Refine
Document Type
- Bachelor Thesis (2)
- Master's Thesis (2)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Institute
- Physik (4)
In dieser Arbeit wurde die Messung des Flusses von Protonen in Silber-Silber-Kollisionen bei 1:58 AGeV beschrieben. Dabei wurden drei verschiedene Flow Koeffzienten betrachtet, der gerichtete, der elliptische sowie der dreieckige Fluss.
Nachdem die Protonen zunächst anhand ihrer Masse identifziert wurden, wurde die Reaktionsebene rekonstruiert. Nachfolgend wurde das Vorgehen zur Bestimmmung der ersten drei Flow-Koeffzienten v1, v2 und v3 beschrieben. Diese wurden anschließend in Abhäangigkeit des Transversalimpulses und der Rapidität für vier Zentralitätsklassen im Bereich von 0 - 40% Zentralität dargestellt.
Da die Daten ebenfalls Silber-Kohlenstoff Reaktionen enthalten, weisen die Spektren eine Abweichung vom erwarteten Verlauf auf. Daher wurden diese Reaktionen anhand des in Abschnitt 3.1 beschriebenen Energieverhältnisses ERAT abgeschätzt und mit Hilfe eines Cut-Off Werts ausgeschlossen. Die daraus resultierenden Spektren konnten dadurch verbessert werden.
Im Fall der Gold-Gold Strahlzeit aus dem Jahr 2012 konnten neben Daten der hier diskutierten Flow-Koeffzienten v1, v2 und v3 ebenfalls Koeffzienten höherer Ordnung, v4 und v5, sowie Hinweise auf ein Auftreten von v6 gefunden werden.
Ähnliche Analysen könnten im Fall der Daten der Silber-Silber Kollisionen durchgeführt werden. Hier tritt zwar ein quantitativ kleinerer Fluss auf, da es sich bei den kollidierenden Nuklei um ein kleineres System handelt, jedoch treten im Vergleich zu Gold-Gold Kollisionen etwa zweifach so hohe Event-Raten auf. Somit kann mit der in dieser Arbeit beschriebenen Herangehensweise unter Verwendung der Daten der gesamten Strahlzeit untersucht werden, ob Hinweise auf Flow-Koeffzienten höherer Ordnung zu finden sind.
Außerdem sollte bei den bestehenden Ergebnissen eine Korrektur des Effekts der Occupancy des Detektors durchgeführt werden, da dieser wie in Abschnitt 3.2.1 beschrieben zu Verfälschungen des gemessenen Flusses führt. Dieser Effekt wird insbesondere im Fall des gerichteten Flusses v1 deutlich.
Des Weiteren ist eine Abschätzung der systematischen Fehler der Messungen erforderlich.
Dafür kann untersucht werden, welche Auswahlkriterien und Parameter die Messung beeinflussen, beispielsweise die Spurrekonstruktion und -selektion oder die Teilchenidentifikation. Unter Betrachtung der Auswirkungen auf die Ergebnisse der Flow-Koeffzienten kann die Analyse daraufhin mit Variationen dieser Werte durchgeführt werden. Somit kann der Bereich der systematischen Fehler abgeschätzt werden.
Ziel der Simulationsstudien in dieser Arbeit war es, die Leistungsfähigkeit des Transition Radiation Detectors zur Identifikation von leichten Kernen und Hyperkernen im CBM-Experiment zu untersuchen. Die Trennung von Helium und Deuterium
mithilfe ihres spezifischen Energieverlustes im TRD ist zentral, um eine Rekonstruktion des seltenen Hyperkerns 6 ΛΛHe mit einem hohen Signal-zu-Untergrund-Verhältnisse zu leisten. Zur Erfüllung der Anforderungen, die sich aus dem CBM-Forschungsprogramm ergeben, wird eine Auflösung des Energieverlustes dEdx von Helium von höchstens 30 % verlangt...
In April and May 2012 data on Au+Au collisions at beam energies of Ekin = 1.23A GeV were collected with the High Acceptance Di-Electron Spectrometer (HADES) at the GSI Helmholtzzentrum für Schwerionenforschung facility in Darmstadt, Germany. In this thesis, the production of deuterons in this collision system is investigated.
A total number of 2.1 × 109 Au+Au events is selected, containing the most central 0-40% of events. After particle identification, based on a mass determination via time-of-flight and momentum and on a measurement of the energy loss, the transverse mass spectra of the deuteron candidates are extracted for various rapidities and subsequently corrected for acceptance and efficiency.
The inverse slope parameter of a Boltzmann fit applied to the transverse mass spectra at midrapidity, which is referred to as the effective temperature, is extracted. For a static thermal source, this parameter corresponds to the kinetic freeze-out temperature Tkin and is therefore expected to be smaller or equal to the chemical freeze-out temperature Tchem. The extracted effective temperature of Tef f = (190 ± 10) MeV however exceeds the chemical freeze-out temperature that was obtained by a statistical model fit to different particle yields. The effective temperatures of various particle species, obtained in previous analyses, suggest a systematic rise with increasing particle mass, which is confirmed by the deuteron results.
An explanation can be the influence of a collective expansion with a radial expansion velocity βr. By fitting a Siemens-Rasmussen function to the transverse mass spectra, the global temperature of T = (100 ± 8) MeV and radial expansion velocity βr = 0.37 ± 0.01 are obtained. This temperature is still very high and only takes into account the production of deuteron nuclei.
The simultaneous fit of a blast-wave function to the transverse mass spectra of deuterons and other particles, as obtained by previous analyses, considers a velocity profile for the radial expansion velocity and takes into account the production of various particle species. The resulting global temperature Tkin = (68 ± 1) MeV and average transverse expansion velocity hβri = 0.341 ± 0.003 are within the expected range for the collision energy.
The Siemens-Rasmussen fits are also used to extrapolate the transverse mass spectra into unmeasured regions, to integrate them and obtain a rapidity-dependent count rate. This count rate exhibits a thermal shape for central events and shows increasing spectator contributions for more peripheral events.
The invariant yield spectra of the deuterons are compared to those of protons, as obtained by a previous analysis, in the context of a nucleon coalescence model. The hereby extracted nucleon coalescence factor B2 = (4.6 ± 0.1) × 10−3 agrees with the expected result for the beam energy that was studied.
In dieser Arbeit wurde der spezifische Energieverlust im TOF Detektor genutzt, um leichte Kerne zu identifizieren. Da die gemeinsame Betrachtung aller Szintillatorstäbe bei der aktuellen Kalibrierung des TOF Detektors keine eindeutige Zuordnung ermöglicht, wurde der Energieverlust der einzelnen Stäbe individuell parametrisiert. So konnten Helium und sogar Lithium Kerne selektiert werden. Die Impulskorrektur hat für zweifach geladene Kerne, abgesehen von sehr hohen Impulsen, eine erfolgreiche Korrektur der Masse ermöglicht. Bei Lithium hingegen wurde der Impuls überkorrigiert, sodass die Masse zu niedrig rekonstruiert wurde.
Durch Optimierung der Impulskorrektur könnte zusammen mit einer verbesserten Kalibrierung des TOF Detektors ein sehr hohes Auflösungsvermögen erreicht werden. Daher sollte die systematische Impulskorrektur für hohe Impulse durch weitere Simulationen verbessert und der Energieverlust vor dem Auftreffen auf den META Detektor genauer untersucht werden. Optimalerweise würde zur Kalibrierung des TOF Detektors die Abhängigkeit des Energieverlustes vom Winkel, in welchem die Teilchen auf den Detektor treffen, berücksichtigt werden. Ziel ist es, alle Stäbe pro zurückgelegter Wegstrecke zu kalibrieren, sodass weder ein Unterschied durch den Einfallwinkel der Teilchen noch durch die verschiedenen Stablängen aufkommt. Folglich wäre eine sehr spezifische Teilchenselektion möglich.