer die Umsetzung blockiert. In weiteren Experimenten wurde versucht, über eine Simmons-Smith-ähnliche Reaktion die gewünschte Funktionalität zu erhalten. Da auch bei dieser Reaktion das gewünschte Produkt nicht erhalten werden konnte, wurde in weiteren Ansätzen die Peterson-Olefinierung ausgewählt. Mit dieser Methode gelang es schließlich, geringe Mengen des gewünschten Produktes herzustellen. Als Nebenreaktion kam es dabei jedoch zu einer Methylierung des aromatischen Rings. Durch Anwendung der Horner-Emmons-Reaktion konnte schließlich das Antiproestin in ausreichender Menge und Reinheit erhalten werden. Es war jedoch nicht möglich, das in Abb. 7 erläuterte Zielmolekül aus dem Photosensibilisator, Spacer und Antiprogestin darzustellen.
Pharmakokinetische Charakterisierung der Terpenlaktone aus Ginkgo biloba im ZNS am Tiermodell
(2010)
Ginkgo biloba (Gb), eine der am besten untersuchten pharmazeutisch-medizinisch genutzten Pflanzen, wird heute in Form von Spezialextrakten im Sinne einer evidenzbasierten Phytopharmakatherapie eingesetzt. Grundlage hierfür sind die genaue Spezifikation der Zusammensetzung des Spezialextraktes in Bezug auf die wirksamkeitsbestimmenden Inhaltsstoffe, balstbare klinische Daten, das Erforschen des molekularen Wirkmechanismus‘ des Gesamtextraktes aber auch der Einzelbestandteile und die Pharmakokinetik im Targetgewebe. Heute werden im Sinne einer evidenzbasierten Phytopharmakatherapie lediglich Extrakte verwendet, die der Monographie der Komission E entsprechen (22 - 27% Flavonoide, 5 - 7% Terpenlaktone und weniger als 5 ppm Ginkgolsäuren). Der am besten klinisch und pharmakologisch untersuchte Gb-Spezialextrakt ist EGb 761® (Tebonin®), der im zentralen Fokus der vorliegenden Arbeit steht. Die im Jahr 2008 vom IQWiG veröffentlichte Metaanalyse zur Klinik von EGb 761® hat in äußerst detaillierter Form belastbare Daten zur Wirksamkeit dieses Extraktes beschrieben. Es kann festgehalten werden, dass ein Einsatz dieses Spezialextraktes im Rahmen der Therapie einer beginnenden Demenz zu befürworten ist. Basis des klinischen Einsatzes des EGb 761® sind in vitro und in vivo pharmakologische Untersuchungen. Es werden unterschiedliche Gesamtkonzepte zur Wirkung von EGb 761® bzw. Einzeleffekte der Inhaltsstoffe im ZNS diskutiert. Konsensfähig sind heute sicher die Mitochondrien-stabilisierende Wirkung der Terpenlaktone und ein antioxidativer Effekt der Flavonoide. Bb zeigt zusätzlich deutlich protektive Effekte in Bezug auf durch zerebrovaskuläre Ereignisse geschädigte Hirnareale. Darüber hinaus ist die Wirkung der Flavonoide auf die monoaminerge Neurotransmission aktueller Gegenstand der Forschung. Basis jeglicher pharmakologischen Betrachtung ist das pharmakokinetische Verhalten der wirksamen Inhaltsstoffe im Target-Gewebe. Nachdem die ZNS-Bioverfügbarkeit der Flavonoide nachgewiesen wurde, hat die vorliegende Arbeit das zentrale Ziel, die pharmakokinetische Charakteristik der Terpenlaktone aus Gb im ZNS zu untersuchen. Zur quantitativen Analyse der Terpenlaktone (GKA, GKB, GKC und Bb) in biologischen Matrices (Hirn-Homogenat, Plasma) und Hirn-Dialysat-Pufferlösung (aCSF-Puffer) wurde eine LC-MS-Analytik-Methode entwickelt und validiert. Unter Verwendung einer 250x4 mm, Multo High 100 RP18, 5 μm (CS-Chromatographie Service GmbH)-Säule und einer isokratischen Auftrennung mittels einer mobilen Phase bestehend aus 60% 0,1%-iger Ameisensäure und 40%-igem Methanol konnten alle vier genannten Terpenlaktone simultan innerhalb von 20 Minuten analysiert werden. Die beschriebene LC-MS(TOF)-Methode verfügt über eine ausreichende Sensitivität, um die Analyten im nanomolaren Bereich zu quantifizieren (z.B. LOQ Bb in aCSF-Puffer: 0,25 pg/μl; LOQ Bb in Hirnhomogenat: 1 ng/ml). Die Aufarbeitung der Plasma- bzw. Hirn-Homogenat-Proben erfolgte durch eine flüssig-flüssig-Extraktion mit Hilfe von Extrelut®-Säulen; die Hirn-Dialysat-Proben bedurften keiner Probenaufarbeitung. Mit Hilfe der beschriebenen Analytik-Methode war es möglich, GKA, GKB, GKC und Bb in Plasma und Hirnhomogenat von Ratten nach oraler Gabe von 600 mg/kg Körpergewicht EGb 761® bzw. einer vergleichbaren Menge der Reinsubstanzen zu bestimmen. Im Rahmen dieses Projektes wurde ein direkter Vergleich der erhalten Plasma-Konzentrationen nach Extrakt- bzw. Reinsubstanzgabe gezogen, wobei der Extrakt die höhere AUC (für GKA u. Bb) und daher bessere Bioverfügbarkeit aufwies. Es konnten in Plasma und Gehirngewebe sowohl GKA als auch GKB und Bb in nativer nicht metabolisierter Form nachgewiesen werden. GKC konnte weder in Plasma noch in Hirngewebe bestimmt werden, was die in der Literatur diskutierte These einer schnellen Metabolisierung (Methylierung) stärkt. Die Terpenlaktone sind im Plasma sehr schnell angeflutet und zeigten ein ebenfalls zügiges Abfallen, so dass 24 Stunden nach oraler Applikation keine Konzentrationen mehr zu detektieren waren. Bei der Untersuchung der Hirn-Gewebspiegel von GKA, GKB und Bb zeigten sich keine Unterschiede nach Gabe von Extrakt bzw. Reinsubstanz. Die Substanzen fluteten im Vergleich zum Plasma etwas verzögert an, fielen aber auch bis 24 Stunden nach Applikation wieder unter die Nachweisgrenze. Die Konzentrations-Zeit-Kurven ähnelten in ihrer Form stark denen aus Plasma, waren jedoch zeitlich nach rechts verschoben, so dass ausgeschlossen werden kann, dass es sich im Hirngewebe um Artefakt aus Restblut handelt. Wesentliches Resultat dieser Untersuchungen war, dass erstmalig nach oraler Gabe von EGb 761® gezeigt wurde, dass deutliche Gewebespiegel im Gehirn von Ratten zu erzielen sind und damit diese Substanzen im Target-Gewebe die postulierten pharmakologischen Wirkungen ausüben können. Aufbauend auf diesen Ergebnissen wurden mit Hilfe der Mikrodialyse-Technik und der bereits beschriebenen LC-MS-Analytik-Methode weitere pharmakokinetische Untersuchungen am Maus-Modell durchgeführt. Es konnte zunächst rein technisch im Rahmen von Wiederfindungsuntersuchungen gezeigt werden, dass die im Dialysat bestimmte Menge Bb ca. 6% der tatsächlich im Extrazellularraum des Maus-Hirns vorliegenden Bb-Konzentration entspricht. Weiterhin zeigten diese Versuche, dass Bb kaum an Plasma-Proteine bindet, da keine signifikanten Unterschiede bei der Dialyse von Bb aus Puffer, Blut oder Plasma zu sehen waren. In einem ersten Tierversuch an gesunden Mäusen konnten die pharmakokinetischen Charakteristika von Bb, die in der Fütterungsstudie an Ratten bestimmt wurden, reproduziert werden, obwohl es sich um einen völlig divergenten Versuchsaufbau, unterschiedliche Tierspezies und nicht um die gleichen Applikationsformen handelt. Diese Tatsache unterstreicht die Aussage beider Studien. Als zusätzliche Aussage ergibt sich aus dem Versuchsaufbau, dass Bb frei und biologisch aktiv im Extrazellularraum vorliegt und nicht z.B. in Membranen gebunden ist. Die Möglichkeit mittels Mikrodialyse und LC-MS-Technik Bb im Extrazellularraum definierter Hirnregionen nachzuweisen, erlaubte eine pharmakokinetische Charakterisierung von Bb in vom Schlaganfall geschädigten Hirngewebe. Es zeigte sich, dass bei Gabe von 10 mg/Kg Bb eine Stunde vor dem Schlaganfall die Bb-Konzentrationen zwar deutlich abfallen, aber dann relativ konstant bleiben, was durch einen fehlenden Abtransport durch die unterbrochene Blutversorgung zu erklären ist.
Das Auftreten von plötzlichem Herztod, das häufig durch ventrikuläre Tachyarrhythmien ausgelöst wird, stellt bis heute eine Herausforderung bei der Therapie der Patienten mit schwerer Herzinsuffizienz dar. Derartige Arrhythmien werden bei über 85% der Patienten mit schwerer Herzinsuffizienz beschrieben und über 50% der Todesursachen werden dabei auf das Auftreten von plötzlichem Herztod zurückgeführt. Es wird vermutet, dass das elektrische Remodeling als Teil der gesamten kardialen Umbauvorgänge bei der Entstehung einer Herzinsuffizienz die pathophysiologische Grundlage dieser Arrhythmien darstellt. Das Renin-Angiotensin-Aldosteron System spielt eine zentrale Rolle bei der Ausbildung des elektrischen Remodeling und insbesondere erhöhte Aldosteronkonzentrationen korrelieren mit dem Risiko kardiovaskulärer Zwischenfälle. Darüberhinaus konnte in zwei klinischen Studien (RALES und EPHESUS) gezeigt werden, dass die Therapie herzinsuffizienter Patienten mit den Aldosteronantagonisten Spironolacton und Eplerenon die Mortalität und Morbidität und insbesondere auch das Auftreten von plötzlichem Herztod signifikant senken konnte. Weitere Studien zeigen eine Verbindung zwischen dem Auftreten einer Herzinsuffizienz und Veränderungen in der Funktion und Expression kardiospezifischer repolarisierender K+-Kanäle. Neben den klinischen Daten, die einen protektiven Effekt der Aldosteronantagonisten bei plötzlichem Herztod belegen, ist wenig über die Auswirkungen von Aldosteron auf das elektrische Remodeling des Herzens bekannt. In dieser Arbeit sollte daher die Auswirkung einer chronischen Aldosteronexposition in Ratten auf die elektrophysiologischen Eigenschaften des Herzens untersucht werden. Dazu wurde Wistar-Ratten Aldosteron verabreicht und einigen Tieren die Aldosteronantagonisten Spironolacton und Eplerenon, um die Effekte der unspezifischen (Spironolacton) und spezifischen (Eplerenon) MR Blockade auf die elektrischen Eigenschaften der Kardiomyozyten zu untersuchen. Die Aldosteron exponierten Tiere entwickelten eine linksventrikuläre Hypertrophie, die sich unabhängig von Blutdruckveränderungen entwickelte, sowie ein signifikant verlängertes QT-Intervall, vermehrt auftretende ventrikuläre Extrasystolen und ventrikuläre Tachykardien. Die Elektrolytwerte (K+, Na+, Cl-) waren dabei nicht verändert. Die Aldosteronantagonisten Spironolacton und Eplerenon waren in der Lage, die unter Aldosteron auftretenden Veränderungen zu verhindern. Die Transkription der Untereinheiten kardiospezifischer K+-Kanäle (Ito, IKur, IK1) und des L-Typ Ca2+-Kanals war unter Aldosteronstimulation im linken Ventrikel signifikant erniedrigt. Auf Proteinebene konnte dies für die Kanaluntereinheiten Kv1.5 (IKur), Kir2.3 (IK1) und Cav1.2 (L-Typ Ca2+-Kanal) bestätigt werden. Die Untersuchung eventuell zugrunde liegender Signaltransduktionswege lieferte erniedrigte mRNA Expressionslevel der kardiospezifischen Proteinkinase C Isoformen PKC-α und PKC-ε, wohingegen die mRNA-Expression von PKC-δ unter Aldosteronstimulation unverändert war. Diese Veränderungen in der Transkription der PKC Isoformen wurden durch Behandlung der Tiere mit den Aldosteronantagonisten inhibiert, was für einen MR vermittelten Effekt spricht. Weiterhin zeigte eine chronische Aldosteronstimulation eine erniedrigte mRNA Expression von Calcineurin Aß (PPP3CB) sowie Calcineurinaktivität in linksventrikulärem Gewebe der Tiere. Dieser Effekt konnte durch die Aldosteronantagonisten nicht aufgehoben werden, so dass ein Signaltransduktionsweg, der nicht über den MR vermittelt wird, zugrunde liegen könnte. Insgesamt konnte in dieser Arbeit gezeigt werden, dass chronisch erhöhte Aldosteronkonzentrationen im Rattenherz blutdruckunabhängig zu strukturellen und elektrischen Veränderungen führen, die das Auftreten maligner ventrikulärer Arrhythmien begünstigen. Beide Aldosteronantagonisten Spironolacton und Eplerenon sind in der Lage, die durch Aldosteron vermittelten Effekte in gleicher Weise zu inhibieren. Die Ergebnisse zeigen pathophysiologische Zusammenhänge auf, die die Bedeutung von Aldosteron und der Therapie mit Aldosteronantagonisten für die Behandlung der Herzinsuffizienz und in Zukunft möglicherweise der Hypertrophie unterstreichen.
Der Extrakt des indischen Weihrauchs (Boswellia serrata) ist eines der wenigen pflanzlichen Heilmittel, dem von der EMEA der Orphan Drug Status zur Behandlung des peritumoralen Hirnödems verliehen wurde. Boswellia serrata Extrakt und die Boswelliasäuren, die wirksamen Inhaltsstoffe des Weihrauchs, zeigten in zahlreichen in vitro-Untersuchungen antiinflammatorische und antitumorale Wirksamkeit. Diese Wirkungen konnten auch in mehreren klinischen Studien nachgewiesen werden. Untersuchungen zum pharmakokinetischen Verhalten der Boswelliasäuren zeigten, dass Weihrauch nur eine geringe orale Bioverfügbarkeit aufweist. Ziel der Arbeit war es daher, den Einfluss von Löslichkeit, Metabolismus und Permeabilität auf die Bioverfügbarkeit der Boswelliasäuren zu untersuchen. Weihrauchextrakte sind in wässrigen Medien schlecht löslich. In einer Rattenstudie wurde deshalb untersucht, inwieweit die verbesserte Löslichkeit des Extrakts in einer nanoskaligen Boswellia serrata Formulierung zu einer verbesserten Bioverfügbarkeit führt. Eine bestehende LC-MS-Methode zur Bestimmung von KBA und AKBA aus Plasma und Hirngewebe wurde optimiert und revalidiert. Zur Vervollständigung des pharmakokinetischen Profils wurden die KBA- und AKBA-Konzentrationen auch in der Leber der Ratten bestimmt. Die analytische Methode wurde hierfür nach den anerkannten FDA-Richtlinien erfolgreich validiert. Die Plasma- und Leberkonzentrationen waren jedoch bei den Ratten, die die nanoskalige Boswellia serrata Formulierung bekamen, in den ersten Stunden nach der oralen Verabreichung nicht signifikant höher als bei den Ratten, die den unbehandelten Extrakt erhielten. Die in dieser Arbeit durchgeführten Untersuchungen zur metabolischen Stabilität von KBA und AKBA in Rattenlebermikrosomen (RLM), Humanlebermikrosomen (HLM) und Rattenhepatozyten (RH) zeigten, dass KBA einer stark ausgeprägten hepatischen Metabolisierung unterliegt. AKBA hingegen erscheint metabolisch relativ stabil. Die Identifizierung der Metabolite ergab, dass Boswelliasäuren in RLM hauptsächlich Phase-I-Metabolite wie mono-, di-, und seltener auch trihydroxylierte Metabolite bilden. Von AaBA und AbBA konnten keine Metabolite detektiert werden. Das metabolische Profil von KBA und AKBA in RH war mit dem in RLM vergleichbar. In einer Rattenstudie konnten dann im Plasma und in der Leber jedoch nicht im Hirn der Ratten KBA-Metabolite nachgewiesen werden, während für AKBA in vivo keine Metabolite detektiert wurden. Phase-II-Metabolite konnten weder von KBA noch von AKBA nachgewiesen werden. Bisher war man davon ausgegangen, dass die niedrigen Plasmakonzentrationen von AKBA in vivo durch eine Deacetylierung zu KBA zustande kommen. Diese These konnte im Rahmen dieser Arbeit widerlegt werden. Im Caco-2-Zellmodell zeigte KBA eine mittlere Permeabilität. Es konnte gezeigt werden, dass KBA und AKBA offensichtlich keinem Efflux-Transport unterliegen. AKBA erwies sich sowohl in absorptiver und sekretorischer Richtung als auch bei 4° C als schlecht permeabel. Da KBA und AKBA die Aktivität des ABC-Transportproteins Pgp modulieren, wurde in dieser Arbeit überprüft, ob diese beiden Boswelliasäuren auch Substrate des Pgp sind. Die Permeation von KBA und AKBA war in Anwesenheit des Pgp-Inhibitors Verapamil jedoch nicht signifikant verändert, was darauf hindeutet, dass KBA und AKBA keine Pgp-Substrate sind. Die Ergebnisse dieser Arbeit bilden einen wichtigen Baustein zur weiteren Aufklärung des pharmakokinetischen Verhaltens von KBA und AKBA. So ist die begrenzte systemische Verfügbarkeit von KBA auf eine mittlere Absorption aus dem Gastrointestinaltrakt in Kombination mit der umfangreichen hepatischen Metabolisierung zurückzuführen. Die niedrigen systemischen Konzentrationen von AKBA hingegen liegen eher in der schlechten Absorption begründet. Auf der Basis der extensiven Metabolisierung von KBA und der schlechten Permeabilität von AKBA stellt sich im Allgemeinen die Frage nach dem tatsächlichen Wirkmechanismus von KBA und AKBA. In keiner pharmakokinetischen Studie konnten die in vitro pharmakologisch aktiven Konzentrationen dieser beiden Boswelliasäuren erzielt werden. Es ist daher nicht auszuschließen, dass auch andere Wirkmechanismen als die bisher beschriebenen existieren. Unter dem Gesichtspunkt möglicher Arzneimittelinteraktionen wurde die Wirkung von KBA und AKBA auf MRP2 und OATP1B3 in zwei zellbasierten Assays untersucht. Es konnte gezeigt werden, dass KBA und AKBA die Aktivität von MRP2 und OATP1B3 in Konzentrationen modulieren, welche im Rahmen dieser Arbeit in der Leber von Ratten nachgewiesen wurden. Da Weihrauchextrakt häufig in Comedikation verwendet wird, sollte im Hinblick auf die Arzneimittelsicherheit in Zukunft geprüft werden, ob es zu praxisrelevanten Arzneimittelinteraktionen mit klinisch relevanten MRP2- und OATP1B3-Substraten kommt.
Eine große Anzahl pharmakologischer und klinischer Studien zeigt die Wirksamkeit des standardisierten Ginkgo biloba Extraktes EGb 761 bei vaskulären und kognitiven Stö-rungen, wie der Alzheimer-Krankheit, der vaskulären Demenz und der peripheren arte-riellen Verschlusskrankheit. Experimentelle Ergebnisse weisen darauf hin, dass Terpen-laktone und Flavonolglykoside für die meisten pharmakologischen Wirkungen von EGb 761 verantwortlich sind. Allerdings gibt es wenige Studien, die die orale Biover-fügbarkeit von Terpenlaktonen und besonders von Flavonolglykosiden aus Ginkgo bilo-ba im Blut oder Zentralnervensystem untersuchten. Deshalb wurde in dieser Arbeit die Fähigkeit der Flavonoidglykosiden bzw. deren Metaboliten die Blut-Hirn-Schranke zu überwinden im Tierversuch an männlichen Sprague-Dawley-Ratten erforscht. Unter-sucht wurden dabei orale Einfach- und Mehrfachgaben von EGb 761 über einen Zeit-raum von 8 Tagen in den Dosierungen 100 bzw. 600 mg Extrakt pro kg Körpergewicht. Zusätzlich wurde die Verteilung der Ginkgoflavonolmetabolite in den unterschiedlichen Bereichen des Gehirns untersucht (Hippocampus, frontaler Cortex, Striatum und Klein-hirn). Zu diesem Zweck wurde eine HPLC-Fluoreszenzmethode für die Ermittlung der Plasma- und Gehirnkonzentrationen der Flavonoidmetaboliten (Derivate von Quercetin, Kämpferol und Isorhamnetin) entwickelt und validiert. In beiden Studien (Einfach- und Mehrfachgabe) wurden Flavonoidmetaboliten im Plasma und im Gehirn nachgewiesen. Dabei wurden Metaboliten in allen untersuchten Gehirnbereichen gefunden. Bei der Dosierung von 100 mg/kg war Kämpferol vorzugsweise im frontalen Cortex lokalisiert, während die anderen Flavonole in allen Regionen vergleichbare Konzentrationen auf-wiesen. Bei der höheren Dosierung von 600 mg/kg waren die Konzentrationen der Fla-vonolmetaboliten in allen Gehirnbereichen vergleichbar. Obgleich die vier untersuchten Gehirnbereiche nur 38% des gesamten Gehirns darstellten, wurden die meisten Gink-goflavonole in diesen Regionen gefunden. Im übrigen Gehirngewebe wurden nur be-grenzte Mengen von Flavonolen nachgewiesen. Zusammenfassend kann festgehalten werden, dass es erstmalig gelungen ist, im Tier-versuch die Bioverfügbarkeit einer der therapeutisch aktiven Substanzklassen von Ginkgo biloba - die Flavonoide - sowohl im Plasma als auch im ZNS nachzuweisen.
Regulation des matrizellulären Proteins SMOC-1 durch Zytokine und Stickoxid in Rattenmesangiumzellen
(2009)
Zytokine stimulieren in Mesangiumzellen die Produktion und die Freisetzung großer Mengen entzündlicher Mediatoren. In dieser Arbeit wurden mit Hilfe der RAP-PCR („RNA arbitrarily primed polymerase chain reaction“), einer auf mRNA basierenden „Differential display“-Methode, die Effekte von Interleukin-1β (IL-1β) auf das Genexpressionsmuster in glomerulären Rattenmesangiumzellen untersucht. Dabei wurde das matrizelluläre Glykoprotein „Secreted modular calcium-binding protein-1“ (SMOC-1) identifiziert, welches in Mesangiumzellen durch IL-1β herunterreguliert wird. SMOC-1 wird von verschiedenen Zelltypen exprimiert und sezerniert, doch seine biologische Funktion konnte bisher nicht aufgedeckt werden. Weitere Experimente bestätigten, dass die mRNA- und Proteinexpression von SMOC-1 durch proinflammatorische Zytokine, wie IL-1β und Tumornekrosefaktor-α (TNF-α) herunterreguliert wird. Dieser Effekt wird zu einem großen Teil durch die endogene Freisetzung von Stickoxid (NO) aufgrund der Aktivität der induzierbaren NO-Synthase (iNOS) und der nachfolgenden Aktivierung der löslichen Guanylatzyklase (sGC) vermittelt. Außerdem tragen auch reaktive Sauerstoffver-bindungen (ROS), deren Bildung durch die Zytokine verstärkt wird, zur Herunter-regulierung der SMOC-1-Expression bei. Durch In-situ-Hybridisierungsexperimente konnte ferner gezeigt werden, dass die Hemmung der NO-Synthese durch den spezifischen iNOS-Inhibitor L-NIL in einem Rattenmodell der anti-Thy1.1-Glomerulonephritis die SMOC-1-Expression deutlich erhöhte. Dies belegt somit auch in vivo die biologische Relevanz von NO in der Modulierung der SMOC-1-Expression. Die funktionelle Rolle von SMOC-1 in Mesangiumzellen wurde durch die Hemmung der SMOC-1-Expression mit Hilfe einer spezifischen siRNA untersucht. Dabei zeigte sich, dass die Hemmung von SMOC-1 eine deutliche Inhibierung der mRNA-Expression von „Transforming growth factor β1“ (TGF-β1) sowie dessen Gesamtproteinspiegel zur Folge hat. Auch die Aktivität von TGF-β1 wurde reduziert, wie anhand der verringerten Spiegel an aktivem TGF-β1-Protein und der verringerten mRNA-Expression bekannter TGF-β-regulierter Gene, wie „Connective tissue growth factor“ (CTGF), „Plasminogen activator inhibitor-1“ (PAI-1) und Biglykan gezeigt wurde. Diese Ergebnisse deuten auf eine Rolle von SMOC-1 bei der Modulierung des TGF-β1-Signalwegs hin. Zusammenfassend betrachtet scheint NO die SMOC-1-Expression in der akuten glomerulären Entzündung zu vermindern und dadurch die TGF-β-getriebenen profibrotischen Signalprozesse zu limitieren. Der zweite Aspekt dieser Arbeit befasst sich mit der Rolle von Peroxisomen-Proliferator-aktivierten Rezeptoren (PPAR) in der IL-1β-vermittelten Expression der induzierbaren NO-Synthase. PPARα-Aktivatoren steigern in Mesangiumzellen die IL-1β-induzierte Aktivität der iNOS, während die Hemmung von PPARα durch spezifische Inhibitoren oder siRNA die iNOS-Expression/-Aktivität deutlich reduziert. Die Ergebnisse von Promotor-studien zeigten die essentielle Rolle einer möglichen PPAR-Bindestelle im iNOS-Promotor. IL-1β scheint die Bildung eines endogenen PPAR-Liganden zu induzieren, wodurch die Bindung von PPAR-Proteinkomplexen an das regulatorische DNA-Element im iNOS-Promotor verstärkt und dessen Aktivität gesteigert wird. Daneben scheinen jedoch auch Nebeneffekte der PPAR-Aktivatoren, wie die Freisetzung von ROS, zur synergistischen Wirkung auf die IL-1β-induzierte iNOS-Expression beizutragen. Die Wirkung von dualen PPARα/γ-Aktivatoren auf entzündliche Prozesse wird seit längerem diskutiert, daher wurden die biologischen Effekte von neu synthetisierten möglichen dualen PPARα/γ-Aktivatoren auf Entzündungsparameter, wie z. B. die iNOS-Expression, in Mesangiumzellen untersucht. Alle untersuchten Aktivatoren steigerten in der Form von Esterverbindungen die IL-1β-induzierte Expression der iNOS sowie der sekretorischen Phospholipase A2 (sPLA2), während die entsprechenden freien Säuren wenig Effekte zeigten. Diese proinflammatorische Wirkung scheint jedoch weniger auf einer Aktivierung des PPAR-Rezeptors zu beruhen als auf der Freisetzung von ROS, die durch die Aktivatoren teilweise deutlich erhöht wurde. Weitere Experimente zur Charakterisierung der PPAR-spezifischen Wirkung der Aktivatoren sowie zur optimalen Wirkkonzentration sind nötig, bevor der Effekt dieser Aktivatoren auf die inflammatorische Genexpression genau bewertet werden kann.
PPARs gehören wie die Steroidhormon-Rezeptoren (z. B.Glucocorticoid-, Estrogen- oder Testosteron-Rezeptoren) zur Superfamilie der nukleären Rezeptoren. Es existieren drei PPAR-Subtypen, die als PPARalpha, PPARbeta/delta und PPARgamma bezeichnet werden und von drei verschiedenen Genen kodiert werden. Fibrate sind PPARalpha-Agonisten, welche die Plasma-Triglyceridspiegel reduzieren und gleichzeitig eine moderate Steigerung des HDL-Cholesterols bewirken. Thiazolidindione (Glitazone) sind PPARgamma-Agonisten, die bei Typ-2-Diabetes-mellitus indiziert sind und als Insulinsensitizer wirken. Duale PPARalpha/gamma-Agonisten stellen eine neue Klasse von Arzneistoffen dar, die zukünftig zur Behandlung von Typ-2-Diabetikern mit gestörtem Lipidprofil eingesetzt werden könnten. Im Rahmen der vorliegenden Dissertation wurde eine Leitstrukturoptimierung des selektiven PPARalpha-Agonisten Pirinixinsäure (WY 14643) durchgeführt. Die pharmakologische In-vitro-Charakterisierung der Substanzen erfolgte mit Hilfe subtypspezifischer Reportergen-Assays. Zusätzlich wurde gezeigt130, dass Chinolinderivate der Pirinixinsäure 5-LOX-inhibierende Eigenschaften in polymorphnukleären Leukozyten zeigen. Zunächst wurde eine geeignete Synthesestrategie zur Darstellung von Pirinixinsäurederivaten etabliert, was zur Charakterisierung und Identifizierung einer Serie von potenten dualen PPARalpha/gamma-Agonisten und 5-LOX-Inhibitoren führte. Die Synthesestrategie zur Darstellung von sowohl im Arylamino-Bereich (W) als auch in alpha- Position (R) modifizierten Derivaten der Pirinixinsäure bestand in einer vierstufigen Reaktionsfolge (I–IV; siehe Abb.). ... Die PPAR-Modulatoren (Carbonsäuren) 4, 8, 14, 32–38, 41 und 42 wurden in-vitropharmakologisch unter Anwendung subtypselektiver Reportergen-Assays (hPPARalpha, beta, gamma) charakterisiert. Die 5-LOX-Modulatoren (Carbonsäureester) 3, 7, 8, 13, 14, 24–29, 31–42 und 50 wurden in-vitro-pharmakologisch unter Anwendung des 5-LOX-Standardassays in intakten PMNL (polymorphnukleäre neutrophile Leukozyten) evaluiert. Die vorliegende Untersuchung deckte auf, dass der Ersatz des 2,3-Dimethylanilin-Strukturelements der Pirinixinsäure durch 6-Aminochinolin zu einem Gesamtverlust des PPARalpha/gamma-Agonismus führt. Durch Strukturmodifikationen im Arylamino-Bereich der Leitstruktur WY 14643 mit für 5-LOX-Non-Redoxinhibitoren typischen Pharmakophorresten, Tetrahydropyran-4-yl (Substanzen 13–14) und Methoxychinolin-2-yl (Substanz 43), konnte eine signifikante Steigerung des 5-LOX-inhibitorischen Potenzials erzielt werden [IC50 7 mikro M (13) bzw. 4 mikro M (43)]. Die alpha-alkylsubstituierten Carbonsäurederivate 33–38 zeigten sowohl am hPPARalpha als auch am hPPARgamma eine mit der aliphatischen Kettenlänge steigende Potenz. Am hPPARalpha erwiesen sich das alpha-Hexyl-Derivat 35 und das alpha-Butyl-Derivat 34 mit EC50-Werten von 1,9 mikro M (35) bzw. 11,5 mikro M (34) entsprechend einer Steigerung der Aktivität gegenüber WY 14643 um den Faktor 20 (35) bzw. den Faktor 4 (34) als besonders potent. Im Falle des hPPARgamma zeigten ebenso das alpha-butylsubstituierte Derivat 34 und der alpha-hexylsubstituierte Ligand 35 die höchste Aktivität mit EC50-Werten von 8,7 mikro M (34) bzw. 5,8 mikro M (35) und einer Steigerung der Aktivität gegenüber WY 14643 von Faktor 6 (35) bzw. Faktor 9 (34). Die Einführung von alpha-Alkylsubstituenten in das Grundgerüst der Pirinixinsäure führt möglicherweise zum Besetzen der linken proximalen Bindungstasche und somit zu einer im Vergleich zur Leitstruktur WY14643 stärkeren Bindung in die Ligandenbindungstasche des Rezeptors. Die Besetzung dieser proximalen Bindungstasche entscheidet jedoch nicht über die PPAR-Selektivität, da diese sowohl von hPPARalpha- als auch von hPPARgamma-Agonisten belegt wird. PPARalpha/gamma-Selektivität kann zum einen durch das Besetzen der linken bzw. rechten distalen Bindungstasche erzielt werden, zum anderen durch die Auswahl verschiedener acider Kopfgruppen. Aufgrund unterschiedlicher Aminosäuresequenzen der Bindungstaschen der einzelnen PPAR-Subtypen ergibt sich für die Kopfgruppen der PPAR-Modulatoren im hPPARalpha und hPPARgamma eine durch den sterischen Einfluss von Carboxyl- bzw. TZD-Kopfgruppen verursachtes unterschiedliches Wasserstoffbrückennetzwerk. Im Vergleich mit Pirinixinsäure konnte nur durch die Einführung der größeren Alkylketten (n-Butyloder n-Hexyl) ein stark erhöhter dualer PPARalpha/gamma-Agonismus erreicht werden. Die Substitution des sekundären Amins der Chinolin-6-ylverbindungen durch einen Ether-Sauerstoff in den Substanzen 41 und 42 sowie die Einführung eines Linkers, genauer einer Methylengruppe, zwischen dem Chinolin-6-ylrest und dem Scaffold (Derivate 29 und 36), führt zu einer verminderten Aktivität sowohl an hPPARalpha als auch an hPPARgamma. Eine mögliche Erklärung hierfür könnte sein, dass an entsprechender Position der Liganden-Bindungstasche eine Wasserstoffbrücken-Akzeptor-Position vorhanden ist, welche zur Erhöhung der Affinität beiträgt. Offensichtlich wird, durch die Ausbildung einer Wasserstoffbrücke zwischen der NH-Funktion und einem Wasserstoffbrücken-Akzeptor innerhalb der LBP im Falle von WY 14643 ein hoher Bindungsbeitrag erreicht. Daten bezüglich der Inhibierung der 5-Lipoxygenase demonstrieren, dass 6-Aminochinolinderivate potente 5-LOX-Inhibitoren sind. Die Einführung eines 3,5-Bis-(2,2,2-trifluor-ethoxy)-phenylrestes in 6-Position des alpha-hexylsubstituierten Scaffolds führt zu Ligand 38. Dieser ist ein potenter dualer PPARalpha/gamma-Agonist mit einem EC50-Wert von 11 mikro M an hPPARalpha bzw. 7,7 mikro M an hPPARgamma und ein stark wirksamer 5-LOX-Inhibitor mit einem IC50-Wert von 1 mikro M im 5-LOX-PMNL-Standardassay. Die Substanz 38 wurde in präklinischen Studien eingesetzt. Vier Stunden nach oraler Administration bei Mäusen (n = 6) wurde einen Plasmaspiegel von 40 mikro M erreicht. Im Hinblick auf eine Steigerung der PPAR-agonistischen Aktivität und der Reduktion der hepatotoxischen Eigenschaften der Leitstruktur Pirinixinsäure wurde eine Leitstrukturoptimierung durch Einführung der größeren Alkylketten in alpha-Position zur pharmakophoren Carboxyl-Funktion durchgeführt. Für die inhibierende Wirkung auf die 5-LOX scheint das Chinolin-Strukturelement verantwortlich zu sein, während die Potenz der Inhibition durch das Substitutionsmuster moduliert wird.
Zur Behandlung von chronisch entzündlichen Erkrankungen besteht nach wie vor ein dringendes medizinisches Bedürfnis, da die bisher eingesetzten Medikamente gerade in der Langzeittherapie zu schwerwiegenden Nebenwirkungen führen können. Um chronisch entzündliche Erkrankungen in Zukunft adäquat therapieren zu können, sind bereits verschiedene neuartige Ansätze in klinischer bzw. präklinischer Entwicklung. Ein möglicher Ansatz besteht in einer dualen Hemmung der mikrosomalen Prostaglandin E2 Synthase-1 (mPGES-1) und der 5-Lipoxygenase (5-LO). Im Rahmen dieser Arbeit wurden die Struktur-Wirkungs-Beziehungen (SAR) von zwei verschiedenen Leitstrukturen an der 5 LO und der mPGES 1 untersucht. Die erste Leitstruktur entstammt aus den Arbeiten von Waltenberger et al. und besitzt im Grundgerüst eine Sulfonamidstruktur. In dieser Arbeit ist es gelungen, durch eine gezielte Untersuchung der Struktur-Wirkungsbeziehungen, die Leitstruktur I an der 5 LO und der mPGES-1 in ihrer Potenz zu optimieren. Die Leitstruktur (IC50: 5-LO (zellfrei) = 5.7 µM, IC50: 5 LO (PMNL) = 3.7 µM, IC50: mPGES-1 = 4.5 µM) konnte durch Variation in allen drei Positionen modifiziert werden, so dass die optimierte Struktur 170 (IC50: 5-LO (zellfrei) = 2.3 µM, IC50: 5-LO (PMNL) = 0.4 µM, IC50: mPGES-1 = 0.7 µM) entstanden ist. Für die Verbindung 170 wurden die pharmakokinetischen Eigenschaften, wie Löslichkeit und metabolische Stabilität, sowie der Wirkmechanismus auf molekularer Ebene bestimmt. Ebenso konnte für Verbindung 170 auch in vivo anti-entzündliche Eigenschaften festgestellt werden.
Die zweite Leitstruktur stammt ebenfalls aus den Arbeiten von Waltenberger et al. und besitzt im Grundgerüst eine Mercaptobenzothiazol-Grundstruktur. Aufgrund der Ähnlichkeit zu den bekannten Pirinixinsäurederivaten wurde auch hier für die Untersuchung der Struktur-Wirkungs-Beziehungen zunächst eine Kettenverlängerung an der Alkylkette vorgenommen. Es ließ sich auch hier durch eine gezielte SAR, die Leitstruktur bis hin zum submikromolaren Bereich in Verbindung 219 optimieren. Gleichzeitig ist es gelungen in Verbindung 219 einer der am potentesten dual ausgeglichensten dualen 5 LO/mPGES-1 Inhibitoren zu identifizieren.
Zusammenfassend lässt sich sagen, dass in dieser Arbeit es gelungen ist durch gezielte Untersuchungen der Struktur-Wirkungs-Beziehungen zwei verschiedene Substanzklassen zu dualen 5-LO/mPGES-1 Inhibitoren zu optimieren. Ebenso konnte für Substanz 170 auch in vivo anti-entzündliche Eigenschaften festgestellt werden. Diese Arbeit soll dazu beitragen, das therapeutische Potential von dualen 5-LO/mPGES-1 Inhibitoren als anti-entzündliche Wirkstoffe in Zukunft besser einschätzen zu können.
Der ligandaktivierte Transkriptionsfaktor Farnesoid X Rezeptor (FXR) ist neben seiner Funktion als Regulator des Gallensäurehaushaltes auch in vielen anderen metabolischen Prozessen wie Glukose- und Lipidhomöostase involviert und besitzt antiinflammatorische Eigenschaften. Gerade bei hepatischen, gastrointestinalen und systemischen Erkrankungen erscheint FXR daher als interessante Zielstruktur zur Behandlung metabolischer Erkrankungen. Basierend auf den natürlichen Liganden von FXR, den Gallensäuren, wurde Obeticholsäure (OCA) als seminsynthetisches Derivat der endogenen Chenodesoxycholsäure zu einem potenten FXR-Agonisten entwickelt. OCA wurde in mehreren Studien auf seine therapeutische Wirkung bei hepatisch-entzündlichen Krankheitsbildern wie der primären biliären Cholangitis (PBC), der nicht-alkoholischen Fettleber (engl: non-alcoholic fatty liver disease, NAFLD) und der daraus folgenden nicht-alkoholischen Steatohepatitis (NASH) getestet. Mittlerweile ist OCA als Zweitlinientherapie der PBC auf dem Arzneimittelmarkt zuge-lassen. Neben OCA gibt es noch eine große Anzahl an weiteren FXR-Liganden, deren strukturelle Diversität von Steroiden bis nicht-steroidalen kleinen Molekülen (engl: small molecules) reicht. Trotz dieser Erfolge muss das Therapiepotential von FXR noch weiter ausgebaut werden. Die meisten verfügbaren Liganden besitzen in vitro zwar eine hohe Potenz, können in ihrem pharmakokinetischen Profil oder ihrer Selektivität gegenüber anderen nukleären Rezeptoren aber nicht überzeugen.
Die hier vorliegende Arbeit hat sich mit der Entwicklung unterschiedlicher Liganden für FXR beschäftigt und diese in vitro und teilweise auch in vivo charakterisiert, um sie entsprechend ihrer Wirkungsweise einzuordnen und ein besseres Verständnis der regulatorischen Funktion von FXR zu erlangen.
Modulation von FXR bezieht sich nicht nur auf die agonistische Aktivierung, sondern setzt sich auch mit Antagonismus auseinander. Neben einigen Krankheitsbildern, die aus einer Überexpression von FXR resultieren, werden Antagonisten als Werkzeug (engl: tool compound) zur Aufklärung von konformellen Veränderungen von FXR und deren Auswirkung auf bestimmte Signalwege benötigt. Für die Erforschung solcher FXR-Antagonisten sollte das Potential nicht-steroidaler Antirheumatika (engl: non-steroidal anti-rheumatic drugs, NSAIDs) als etwaige Leitstrukturen untersucht werden, da in einer Veröffentlichung von Lu et al. ein FXR-Antagonismus durch NSAIDs postuliert wurde. Beim Versuch der Reproduktion der Ergebnisse von Lu et al. mit den drei NSAIDs Ibuprofen, Indometacin und Diclofenac wurde festgestellt, dass die Effekte auf den ersten Blick antagonistisch erscheinen, aber bei genaueren biochemischen Untersuchungen zweifelsfrei als Zytotoxizität identifiziert wurden.
FXR-Antagonisten wie Guggulsteron oder Gly-MCA sind auf ihre therapeutische Wirksamkeit unter-sucht worden, aber die genaue Wirkweise ist noch nicht aufgeklärt. Aufgrund ihrer steroidalen Grundstruktur ist ihre Selektivität gegenüber anderen nukleären Rezeptoren fraglich. Die überschaubare Anzahl an publizierten nicht-steroidalen FXR-Antagonisten besitzt zwar moderate IC50-Werte, ihre strukturelle Diversität und Selektivität ist aber limitiert. Zur Entwicklung neuer potenter FXR-Antagonisten, die aus kleinen Molekülen (engl: small molecules) aufgebaut sind, wurde eine N-Phenylbenzamid-Leitstruktur ausgewählt. Diese Leitstruktur wurde im Rahmen der SAR-Unter-suchungen zur Entwicklung von Anthranilsäurederivaten als FXR-Partialagonisten innerhalb des Arbeitskreises entdeckt. Ausgehend von dieser Leitstruktur wurde eine mehrstufige, systematische SAR-Untersuchung durchgeführt, wodurch ein sehr potenter FXR-Antagonist entwickelt werden konnte, der anschließend umfangreich biochemisch auf FXR-Modulation, Selektivität, Löslichkeit, Toxizität und metabolische Stabilität charakterisiert wurde.
Neben dem Verständnis eines Modulationsmechanismus ist die konkrete Anwendung eines FXR-Liganden zu therapeutischen Zwecken von großem Interesse. Die Beteiligung von FXR in unterschiedlichen metabolischen Prozessen macht den Rezeptor zu einem begehrten Ansatzpunkt für die Wirkstoffentwicklung. Doch die Behandlung eines multifaktoriellen Krankheitsbildes (z.B. metabolisches Syndrom, NASH) sollte sich nicht nur auf einen der gestörten Signalwege beziehen, da diese Erkrankungen durch mehrere Faktoren ausgelöst oder beeinflusst werden. Der semisynthetische FXR-Agonist OCA zeigte innerhalb der FLINT-Studie sowohl antientzündliche und antifibrotische Effekte, als auch eine Verbesserung der metabolischen Parameter mit Blick auf NAFLD und NASH. Die lösliche Epoxidhydrolase (engl: soluble epoxidhydrolase, sEH) besitzt nachweislich anti-inflammatorische und antisteatotische Effekte in der Leber. Aus diesem Grund wurde eine Leitstruktur entwickelt, die eine duale Modulation aus FXR-Aktivierung und sEH-Inhibition erzeugt. Dafür wurden die Pharmakophore eines im Arbeitskreis entwickelten FXR-Partialagonisten sowie eines potenten sEH-Inhibitors miteinander verknüpft. Zur Weiterentwicklung einer ausgewogenen hohen Potenz beider Modulationsfaktoren wurden mehrere unterschiedliche SAR-Untersuchungen als translationales Projekt in mehreren Arbeiten durchgeführt. In der hier vorliegenden Arbeit konnten dieses SAR-Untersuchungen zusammengeführt und weiterentwickelt werden. Dabei wurde ein ausgewogener und hochpotenter dualer Modulator erhalten, der umfassend in vitro und in vivo charakterisiert wurde. Die gezielte duale Aktivität, die mit dieser Substanz erreicht wurde, führt in einem Krankheitsbild zu synergistischer Ergänzung zweier Therapieoptionen. Jedoch kann eine unerwünschte Promiskuität über verwandten nukleären Faktoren zu Nebenwirkungen führen. Die Ursache dafür kann eine saure Funktion darstellen. Ein sehr potenter nicht-azider FXR-Agonist mit einem subnanomolaren EC50-Wert konnte im Arbeitskreis entwickelt werden. Diese Verbindung ist FXR-selektiv, hat keinen toxischen Effekt auf HepG2-Zellen und eine moderate metabolische Halbwertszeit. Die qRT-PCR-Untersuchung direkter und indirekter FXR-Zielgene zeigte eine verstärkte Expression nach der Inkubation mit der nicht-aziden Substanz. Dadurch lässt sich das Prinzip der Nebenwirkungsminderung durch nicht-azide Verbindungen beweisen.
Insgesamt konnte in dieser Arbeit gezeigt werden, wie vielfältig und vielversprechend eine FXR-Modulation aufgebaut sein kann. Zum einen konnte über eine ausgeprägte biochemische Evaluation eine Differenzierung zwischen FXR-Antagonismus und Zelltoxizität bewiesen werden, worauf sich aufbauend eine genaue in vitro-Charakterisierung von neuen N-phenylbenzamidbasierten FXR-Antagonisten durchführen ließ, die ausgehend von einer moderat potenten Leitstruktur zu einer sehr potenten optimierten Substanz entwickelt wurden. FXR-Antagonismus und die dazu passenden tool compounds sind nicht nur von Bedeutung zum besseren Verständnis der unterschiedlichen Bindungsmodi des FXR, sondern auch potentielle Therapieansätze zur Behandlung von Krankheiten, in denen eine FXR-Überexpression stattfindet. Die agonistische Modulation von FXR wurde genauer betrachtet in der in vitro-Untersuchung nicht-azider FXR-Agonisten, die durch das Fehlen einer sauren Funktion ein hohes Maß an Selektivität und dabei eine geringe Toxizität aufwiesen. Synergistische Effekte zur Behandlung eines multifaktoriellen Krankheitsbildes durch die Kombination von FXR-Partialagonismus und sEH-Inhibition konnte durch die Entwicklung der potenten und balancierten Substanz sowohl in vitro als auch in vivo bewiesen werden, wodurch diese Verbindung ein vielversprechender Kandidat für weitere klinische Entwicklung ist.